
Technische Universität Dresden

Master Thesis

Planning problems in Petri Nets and
Fluent Calculus

Author:

Ferdian Jovan

Supervisor:

Prof. Dr. rer. nat. habil.

Steffen Hölldobler

Dr. rer. nat. habil.

Bertram Fronhöfer

Knowledge Representation and Reasoning

International Center for Computational Logic

April 2014

http://tu-dresden.de/
Research Group Web Site URL Here (include http://www.wv.inf.tu-dresden.de/)
Department or School Web Site URL Here (include http://www.computational-logic.org/)

Declaration of Authorship

I, Ferdian Jovan, declare that this thesis titled, ’Planning problems in Petri Nets and

Fluent Calculus’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at Technische Universität Dresden.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at Technische Universität Dresden or any other institution, this

has been clearly stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Author : Ferdian Jovan

Matrikel-Nr : 3828288

Date of Submission : 4th of April 2014

ii

Acknowledgements

I would like to give my gratitude and appreciation to my supervisor, Prof. Steffen

Hölldobler, whose advices, encouraging suggestions and great stories have helped me in

all the time of research for and writing of this thesis. I also thank him for his concern and

motivation which contributed greatly to improving my English and helped me during my

study in EMCL program. Until the end, I am indebted to him for his patience dealing

with me.

I also would like to give my special thanks to Bertram Fronhöfer as my second supervisor

who has helped a lot for this last one year of my studies. His ideas and corrections have

helped me finishing and polishing this thesis in a better way. I thank him for his patience

and his time reading, commenting and giving inputs to my report. From him, I got a

lot of experience in writing a paper.

I wish to express my appreciation to Dr. Wisnu Jatmiko and Dr. Yohanes Stefanus

from Faculty of Computer Science, Universitas Indonesia. They gave me the motivation

to pursue master degree and encouraged me to apply in this master program. Prof.

Yohanes Stefanus also the first lecturer who introduced computational logic to me. I am

really grateful for his teaching which brought me into this field.

Also, I want to give my deep gratefulness to Mrs. Sylvia, Ms. Julia, and Mrs. Diecke for

all their big help from the very beginning up to the very end of my study. I apologize for

all the trouble I made with Ausländerbehörde which resulted many tasks to do. Their

care had helped me solve the misunderstanding between I and Ausländerbehörde.

Also, many thanks should go to the European Master in Computational Logic pro-

gramme and its director, Prof. Steffen Hölldobler, for their support and help during

my study. I thank the European Comission for their Erasmus Mundus scholarship to

support my study.

I also thank my fellow friends Andy Rivkin, Ismail Ilkan Ceylan, Adil Abdrahmanov,

and Ario Santoso who have always motivated me to finish this program. My Indonesian

friends in Bolzano and Dresden who have been helping me in my life both in Bolzano

and Dresden.

Finally, I wish to express very special thanks to my family, who has always been patient

and heartedly supported me, listened to me and given good advice, in both my life and

my study. Without their encouragement, I would never be here.

iii

TECHNISCHE UNIVERSITÄT DRESDEN

Abstract

Faculty of Computer Science

International Center for Computational Logic

Master Thesis

Planning problems in Petri Nets and Fluent Calculus

by Ferdian Jovan

In this thesis we discuss conjunctive planning problems in the context of the fluent

calculus and Petri nets. We show that both formalisms are equivalent in solving these

problems. Thereafter, we extend actions to contain preconditions as well as obstacles.

This requires to extend the fluent calculus as well as Petri nets. Again, we show that

both extended formalisms are equivalent. Inspired from Petri nets, we add real-valued

information to conjunctive planning problems. We show that the fluent calculus is

capable in solving conjunctive planning problems with real-valued information.

Keyword: Petri nets, fluent calculus, equational logic programming, conjunctive plan-

ning problems

University Web Site URL Here (include http://tu-dresden.de/)
Faculty Web Site URL Here (include http://www.inf.tu-dresden.de/portal.php?node_id=1&ln=en&group=13)
Department or School Web Site URL Here (include http://www.computational-logic.org/)

Contents

Declaration of Authorship ii

Acknowledgements iii

Abstract iv

List of Figures vii

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 2

1.3 Thesis Structure . 3

2 Preliminaries 5

2.1 Multisets . 5

2.2 Petri Nets . 6

2.3 First Order Theories . 8

2.4 Fluent Calculus . 12

2.5 Append Function . 17

3 Planning Problems 19

3.1 CPP in Petri Nets . 20

3.2 CPP in Fluent Calculus . 21

3.3 An Instance of Conjunctive Planning Problems 23

3.4 A Correspondence Between Fluent Calculus and Petri Nets 24

4 Advanced Planning Problems 31

4.1 Advanced Petri Nets . 32

4.2 ACPP in Advanced Fluent Calculus . 35

4.3 An Instance of ACPP . 40

4.4 A Correspondence Between AFC and APN 45

5 Advanced Planning ProblemsR 55

5.1 ACPPR in the Real-valued Fluent Calculus 62

5.2 An Instance of ACPPR . 82

5.3 Sound and Completeness of the Real-valued Fluent Calculus 84

v

Contents vi

6 Conclusion and Discussion 119

List of Figures

3.1 The SLDE-resolution of ¬causes({̇ill, apt}̇
−I
, P, {̇ill, hos}̇

−I
) yields the

answer substitution {P 7→ [c, [d, []]]}. 25

3.2 A firing sequence for the ill man problem with initial marking {̇apt, ill}̇. . 26

4.1 A Petri net with an inhibitor arc, connected to t2, and a test arcs, con-
nected to t3. 33

4.2 A fail SLDENF-resolution proof of causes({̇ill, fat, apt}̇
−I
, P, {̇ill, fat, hos}̇

−I
). 42

4.3 An SLDENF-resolution proof of hinder({̇ill, fat, apt}̇
−I
, c). 42

4.4 An advanced Petri net for the modified ill man problem. 43

4.5 A succesful SLDENF-resolution proof of causes({̇ill, fat, apt}̇
−I
, P, {̇ill, fat, hos}̇

−I
). 44

4.6 A solution for the modified ill man problem in APN AN ′Q. 45

5.1 An SLDENF-resolution proof of causes({̇real(ill, 1.0) ◦ real(pil, 0.8) ◦
apt}̇

−I
, P, {̇real(ill, 1.0) ◦ real(pil, 0.8) ◦ real(wei, 1.8) ◦ hos}̇

−I
). 83

vii

Chapter 1

Introduction

Many human activities are planned and structured which will later be enveloped in

an event. Roughly speaking, an event is a sequence of considered actions that people

take to reach a desired situation. For example, an event of rescuing an ill man from

his apartment is built of an initial situation where the ill man is in his apartment. The

sequence of actions starts with helping him to an ambulance, driving him to the hospital,

and ends with the situation where the ill man is hospitalized.

