
A Note on Locality

• ≃ does not change if we switch from single symbols to sequences local ↦ global

• ≃𝜔, however, does

• 𝑃 ≅0 𝑄 for all processes 𝑃 and 𝑄

• 𝑃 ≅𝑖+1 𝑄 if, for all 𝑤 ∈ 𝖠𝖼𝗍⋆,
1. 𝑃 ⟶

𝑤
𝑃 ′ implies 𝑄⟶

𝑤
𝑄′ and 𝑃 ′ ≅𝑖 𝑄′;

2. 𝑄⟶
𝑤
𝑄′ implies 𝑃 ⟶

𝑤
𝑃 ′ and 𝑃 ′ ≅𝑖 𝑄′;

• the limit is ≅𝜔≔ ⋂𝑖≥0 ≅𝑖 and coincides with ≃ for image-finite processes

Dr. Stephan Mennicke Concurrency Theory: Stronger, Up-to, and Weak Bisimilarity May 27, 2025 1

Recall our Counters?

𝐶0 ⟶
𝑖
𝐶1

𝐶𝑛 ⟶
𝑖
𝐶𝑛+1

𝐶𝑛 ⟶
𝑑
𝐶𝑛−1

𝐶 ⟶
𝑖
𝐶 | 𝑑.𝟎

How to prove 𝐶0 ≃ 𝐶?

ℛ = {(𝐶𝑛, 𝐶 | Π𝑛𝑖=0𝑑.𝟎) | 𝑛 ∈ ℕ}

Dr. Stephan Mennicke Concurrency Theory: Stronger, Up-to, and Weak Bisimilarity May 27, 2025 2

Bisimulations up-to ≃

Definition 31 A process relation ℛ is a bisimulation up-to ≃ if, whenever 𝑝 ℛ 𝑞, for all
𝜇 ∈ 𝖠𝖼𝗍, we have
1. 𝑝⟶

𝜇
𝑝′ implies a 𝑞′ such that 𝑞 ⟶

𝜇
𝑞′ and 𝑝′ ≃ ℛ ≃ 𝑞′;

2. 𝑞 ⟶
𝜇
𝑞′ implies a 𝑝′ such that 𝑝⟶

𝜇
𝑝′ and 𝑝′ ≃ ℛ ≃ 𝑞′.

𝑝′ ≃ ℛ ≃ 𝑞′ iff there are 𝑝″, 𝑞″ such that 𝑝′ ≃ 𝑝″, 𝑝″ ℛ 𝑞″, and 𝑞″ ≃ 𝑞′.

Lemma 32 If ℛ is a bisimulation up-to ≃, then ≃ ℛ ≃ is a bisimulation.

Dr. Stephan Mennicke Concurrency Theory: Stronger, Up-to, and Weak Bisimilarity May 27, 2025 3

Recall our Counters 2.0?

𝐶0 ⟶
𝑖
𝝂ℓ1 (𝐶1 | ℓ1.𝐶0)

𝐶1 ⟶
𝑖
𝝂ℓ2 (𝐶2 | ℓ2.𝐶1)

𝐶2 ⟶
𝑖
𝝂ℓ1 (𝐶1 | ℓ1.𝐶2)

The lhs in every process context takes care of the next counter value, being either odd (𝐶1) or
even (𝐶2). The rhs waits for the decrement operation to have taken place to unguard the
counter’s original value. Consequently,

𝐶1 ⟶
𝑑
ℓ1.𝟎

𝐶2 ⟶
𝑑
ℓ2.𝟎

Dr. Stephan Mennicke Concurrency Theory: Stronger, Up-to, and Weak Bisimilarity May 27, 2025 4

Weak Transitions and Bisimilarity

Definition 33 For 𝒯 = (𝖯𝗋, 𝖠𝖼𝗍,⟶), define
1. ⟹ as the reflexive and transitive closure of ⟶

𝜏
;

2. for all 𝜇 ∈ 𝖠𝖼𝗍, 𝑝⟹
𝜇
𝑝′ if there are processes 𝑝1, 𝑝2 ∈ 𝖯𝗋 such that 𝑝⟹ 𝑝1 ⟶

𝜇

𝑝2 ⟹𝑝′.

