Problem 1.1

In the lectures the following example from Description Logics was presented:

\[K_T : \]
\[\text{woman} \sqsubseteq \text{person}, \]
\[\text{man} \sqsubseteq \text{person}, \]
\[\text{mother} = \text{woman} \sqcap \exists \text{child} : \text{person}, \]
\[\text{father} = \text{man} \sqcap \exists \text{child} : \text{person}, \]
\[\text{parent} = \text{mother} \sqcup \text{father}, \]
\[\text{grandparent} = \text{parent} \sqcap \exists \text{child} : \text{parent}, \]
\[\text{father_without_son} = \text{father} \sqcap \forall \text{child} : \neg \text{man} \]

\[K_A : \]
\[\text{parent}(\text{carl}), \text{parent}(\text{conny}), \]
\[\text{child}(\text{conny}, \text{joe}), \text{child}(\text{conny}, \text{carl}), \]
\[\text{man}(\text{joe}), \text{man}(\text{carl}), \text{woman}(\text{conny}). \]

Are the following consequences valid? \textbf{Justify} your answers.

1. \(K_T \cup K_A \models \text{grandparent}(\text{conny}) \)
2. \(K_T \cup K_A \models \text{father}(\text{carl}) \)
3. \(K_T \cup K_A \models \text{father_without_son}(\text{carl}) \)

Problem 1.2

Prove that \(F \sqsubseteq G \equiv F \sqcap \neg G = \bot \)

Problem 1.3

Show that the \(\text{grandparent} \sqsubseteq T \text{ parent} \) by reducing subsumption into concept satisfiability, where \(T \) is the T-Box from the lectures.

Problem 1.4

Is the concept \((\text{father} \sqcap \text{mother}) \) satisfiable w.r.t. \(T \) of the lectures?

Problem 1.5

1. Which generalized concept axioms must be added to prevent that a person is female and male?
2. Is there a single generalized concept axiom that prevents that a person is female and male?

Problem 1.6
Give an equivalent concept without the construct \(\sqcap \) and \(\exists r.C \) for \((\text{woman} \sqcap \exists \text{child.person})\)

Problem 1.7
Prove that \(K \models (\forall r.C)(a) \) and \(K \models r(a,b) \), then \(K \models C(b) \)