Now imagine that this event is given to an autonomous agent. The autonomous agent

must come up with a plan which does not necessarily need to be an efficient one but has

the ability to solve the problem. In this case, the plan has to work in such a way that

the result could lead to the ill man being in a hospital.

The story and the method to solve the story with an autonomous agent show a main-

stream problem of AI planning. The big question now lies on how to build an intelligent

and efficient system with well defined semantics that can generate plans for complicated

domains. This usually starts with simple questions that comprise on how domains/-

worlds and such plans should look like?

In most studies that have been primarily accomplished so far, a world is internally

represented by states, and a plan which is defined as simply a sequence of so-called

primitive actions, that transforms one state into another [1–4]. For example, an ill man

and an apartment, an ill man and an ambulance car, and an ill man and a hospital are

the world situations, whereas driving the ambulance car to the hospital after helping

him to the ambulance is the plan.

Hölldobler et al. showed in [5] that several approaches are capable of solving planning

problems like the example above. They have shown that those approaches are equal in

the way how states are represented, how actions are executed, and more importantly how

1

Chapter 1. Introduction 2

the approaches solve planning problems. Furthermore, they defined planning problems

with what so-called conjunctive planning problems.

In another approach, Leon Rubin Barret in his PhD thesis designed an architecture for

structured, concurrent, and real-time actions in Petri networks and Bayesian networks

[3]. This design can also be used to solve our example. He revealed that some concepts

can only be specified procedurally with the help of Petri nets. He expanded ordinary

Petri nets by adding inhibitor arcs, test arcs, continuous places, and transitions possess-

ing arithmetic expressions. All of these extensions were there to help integrating Petri

nets with Bayesian networks. These two networks working together are able to capture

essential properties in actions such as compositionality, concurrency, quick reactions,

and resilience in the face of unexpected events.

1.1 Motivation

A central notion in Petri nets are tokens which are consumed and produced when ex-

ecuting an action. Likewise, in the equational logic programming approach to actions

and causality presented in [6] resources are used. The approach was later called fluent

calculus in [7]. It is clear that there are similarities between Petri nets and the fluent

calculus.

As Petri nets are able to show their capability to solve planning problems, we aim to

show that the fluent calculus is also able to solve planning problems. We will use the

planning problem framework introduced in [5]. As the planning problems defined in

[5] are simple, we will rigorously define various classes of planning problems and map

these problems into the fluent calculus. In the end, we will show the soundness and

completeness of the fluent calculus in solving such problems.

We will also investigate the corresponding Petri nets introduced in [3] for some classes

of planning problems. We will show how planning problems are mapped into Petri nets.

We use them as a comparison to the fluent calculus in solving such problems. We will

formally prove that there is one-to-one correspondence between Petri nets with their

extensions and the fluent calculus.

1.2 Contribution

This thesis expands the theorem shown in [5] by adding Petri nets. It is shown in

Chapter 3 that Petri nets and the fluent calculus are equivalent in solving simple planning

Chapter 1. Introduction 3

problems. An example is given to illustrate the representation of planning problems in

both, the fluent calculus and Petri nets. Furthermore, from the example, the planning

problems transformation from the fluent calculus to Petri nets and vice versa can be

demonstrated.

We extend our planning problems in such a way that they become more expressible.

These extensions are originated from Petri nets designed by Barret in [3]. The planning

problems now include new features such as preconditions and obstacles. We define

formally some extensions which appear in Barret’s Petri nets starting form those which

have a good formalization to the one without any formalization [3]. A formal definition

for test arcs in these Petri nets is necessary because Barret in his report did not provide

one [3]. In the end, we extend the correspondence theorem stating that the fluent

calculus and Petri nets are equivalent in solving so-called advanced planning problems.

We have proven that the advanced Petri nets and advanced fluent calculus are equivalent

in solving planning problems with these new features.

Barret altered the interaction between places with real-valued tokens and transitions.

Inspired from his design, we introduce real-valued fluents in the fluent calculus and

add theory actions to advanced planning problems. We prove that our advanced fluent

calculus with real values are able to represent and solve advanced planning problems with

real values inside. One should know that we do not show the equivalence between Petri

nets combining advanced Petri nets and Petri nets calculating mathematical expressions

and the fluent calculus due to informal definition of these Petri nets in [3].

1.3 Thesis Structure

We will start with preliminaries in Chapter 2 by introducing the notation and terminol-

ogy in the fluent calculus and Petri nets. Chapter 3 introduces simple planning problems.

It also addresses their representation both, the fluent calculus and Petri nets. At the

end of this chapter, we will show the correspondence between the fluent calculus and

Petri nets in solving simple planning problems.

The second part of this thesis shows how the development of simple planning problems

towards more sophisticated planning problems. It also shows how these problems can

still be solved with the extension of the fluent calculus and Petri nets. In Chapter 4, this

thesis shows how advanced fluent calculus and advanced Petri nets are equivalently able

to represent and elegantly solve planning problems equipped with side requirements

for actions such as preconditions and obstacles. An example is given to help readers

comprehend the problem. Chapter 5 combines planning problems with the appearance

Chapter 1. Introduction 4

of real values. Some modifications to the fluent calculus are explained in details. As

usual, an example is given to illustrate the approach. In the end, we show that the

final modification of the fluent calculus is capable of solving planning problems with

real-valued information.

In the final chapter, all findings are summarized. Some future works such as adding a

time feature to the fluent calculus, the possibility to show the equivalence between timed

Petri nets and timed fluent calculus are pointed out. Some considerations to combine

the fluent calculus with Bayesian networks are also included.

Chapter 2

Preliminaries

The chapter starts with the basic notions of multisets. We continue with the introduction

of Petri nets. Notions of first order formulae with equality follow after. Fluent calculus

is presented at the end of this chapter.

2.1 Multisets

The notion of multiset comes from a generalization of the notion of sets in which each

element is allowed to appear more than once. They are one of data structures that can

represent resources flow. We define multiset as follows:

Definition 2.1.1. Let ∅̇ denote the empty multiset and let the parentheses {̇ and }̇ be

used to enclose the elements of a multiset. Let M,M1,M2 be finite multisets. The

following relations apply:

• Membership: X ∈kM iff X occurs precisely k-times in M, for k ≥ 0.