Definition 34 A process relation ℛ is a weak bisimulation if for all 𝑝 ℛ 𝑞,
1. for all ℓ ∈ 𝖠𝖼𝗍 ∖ {𝜏}, 𝑝⟹

ℓ
𝑝′ implies a 𝑞′ such that 𝑞 ⟹

ℓ
𝑞′ and 𝑝′ ℛ 𝑞′;

2. 𝑝⟹
𝜏
𝑝′ implies a 𝑞′ such that 𝑞 ⟹ 𝑞′ and 𝑝′ ℛ 𝑞′;

3. the coverse on steps of 𝑞.

If a weak bisimulation ℛ with 𝑝 ℛ 𝑞 exists, we say that 𝑝 and 𝑞 are weakly bisimilar,
written as 𝑝 ≊ 𝑞.

Dr. Stephan Mennicke Concurrency Theory: Stronger, Up-to, and Weak Bisimilarity May 27, 2025 5

Axiomatizing ≃ for 𝖢𝖢𝖲𝑓𝑖𝑛

Decidability implies an algebraic characterization of bisimilarity in the shape of
axiomatizations.

Axiomatizations are axioms that, incorporating equational reasoning, are sufficient to decide
the equivalence.
1. use reflexivity, symmetry, and transitivity
2. use substitutivity by equivalent subterms

Dr. Stephan Mennicke Concurrency Theory: Stronger, Up-to, and Weak Bisimilarity May 27, 2025 6

The System 𝒮ℬ
𝐒𝟏 𝑃 + 𝟎 = 𝑃
𝐒𝟐 𝑃 +𝑄 = 𝑄+ 𝑃
𝐒𝟑 𝑃 + (𝑄 +𝑅) = (𝑃 + 𝑄) + 𝑅
𝐒𝟒 𝑃 + 𝑃 = 𝑃
𝐑𝟏 𝝂𝑎𝟎 = 𝟎
𝐑𝟐 if 𝜇 ∈ {𝑎, 𝑎} 𝝂𝑎𝜇.𝑃 = 𝟎
𝐑𝟑 if 𝜇 ∉ {𝑎, 𝑎} 𝝂𝑎𝜇.𝑃 = 𝜇.𝝂𝑎𝑃
𝐑𝟒 𝝂𝑎 (𝑃 + 𝑄) =𝝂𝑎𝑃 +𝝂𝑎𝑄
𝐄

If 𝑃 ≝ ∑0≤𝑖≤𝑚 𝜇𝑖.𝑃𝑖 and 𝑃 ≝ ∑0≤𝑗≤𝑛 𝜇𝑗.𝑃𝑗, infer

𝑃 | 𝑃 ′ = ∑
0≤𝑖≤𝑚

𝜇𝑖.(𝑃𝑖 | 𝑃 ′) + ∑
0≤𝑗≤𝑛

𝜇𝑗.(𝑃 | 𝑃𝑗) + ∑
𝜇𝑖=𝜇𝑗

𝜏.(𝑃𝑖 | 𝑃𝑗)

.
Dr. Stephan Mennicke Concurrency Theory: Stronger, Up-to, and Weak Bisimilarity May 27, 2025 7

Detour: The Bisimulation Game

Let 𝒯 = (𝖯𝗋, 𝖠𝖼𝗍,⟶) be an LTS. We call ℬ ≔ 𝖯𝗋 × 𝖯𝗋 the game board of the bisimulation
game, being a 2-player game between 𝘙 (the refuter) and 𝘝 (the verifier), played pairs
(𝑃 ,𝑄) ∈ ℬ.

A play for (𝑃0, 𝑄0) is a finite or infinite sequence of pairs

(𝑃0, 𝑄0), (𝑃1, 𝑄1),…, (𝑃𝑖, 𝑄𝑖),…

in which 𝘙 tries to show that 𝑃0 and 𝑄0 are not equal while 𝘝 tries to show the opposite.

When the play has reached a pair (𝑃𝑖, 𝑄𝑖),
1. 𝘙 challenges 𝘝 by choosing any transition 𝑃𝑖 ⟶

𝜇
𝑃 ′ or 𝑄𝑖 ⟶

𝜇
𝑄′;

2. 𝘝 has to find a matching transition, either 𝑄𝑖 ⟶
𝜇
𝑄′ or 𝑃𝑖 ⟶

𝜇
𝑃 ′.

The play continues with the (𝑖 + 1)th pair (𝑃 ′, 𝑄′).