• Equality : M1
.
=M2 iff for all X we find X ∈kM1 iff X ∈kM2.

• Union: X ∈m M1 ∪̇ M2 iff there exist k, l ≥ 0 such that X ∈k M1, X ∈l M2,

and m = k + l.

• Difference: X ∈mM1 \̇ M2 iff there exist k, l ≥ 0 such that either X ∈kM1, X ∈l
M2, k > l, and m = k − l or X ∈kM1, X ∈lM2, k ≤ l, and m = 0.

• Intersection: X ∈m M1 ∩̇ M2 iff there exist k, l ≥ 0 such that X ∈k M1, X ∈l
M2, and m = min{k, l}, where min maps {k, l} to its minimal element.

• Submultiset : M1 ⊆̇ M2 iff (M1 ∩̇ M2)
.
= M1.

5

Chapter 2. Preliminaries 6

The number of times an element belongs to a multiset is the multiplicity of that element.

Two multisets are equal if and only if all different elements in both multisets have the

same multiplicity. In multisets, as in sets and in contrast to sequence or list, the order

of elements is irrelevant.

2.2 Petri Nets

Petri nets were firstly introduced as a mathematical description of distributed systems,

and analysis of their properties [8]. Lately, they are heavily used as a tool for modeling

and validation of systems in which concurrency, communication and synchronization

play a major role [9, 10].

A Petri net is a directed bipartite graph, in which nodes represent transitions and

places. Transitions are events which are symbolized by squares. Places are conditions

(preconditions and postconditions) of transitions symbolized by circles. The directed

arcs describe which places are pre- and/or postconditions for transitions. Arcs are

symbolized by arrows. Formally,

Definition 2.2.1. A Petri net N is a tuple (P, T ,F), where:

• P and T are finite sets;

• P ∩ T = ∅;

• F ⊆̇ (P × T) ∪̇ (T × P).

P is a set of places and T is a set of transitions. XN = P ∪ T consists of elements of

the net N . F is a set of arcs connecting elements of N .

More advanced Petri nets are usually equipped with a specified weight for each arc and

a maximum capacity for each place. Nevertheless, in this work we consider ordinary

Petri Nets where the weight for each arc is set to 1 and the capacity for each place is

set to infinity. Murata stated that both ordinary and non-ordinary Petri nets have the

same modeling power [11]. The only difference is modeling efficiency or convenience.

The next definition helps us to specify the concept of pre-set and post-set for a particular

element of the net.

Definition 2.2.2. Let N = (P, T ,F) be a Petri net and x ∈ T .

• A pre-set of x, denoted •x, is a finite multiset such that

y ∈k •x iff y ∈ T ∧ (y, x) ∈k F

Chapter 2. Preliminaries 7

holds.

• A post-set of x, denoted x•, is a finite multiset such that

y ∈k x• iff y ∈ T ∧ (x, y) ∈k F

holds.

A Petri net comes with resources put in each place. These resources for each place are

called tokens. The state describing how many tokens are in each place is called marking.

Formally, a Petri net with a marking is described as follows:

Definition 2.2.3. Let N = (P, T ,F) be a Petri net, andM ⊆̇ {̇x | x ∈ P}̇ be a multiset

over places. A marked Petri net is a tuple (N ,M).

A marking is a multiset of places representing how many tokens currently present in

each place. A Petri net is usually equipped with an initial marking.

Definition 2.2.4. Let N = (P, T ,F) be a Petri net, t ∈ T be a transition, and M,M′

be markings. The following holds:

• t is enabled at M in N , denoted by M [t]−→, iff •t ⊆̇ M.

• An enabled transition t in Petri net N with markingM can fire leading to marking

M′, denoted by M [t]−→M′, iff M′ .= (M \̇ •t) ∪̇ t•.

A transition is enabled if and only if incoming arcs of the transition from each place

are fewer than the number of tokens currently present in the place. Given a marking, a

firing rule determines whether a transition can be executed and what the resulting new

marking is. We extend the notion of firing so that it gives us a firing sequence as follows

[11, 12]:

Definition 2.2.5. Let N be a Petri net, andM,M′,M′′ be markings. Let w be a list of

transitions, and t ∈ T . A firing sequence is defined as follows:

• M []−→M.

• If M [t]−→M′, and M′ w−→M′′ then M [t|w]−−→M′′.

A firing sequence from M to M′ of N is a firing sequence w which starts from a marked

Petri net (N ,M) to a marked Petri net (N ,M′).

Chapter 2. Preliminaries 8

At every step, starting with an initial marking, there are many enabled transitions.

One of them is chosen non-deterministically like in a token game. By iterating for

each possible enabled transition in each produced marking, we obtain all the reachable

markings from the initial marking we start with. It gives a rise to the following problem:

Definition 2.2.6. The reachability problem consists of a Petri net N = (P, T ,F), an

initial marking M, and a marking M′. It is the question of whether M′ is reachable

fromM in N , i.e., there exists a firing sequence P such thatM P−→M′. R(M) denotes

the smallest set of markings of N such that the markings are reachable from M.

Reachability is a fundamental basis for studying the dynamic properties of any system.

A solution for reachability problems in a Petri net determines an execution of a net and

provides information of how the net behaves.

2.3 First Order Theories

Definition 2.3.1. An alphabet of first order logic is the union of six disjoint sets of

symbols:

1. the countably infinite set of variables V,

2. the finite or countably infinite set of function symbols F ,

3. the finite or countably infinite set of predicate symbols R,

4. the set of connectives {¬, ∨, ∧, ←, ↔},

5. the set of quantifiers {∃,∀}, and

6. the set of punctuation symbols {”(”, ”, ”, ”)”}.

The sets (4)-(6) are the same for each alphabet, whereas (1)-(3) may vary from alphabet

to alphabet. Relation and function symbols are assigned a natural number that we will

call arity of the respective symbol. We indicate the arity directly after the respective

symbol separated by a slash.

We denote by L(R,F ,V) the language defined over R,F ,V. We turn to the definition

of the constituents of our first order language over an alphabet.

Definition 2.3.2. The set of terms of the language L(R,F ,V) is the smallest set satisfying

the following conditions:

1. Every variable is a term,

Chapter 2. Preliminaries 9

2. If f/n ∈ F and t1, ..., tn are terms then f(t1, ..., tn) is a term.

A constant is a function symbol with arity 0. A term is closed or ground(instantiated),

if it does not contain any variables.

Definition 2.3.3. The set of atomic formulae (or, briefly, atoms) of the language L(R,F ,V)

is the set of strings of the form p(t1, ..., tn), where p/n ∈ R and t1, ..., tn are terms.

Definition 2.3.4. The set of (well-formed) formulae of the language L(R,F ,V) is the

smallest set defined by the following rules:

1. Every atom of the language L(R,F ,V) is a formula of the language L(R,F ,V).

2. If F and G are formulae of the language L(R,F ,V), then so are (¬F), (F ∧ G),

(F ∨G), (F ← G), and (F ↔ G).

3. If F is a formula of the language L(R,F ,V), then so are (∃F), and (∀F).

A ground formula is a formula with ground terms and no quantifiers occurred. A literal

is an atom A or its negation ¬A. We assume that in a first order language there is at

least one constant. Moreover, all formulae are assumed to be universally closed.

Definition 2.3.5. An equation is an expression of the form s ≈ t, where s and t are terms.

An equational system E is a set of universally closed equations.

We consider a first-order language over an alphabet which contains the binary relation

symbol ≈ called equality. Equality has the properties of reflexivity, symmetry, transitiv-

ity and substitutivity. This can be expressed within a first-order logic by the equational

system

E≈ = { X ≈ X
X ≈ Y → Y ≈ X
X ≈ Y ∧ Y ≈ Z → X ≈ Z∧n
i=1Xi ≈ Yi → f(X1, ..., Xn) ≈ f(Y1, ..., Yn)∧n
i=1Xi ≈ Yi ∧ r(X1, ..., Xn)→ r(Y1, ..., Yn) }

which consists of the so-called axioms of equality.

Definition 2.3.6. A substitution is a mapping from a set of variables to a set of terms

which coincides with the identity mapping except for finitely many points. It can be

represented by a finite set of pairs

σ = {X1 7→ t1, . . . , Xn 7→ tn}

The identity mapping, i.e. the empty substitution, is denoted by ε.

Chapter 2. Preliminaries 10

Definition 2.3.7. Let t1, t2 be two terms. t1 is called a variant of t2 if there is a substi-

tution σ such that t1 = t2σ.

A substitution σ is a ground substitution if tσ is a ground term for all t in terms. A

substitution can be used to transform a term such that one term is a variant of another.

First Order Logic

The semantics of first order logic that we consider is based on Herbrand theory.

Definition 2.3.8. An interpretation I is a mapping from first order language L(R,F ,V)

to the set of truth values {true, false}. A Herbrand interpretation is an interpretation

where the domain of the interpretation is a set of ground terms and for every ground

term t in L(R,F ,V) it holds that tI = t.

We define an interpretation I as a subset of the Herbrand base, i.e., a set of all ground

atoms. All atoms which are in the set are considered true, whereas others which are not

are considered false.

Definition 2.3.9. Let I be an interpretation of the language L(R,F ,V), F be a set

of formulae, and F a formula. I is a model of a formula F , denoted by I |= F , if

I(F) = true. |= F if and only if I |= F for all interpretations I.

F is called a logical consequence of F , denoted by F |= F , if every model I of F is also

a model of F .

We define an equality between two terms under an equational system E using the notion

of logical consequence as follows.

Definition 2.3.10. Let s, t be terms, and ∀ denote the universal closure.

s ≈E t iff E ∪ E≈ |= ∀s ≈ t.

≈E is the least congruence relation on terms generated by E .

Unification under Equality

Unification problems are concerned with a way of finding a substitution, called a unifier,

such that two terms become equal. We consider unification theory where equality axioms

are included in the unification process.

Definition 2.3.11. An E-unification problem consists of an equational system E and an

equation s ≈ t and is the question of whether

E ∪ E≈ |= ∃s ≈ t,

Chapter 2. Preliminaries 11

where the existential quantifier denotes the existential closure of s ≈ t. An E-unifier for

this problem is a substitution θ such that

sθ ≈E tθ

and is a solution for the E-unification problem.

Definition 2.3.12. Let V be a set of variables and θ and σ be two substitutions. σ is

called an E-instance of θ on V, denoted by σ ≤E θ[V], iff there exists a substitution τ

such that Xσ ≈E Xθτ for all X ∈ V.

We denote by UE(s, t) the set of all E-unifiers for the terms s and t.

Definition 2.3.13. Let V be the set of variables occurring in terms s and t. A complete

set of E-unifiers for s and t, denoted by cUE(s, t)), is a set S of substitutions where

1. S ⊆ UE(s, t); and

2. for all σ ∈ UE(s, t) there exists θ ∈ S such that σ ≤E θ[V]

hold.

We define a unification complete with respect to equational system E (E∗) based on [13]

as follows:

Definition 2.3.14. Let E be an equational system. A consistent set of formulas E∗ is

called unification complete wrt E if it consists of the axioms in E , E≈, and a number of

equational formulae such that for any two terms s and t the following holds:

1. If s and t are not E-unifiable then E∗ |= ¬∃ s ≈ t.

2. If s and t are E-unifiable then for each complete set of unifiers cUE(s, t),

E∗ |= ∀ (s ≈ t→
∨

θ∈cUE(s,t)

∃Vθ θ)

where Vθ denotes the variables which occur in θ but they are not part of the

universal closure of s and t.

The completion of an equational system E is needed to deal with logic programs with

negation in the body. In such a completion, we will be able to prove inequalities like

X 6≈ 1.

Chapter 2. Preliminaries 12

2.4 Fluent Calculus

The fluent calculus is a first order logic where the axioms of equality and a particular

equational system are included. The fluent calculus was originated from equational

Horn logic used for deductive planning to solve the frame problems [4–6, 14]. It was

later named as fluent calculus in action and causality [7]. We start this subsection by

defining fluents.

Definition 2.4.1. Fluents are the non-variable elements of terms where the set of function

symbols does not include ◦ and 1. Simple fluents are fluents consisting only of constants.

The ground fluents are fluents not containing any variables.

In the fluent calculus, a binary function symbol ◦ is introduced. It is designed to

represent terms which have the property of associativity, commutativity, and admitting

a unit element (constant) 1. Formally,

Definition 2.4.2. The set of fluent terms is the smallest set meeting the following con-

ditions

1. 1 is a fluent term,

2. each fluent is a fluent term, and

3. if s and t are fluent terms, then s ◦ t is a fluent term.