If, at some point, 𝘝 is unable to answer, 𝘙 wins. If the situation never occurs, 𝘝 wins.

Dr. Stephan Mennicke Concurrency Theory: Stronger, Up-to, and Weak Bisimilarity May 27, 2025 8

Detour: (Winning) Strategies

A strategy for 𝘙 specifies, for all possible plays

(𝑃0, 𝑄0), (𝑃1, 𝑄1),…, (𝑃𝑖, 𝑄𝑖)

which transition to choose as the next challenge.

A strategy for 𝘝 specifies, for all possible plays

(𝑃0, 𝑄0), (𝑃1, 𝑄1),…, (𝑃𝑖, 𝑄𝑖)

and challenges (by 𝘙), which transition to choose as the next answer.

A strategy (for 𝘙 or 𝘝) is called a winning strategy if it leads to a win in all possible plays.¹

¹The use of the term possible is very important here because it also entails the use of the strategy in
question. Therefore, a play is only considered possible, if the pairs adhere to the rules of the game and the
chosen strategy.

Dr. Stephan Mennicke Concurrency Theory: Stronger, Up-to, and Weak Bisimilarity May 27, 2025 9

Detour: (Winning) Strategies

Theorem 35 𝑃 ≃ 𝑄 if and only if 𝘝 has a winning strategy for (𝑃 ,𝑄).

Theorem 36 𝑃 ≄ 𝑄 if and only if 𝘙 has a winning strategy for (𝑃 ,𝑄).

Dr. Stephan Mennicke Concurrency Theory: Stronger, Up-to, and Weak Bisimilarity May 27, 2025 10

Reduction from MCVP 𝐶 and 𝑖 ∈ {0, 1}𝑛

The LTS we consider is the smallest LTS 𝒯(𝐶, 𝑖) = (𝒬, {ℓ, 𝑟, 𝑎, 0},⟶) such that
1. 𝑃end ∈ 𝒬;
2. 𝑃𝑣, 𝑄𝑣 ∈ 𝒬 for every node 𝑣 of 𝐶 , and additionally,
3. 𝑃 ′𝑣 , 𝑄ℓ𝑣, 𝑄𝑟𝑣 ∈ 𝒬 for every node 𝑣 of 𝐶 labeled with ∨.

The transition relation ⟶ contains the following transitions:
1. 𝑃𝑣 ⟶

ℓ
𝑃𝑣1 , 𝑃𝑣 ⟶

𝑟
𝑃𝑣2 , 𝑄𝑣 ⟶

ℓ
𝑄𝑣1 , 𝑄𝑣 ⟶

𝑟
𝑄𝑣2 for every node 𝑣 of 𝐶 with label ∧;

2. 𝑃𝑣 ⟶
𝑎
𝑃 ′𝑣 , 𝑃𝑣 ⟶

𝑎
𝑄ℓ𝑣, 𝑃𝑣 ⟶

𝑎
𝑄𝑟𝑣, and

𝑃 ′𝑣 ⟶
ℓ
𝑃𝑣1 , 𝑃

′
𝑣 ⟶

𝑟
𝑃𝑣2 , and

𝑄𝑣 ⟶
𝑎
𝑄ℓ𝑣, 𝑄𝑣 ⟶

𝑎
𝑄𝑟𝑣, and

𝑄ℓ𝑣 ⟶
ℓ
𝑄𝑣1 , 𝑄

ℓ
𝑣 ⟶

𝑟
𝑃𝑣2 , 𝑄

𝑟
𝑣 ⟶

𝑟
𝑄𝑣2 , 𝑄

𝑟
𝑣 ⟶

ℓ
𝑃𝑣1 for every node 𝑣 of 𝐶 with label ∨;

3. 𝑃𝑣 ⟶
0
𝑃end for every input node 𝑣 of 𝐶 with assigned value 0.

The construction of 𝒯(𝐶, 𝑖) can clearly be computed in log-space.

Dr. Stephan Mennicke Concurrency Theory: Stronger, Up-to, and Weak Bisimilarity May 27, 2025 11

	A Note on Locality
	Recall our Counters?
	Bisimulations up-to ≃
	Recall our Counters 2.0?
	Weak Transitions and Bisimilarity
	Axiomatizing ≃ for CCSfin
	The System SB
	Detour: The Bisimulation Game
	Detour: (Winning) Strategies
	Reduction from MCVP C and i ∈ {0,1}n