The ground fluent terms are fluent terms not containing any variables. The simple

fluent terms are fluent terms constructed by simple fluents. As the sequence of fluents

occurring in a fluent term is not important, we consider the following equational system:

EAC1 = { X ◦ (Y ◦ Z) ≈ (X ◦ Y) ◦ Z
X ◦ Y ≈ Y ◦X
X ◦ 1 ≈ X }.

Fluent terms can be represented in multisets by restricting the elements of multisets to

fluents. A mapping .I transforming a fluent term into a multiset of fluents is defined as

follows.

Definition 2.4.3. Let t be a fluent term:

tI =


∅̇ if t = 1

{̇ t }̇ if t is a fluent, and

uI ∪̇ vI if t = u ◦ v.



Chapter 2. Preliminaries 13

Although two fluent terms are said to be equivalent whenever they have the same fluents

with the same amount, those two fluent terms are still two different fluent terms. Thus,

to define an inverse mapping .−I from multisets of fluents to fluent terms, we assume

there is a linear order in fluents occurring in multiset of fluents.

Definition 2.4.4. Let M be a multiset of fluents, let s be the least element on some

linear ordering in M:

M−I =

{
1 if M =̇ ∅̇
s ◦ N−I if M =̇ {̇ s }̇ ∪̇ N .

}

If the order in fluents occuring in multisets is not insisted then picking fluents in different

order when constructing the fluent terms will produce different fluent terms. Hence,

.−I can not be called a mapping. With definitions of .I and −I , there is a one-to-one

correspondence between fluent terms and multisets of fluents as shown with the equations

t ≈AC1 (tI)−I

and

M =̇ (M−I)I .

A unification problem in fluent terms can be divided into two separate problems: fluent

matching problem and fluent unification problem. These notions are defined as follows:

Definition 2.4.5. The fluent matching problem consists of a fluent term s, a ground fluent

term t, and a variable X not occurring in s. It is the question of whether there exists a

substitution σ such that (s ◦X)σ ≈AC1 t.

Definition 2.4.6. The fluent unification problem consists of two fluent terms s and t

and a variable X not occurring in s and t. It is the question of whether there exists a

substitution σ such that (s ◦X)σ ≈AC1 tσ.

Fluent unification and matching problem are decidable, finitary, and there always exists

a minimal complete set of matchers and unifiers [4]. As a consequence, there always is a

unification complete theory with respect to fluent calculus [2]. Techniques to construct

the minimal complete set of matchers and unifiers can be found in [15].

With the help of mapping I , fluent matching and fluent unification problems can be

transformed into

Definition 2.4.7. The submultiset matching problem consists of a multiset M and a

ground multiset N . It is the question of whether there exists a substitution σ such that

Mσ ⊆̇ N .

Chapter 2. Preliminaries 14

Definition 2.4.8. The submultiset unification problem consists of two multiset M and

N . It is the question of whether there exists a substitution σ such that Mσ ⊆̇ Nσ.

Logic Programs and SLDENF-resolution

The fluent calculus roots in the logic programming formalism of [6, 16]. The fluent

calculus represents problems in the form of logic programs. We define a logic program

as a set of clauses in particular form.

Definition 2.4.9. Let A be an atom, and each Bi, 1 ≤ i ≤ n, a literal. A (program)

clause is a formula of the form

A← B1 ∧ ... ∧ Bn (n ≥ 0)

where A is called head and B1 ∧ ... ∧ Bn is called body of the clause. A definite clause

is a clause where every Bi, 1 ≤ i ≤ n, is an atom. A fact is a clause without the body.

A (logic) program P is a finite set of clauses.

Definition 2.4.10. A goal, or query, is a clause without the head i.e, of the form

← B1 ∧ ... ∧ Bn (n ≥ 1)

where each of Bi, i ≥ 1 is a literal and is called subgoal. A definite goal is a goal clause

where each of Bi is an atom.

To handle negative literals in a logic program, Clark introduced a program completion,

in which, loosely speaking ”if” is interpreted as ”if and only if” [17].

Definition 2.4.11. Let P be a logic program, and p/n be a predicate symbol occurring

in the head of a clause in P, and q/n′ be a predicate symbol not occurring in the head

of any clause in P. The completed definition of p is a formula of the form

(∀X1) . . . (∀Xn)(p(X1, . . . , Xn)↔ G1 ∨ . . . ∨ Gm)

where m is the number of clauses with p as the head, and Bi, 1 ≤ i ≤ m is of the form

(∃Y1) . . . (∃Yk)(X1 ≈ t1 ∧ . . . ∧ Xn ≈ tn ∧ B1 ∧ . . . ∧ Bk).

Y1, . . . , Yk are all variables occurring in a clause C where the head of the clause is

p, t1, . . . , tn are terms occurring in the head of clause C, and B1, . . . , Bk are literals

occurring in the body of the clause C.

Chapter 2. Preliminaries 15

The completed definition of q is a formula of the form

(∀X1) . . . (∀Xn′)¬q(X1, . . . , Xn′)

The completion of P is the generalized conjunction of the completed definitions of all

relation symbols occurring in P. We denote by P∗ a completion of P.

To know whether literals in the goal clause are a logical consequence of a logic program,

we use SLD-resolution. This technique is the processing mechanism employed in Prolog

system. The logical consequence can be traced by proving the unsatisfiability between

a goal and a logic program with an SLD-resolution [16, 18].

We consider SLDENF-resolution, the variant of SLD-resolution with negation as failure

added to handle negation in the body of clauses [17]. Negation as failure in SLDENF-

resolution adopts the definition used in [13], whereas the standard unification procedure

in SLDENF-resolution is replaced by an appropriate E-unification procedure [16, 19].

In contrast to SLDE-resolution, SLDENF-resolutions trace the logical consequence of a

completion of both the logic program and the equational system [13, 20].

Definition 2.4.12. Let P be a logic program. Let C be a new variant A← B1 ∧ ...∧Bm
of a clause in P, G a goal clause ← G1 ∧ ... ∧Gn. If A and an atom Gi, 1 ≤ i ≤ n, are

E-unifiable with E-unifier θ, then

← (G1 ∧ ... ∧Gi−1 ∧B1 ∧ ... ∧Bm ∧Gi+1 ∧ ... ∧Gn)θ

is called SLDE-resolvent of C and G.

Without loss of generality, we assume that literals are selected from left to right. There

is a dependency definition between the definition of a finitely failed SLDENF-tree and

the definition of SLDENF-resolution. We start with the definition of a finitely failed

SLDENF-tree.

Definition 2.4.13. A finitely failed SLDENF-tree of rank r (r ≥ 0) for program P and a

goal clause G is a finite tree such that the following holds:

1. The root is labeled with G and each node is labeled with a non-empty goal;

2. For each leaf node ← G1 ∧ . . . ∧ Gn where Gi is selected:

• If Gi is a positive literal then it does not E-unify with the head of a new

variant of any program clause; and

• If Gi is a negative ground literal ¬A then there exists an SLDENF-resolution

of rank less than r for P and ← A.

Chapter 2. Preliminaries 16

3. If an inner node ← G1 ∧ . . . ∧ Gn where Gi is selected then

• If Gi is a positive literal then the child nodes are SLDE-resolvents between a

new variant of a clause C ∈ P and the inner node.

• IfGi is a negative ground literal ¬A then there exists a finitely failed SLDENF-

tree of rank less than r for P and ← A, and the only child of the inner node

is labeled with ← G1 ∧ . . . ∧ Gi−1 ∧ Gi+1 ∧ . . . ∧ Gn.

A finitely failed SLDENF-tree of rank 0 is where all successive child nodes are SLDE-

resolvent of a clause in a logic program and the parent nodes.

Having defined a finitely failed SLDENF-tree, we turn to derivations where negative

literals are selected.

Definition 2.4.14. An SLDENF-resolution of rank r (r ≥ 1) for a logic program P and

a goal clause G consists of a sequence G0, . . . , Gn of goals such that G = G0 and Gn is

an empty clause and for each i = 1, . . . , n the following holds:

• If the literal B of Gi−1 is positive then there is a new variant of a program clause

C such that Gi is an SLDE-resolvent of C and Gi−1.

• If the literal B of Gi−1 is a negative ground literal ¬A then there exists a finitely

failed SLDENF-tree of rank less than r for P and ← A, and Gi is as Gi−1 except

that it does not contain B.

A resolution is said to flounder if the derivation yields a goal which contains only non-

ground negative literals [21].

The fluent calculus is a logic program where axioms of equality and (AC1) axioms are

included. Therefore, E-unification problems which have to be solved within the fluent

calculus are either fluent matching or fluent unification problems. Furthermore, θ is not

called E-unifier but rather AC1-unifier. The soundness of SLDENF-resolution for fluent

calculus has been proven in [13]. However, the completeness of SLDENF-resolution for

fluent calculus requires that no derivation flounders or is infinite and the completion of

the logic program is satisfiable [2].

Definition 2.4.15. An answer substitution for a goal clause G is a substitution σ where

the domain of the substitution σ is a subset of the set of variables occurring in G.

A goal clause may come with variables in it. When we apply SLDE(NF)-resolution to

a logic program together with the goal clause, we will get a substitution to replace the

variables in a goal clause. This substitution for the variables occurring in a goal clause

is called an answer substitution.

Chapter 2. Preliminaries 17

2.5 Append Function

A function append is a common function used in many programming languages including

Prolog. Generally, the function takes two finite list as inputs and produces a list which

concatenates the first list with the second one. Formally,

Definition 2.5.1. append : List×List 7→ List is a function which receives two finite lists

and returns the first list with the second list attached at the end of the first list.

In Prolog, the append function is implemented as clauses with the head of clauses is the

predicate append. The implementation goes as follows:

append([], L, L), (appendbase)

append([H | T], L, [H | R])← append(T, L,R). (appendinductive)

The first clause tells that an empty list appended with list L gives L as a result. The

second clause tells that if list R is a result of appending list T with L then list [H | R]

is a result of appending [H | T] with L.

Clauses (appendbase) and (appendinductive) are originally coming from Prolog system.

Those clauses do not cause infinite SLDENF-derivations as long as either the length of

the list of the first argument or the length of the list of the third argument is finite. The

derivations may go forever if either the first or the third argument is not instantiated.

This is shown in the following propositions.

Proposition 2.1. Let l, nl be arbitrary fluent terms. No SLDENF-resolution proof of

← append([an, . . . , a1], l, nl) is infinite.

Proof. The proposition is proven by induction on the length of the first argument.

I.B To show: No SLDENF-resolution proof of ← append([], l, nl) is infinite.

In the case where n = 0, i.e., the list is empty, append([], l, nl) can only be AC1-

unified with (appendbase) and only if l ≈ nl. Hence, we obtain the empty clause or the

derivation fails immediately.

I.H No SLDENF-resolution proof of ← append([an, . . . , a1], l, nln) is infinite.

I.C To show: No SLDENF-resolution proof of ← append([an+1, . . . , a1], l, nl) is infinite.

I.S In the case n+ 1 > 0, append([an+1, . . . , a1], l, nl) can only be AC1-unified with the

head of clause (appendinductive) where the successful derivation yields

← append([an, . . . , a1], l, nln) (2.1)

Chapter 2. Preliminaries 18

where nl = [an+1 | nln]. We can apply our induction hypothesis to (2.1) and learn

that no SLDENF-resolution proof of ← append([an, . . . , a1], l, nln) is infinite. By com-

bining the result from the induction hypothesis and the SLDENF-derivations from

← append([an, . . . , a1], l, nl) to (2.1) we can conclude that there is no SLDENF-resolution

proof of ← append([an, . . . , a1], l, nl) is infinite. �

Proposition 2.2. Let l, nl be arbitrary fluent terms. No SLDENF-resolution proof of

← append(nl, l, [an, . . . , a1]) is infinite.

Proof. The proposition is proven by induction on the length of the third argument.

I.B To show: No SLDENF-resolution proof of ← append(nl, l, []) is infinite.

In the case where n = 0, i.e., the list is empty, append(nl, l, []) can only be AC1-unified

with (appendbase) and only if nl = r = []. Hence, we obtain the empty clause or the

derivation fails immediately.

I.H No SLDENF-resolution proof of ← append(nln, l, [an, . . . , a1]) is infinite.

I.C To show: No SLDENF-resolution proof of ← append(nl, l, [an+1, . . . , a1]) is infinite.

I.S In the case n+ 1 > 0, append(nl, l, [an+1, . . . , a1]) can only be AC1-unified with the

head of clause (appendinductive) where the successful derivation yields

← append(nln, l, [an, . . . , a1]) (2.2)

where nl = [an+1 | nln]. We can apply our induction hypothesis to (2.2) and learn

that there is no SLDENF-resolution proof of ← append(nln, l, [an, . . . , a1]) is infinite.

By combining the result from the induction hypothesis and the SLDENF-derivations

from ← append(nl, l, [an+1, . . . , a1]) to (2.2) we can conclude that there is no SLDENF-

resolution proof of ← append(nl, l, [an+1, . . . , a1]) is infinite. �

One should note that if the third argument is finite then so are the first and the sec-

ond argument of append. Following the definition of append, the first and the second

argument of append are limited to finite lists.

Chapter 3

Planning Problems

Conjunctive planning problems were firstly introduced in [5] as a part of showing how

to solve the technical frame problem. This problems describe an initial situation, a goal

situation, a set of actions, and a question to find a series of appropriate actions changing

the initial situation to the goal one. The initial and goal situations and the conditions

as well as the effects of actions are modeled with multisets.

Definition 3.0.2. Let S be a set of simple fluents, and Sm be a finite multiset constructed

from S. A conjunctive planning problem (cpp) is a tuple 〈I,G,A〉, where

• I ⊆̇ Sm;

• G ⊆̇ Sm; and

• A is a finite set of actions of the form A : C ⇒ E where C ⊆̇ Sm, E ⊆̇ Sm.

I is called the initial state and G is called the goal state. An action A : C ⇒ E has

the name A, the conditions C, and the effects E . Multisets containing simple fluents

occurring in cpp are called states. A state represents what simple fluents hold at a time.

Definition 3.0.3. Let S be a multiset of simple fluents. An action

A : C ⇒ E

is applicable to S iff

C ⊆̇ S.

The application of the action leads to the multiset

(S \̇ C) ∪̇ E .

19

Chapter 3. Planning Problems 20

The consecutive application of actions to a multiset leading to another multiset is called

a plan.

Definition 3.0.4. A plan is a sequence [a1, ..., aj] of actions transforming state S into S ′

iff S ′ is the result of successively applying the actions in [a1, ..., aj] to S. A plan p is a

solution for the planning problem iff the plan can transform the initial state I into a

goal state G.

A cpp is mainly about the question of whether there exists a sequence of actions such

that its execution transforms the initial state into the goal state [5]. Hölldobler et al.

showed that conjunctive planning problem can be solved with the linear connection

method, equational logic and the linear logic approach [5]. Their main theorem states

that the following four statements are equivalent:

1. Plan p is a solution for a conjunctive planning problem Q.

2. p is generated by a linear connection proof of the representation of cpp in the linear

connection method.

3. p is generated by an SLDE-resolution proof of the representation of cpp in equa-

tional logic.

4. p is generated by a linear logic proof of the representation of cpp in the linear logic.

These approaches also elegantly solve frame axiom problem as stated in [5, 22]. The

linear connection method as well as the linear logic approach are not within the scope

of this work. Interested readers are referred to [5] for formal definitions.

We will extend what Hölldobler et al., have done by adding sentence ”p is a firing se-

quence of the representation of cpp in Petri nets” into their theorem. First, we present

how conjunctive planning problems are represented and solved within both fluent calcu-

lus and Petri nets. Second, we provide an example of how we transform a conjunctive

planning problem into both fluent calculus and Petri nets. We also give a solution

achieved by these two approaches. In the end, we will show that there is a one-to-

one correspondence between fluent calculus and Petri nets in finding the solution for

conjunctive planning problems.

3.1 CPP in Petri Nets

Petri nets are a formalism for modelling discrete event systems. Such formalisms can be

used to model planning problems. Places in Petri nets represent all types of resources

Chapter 3. Planning Problems 21

needed to apply actions. An action is encoded by a transition. A name of a transition

represents the name of the action, incoming arcs of a transition encode the conditions,

and outgoing arcs of a transition encode the effects.

Definition 3.1.1. Let Q = 〈I,G,A〉 be a cpp. A tuple NQ = (P, T ,F , I,G) is a repre-

sentation of Q in a (marked) Petri net where

• P is a set of all simple fluents occurring in Q;

• T is a set of all action names in Q;

• (p, t) ∈k F iff ∃(t : C ⇒ E) ∈ A s.t p ∈k C; and

• (t, p) ∈k F iff ∃(t : C ⇒ E) ∈ A s.t p ∈k E .

One should observe that (P, T ,F , I) and (P, T ,F ,G) are marked Petri nets. Markings

represent states of conjunctive planning problems. Tokens in each place show how many

resources are available at a state. Because the representation of the initial state I in

cpp is in the form of multisets and so is the goal state G, therefore, we can treat I and

G as markings. Furthermore, we know that for every action t : C ⇒ E in A, we have

a transition t ∈ T in the Petri net NQ with •t .= C and t• .
= E . Conversely, whenever

a transition t is enabled at marking M in NQ, there exists an action t in Q where t is

applicable in M.

The question of whether there exists a plan P solving a conjunctive planning problem

Q = 〈I,G,A〉 is represented by the question whether G ∈ R(I) of NQ, i.e., whether

there exists a firing sequence from I to G of a Petri net NQ.

With Petri nets, we can also find a sequence of firing for a modified planning problem,

where the initial state I is the result of executing a transition to the previous state where

the goal state G is unchanged. This follows immediately from the inductive definition of

a firing sequence of a Petri net.

3.2 CPP in Fluent Calculus

A simple fluent calculus is a first order calculus, where conjunctive planning problems

can be represented and solved [6].

Actions in cpp are represented using a ternary action symbol action/3 and are of the

form

action(C,A,E)

Chapter 3. Planning Problems 22

where C encodes the conditions, A encodes the name, E encodes the effects of the action.

These clauses are in the set KA.

A state in cpp is represented by a fluent term. An applicable action is represented with

the help of ternary relation symbol applicable/3.

applicable(C ◦ S,A,E ◦ S) ← action(C,A,E) (3.1)

The clause (3.1) is read that an action A is applicable in state C ◦ S leading to state

E ◦ S if there is an action named A with conditions C and effects E. With the help of

ternary relation symbols causes/3, we can express that a current state is transformed

into future one by applying a sequence of actions.

causes(S, [], S) (3.2)

causes(I, [A | P], G)← applicable(I, A, S) ∧ causes(S, P,G) (3.3)

Clause (3.2) states that there is nothing to do ([]), if the future state S is the current

state S. The clause (3.3) is read declaratively as

The execution of the plan [A | P] transforms state I into state G if action A

is applicable in state I and its application yields state S and there is a plan

P which transforms state S into state G.

We pack these three clauses under the set KC .

The question of whether there exists a plan P solving a conjunctive planning problem

Q = 〈I,G,A〉 is represented by the question of whether

(∃P)causes(I−I , P,G−I) (3.4)

is the logical consequence of KA ∪ KC ∪ EAC1 ∪ E≈. As clauses in KC ∪ KA are definite

clauses, we may apply SLDE-resolution in order to solve the planning problem.

Coming back to answer substitution of (3.4) at this state, an answer substitution contains

a binding for P . In fact, P is bound to a list of action names, which is called the plan

generated by an SLDE-resolution proof. Generally, the plan which is generated by an

SLDE-resolution proof is of the form [a1, ..., [an, []]...]. We abbreviate such a plan by

[a1, ..., an].

When we do an SLDE-resolution proof, we may encounter either fluent unification prob-

lems or fluent matching problems. However, the substitution processes are mostly be-

tween simple ground fluent terms and variables because of the restriction in conjunctive

Chapter 3. Planning Problems 23

planning problems to simple fluents. Hence, from AC1-unifier construction shown in

[15], the substitution forms being the AC1-unifiers are unique.

One should consider that the length of SLDE-resolutions for cpp is always greater than

the generated plan. However, we assume that we only count the number of SLDE-

refutation steps involving subgoals causes. Therefore, the length of an SLDE-resolution

is the number of SLDE-refutation steps involving subgoals causes. Hence, the length of

an SLDE-resolution proofs is as long as the generated plan.

3.3 An Instance of Conjunctive Planning Problems

A simple example about an ill man in an apartment who needed to be helped to hospital

is considered to illustrate conjunctive planning problems. We will show how this problem

can be represented and solved within the fluent calculus and Petri nets. Lets consider

the following story:

Suppose there was a man who was severely ill living in an apartment. He could

not go by himself to see a doctor. An ambulance car was asked to bring him

to hospital. He was carried by the ambulance men to the ambulance car. The

ambulance car is driven to the hospital.

This problem is considered as a conjunctive planning problem where the ill man (ill),

the apartment (apt), the ambulance car (amb), and the hospital (hos) are the fluents.

The possible actions are described by carrying the patient to the ambulance car (c),

and driving to the hospital (d). The only solution for this ill man is to carry him to

the ambulance car and drive the car to the hospital. Within the conjunctive planning

problem we obtain

Q = 〈 {̇ill, apt}̇, {̇ill, hos}̇, {c : {̇ill, apt}̇ ⇒ {̇ill, amb}̇, d : {̇ill, amb}̇ ⇒ {̇ill, hos}̇} 〉

If we apply c and d in this order to the initial state {̇ill, apt}̇, we end up with {̇ill, hos}̇.
Therefore, c and then d are the right actions to help him to go to hospital.

In the fluent calculus, the actions of help-to-ambulance and drive-to-hospital are repre-

sented by the set of clauses

KA = { action(ill ◦ apt, c, ill ◦ amb), action(ill ◦ amb, d, ill ◦ hos) }

Chapter 3. Planning Problems 24

If we ask, whether there exists a plan P such that its execution transforms state {̇ill, apt}̇
into state {̇ill, hos}̇, i.e.

∃P : causes({̇ill, apt}̇
−I
, P, {̇ill, hos}̇

−I
)

then we obtain the refutation shown in Figure 3.1 yielding the answer substitution

{P 7→ [c, [d, []]]}

Hence, the ill man has to be carried to the ambulance car (c) first, the ambulance car is

driven to hospital (d) afterwards, and they have reached the goal ([]).

In Petri nets, the ill man problem can be represented as

NQ = ({ill, apt, amb, hos}, {c, d}, {̇(ill, c), (c, ill), (ill, d), (d, ill), (apt, c), (c, amb),

(amb, d), (d, hos)}̇, {̇ill, apt}̇, {̇ill, hos}̇)

If we ask, whether there exists a firing sequence P such that its execution transforms

marking {̇ill, apt}̇ into {̇ill, hos}̇, i.e.

{̇ill, apt}̇ P−→ {̇ill, hos}̇

then we obtain the firing sequence shown in Figure 3.2 where the ambulance men have

to carry the ill man to an ambulance car (c) first, then they drive the car to the hospital

(d) afterwards before we can reach the marking {̇ill, hos}̇, i.e., P = [c, d].

3.4 A Correspondence Between Fluent Calculus and Petri

Nets

We have shown that a Petri net is able to represent a conjunctive planning problem.

The question is whether a Petri net solves a conjunctive planning problem by the firing

sequence from the initial marking to the goal marking. That question can be solved by

showing a correspondence between the fluent calculus and Petri nets. The correspon-

dence is shown by Theorem 3.1.

Throughout this section let Q = 〈I,G,A〉 denote a conjunctive planning problem and let

FCQ, and NQ denote its presentation in the fluent calculus and Petri nets, respectively.

Theorem 3.1. The following statements are equivalent for a plan p of Q 1

1For interested reader the proofs that a solution plan for conjunctive planning problem can be gen-
erated by a linear connection proof, a linear logic proof and an SLDE-resolution proof can be found in
[5].

Chapter 3. Planning Problems 25

← causes({̇ill, apt}̇
−I
, P, {̇ill, hos}̇

−I
) causes(I, [A | P], G)

|
σ1 = {I 7→ ill ◦ apt, P 7→ [A | P1], |

G 7→ ill ◦ hos} |
|

← applicable(ill ◦ apt, A, S)∧ applicable(C ◦ S1, A1, E ◦ S1)
causes(S, P1, ill ◦ hos) |

|
σ2 = {C 7→ ill ◦ apt, S1 7→ 1, |

A1 7→ A,S 7→ E} |
|

← action(ill ◦ apt, A,E) action(ill ◦ apt, c, ill ◦ amb)
∧causes(E,P1, ill ◦ hos) |

|
σ3 = {A 7→ c, E 7→ ill ◦ amb} |

|
← causes(ill ◦ amb, P1, ill ◦ hos) causes(I1, [A2 | P2], G1)

|
σ4 = {I1 7→ ill ◦ amb, P1 7→ [A2 | P2], |

G1 7→ ill ◦ hos} |
|

← applicable(ill ◦ amb,A2, S2)∧ applicable(C1 ◦ S3, A3, E1 ◦ S3)
causes(S2, P2, ill ◦ hos) |

|
σ5 = {C1 7→ ill ◦ amb, S3 7→ 1, |

A3 7→ A2, S2 7→ E1} |
|

← action(ill ◦ amb,A2, E1) action(ill ◦ amb, d, ill ◦ hos)
∧causes(E1, P2, ill ◦ hos) |

|
σ6 = {A2 7→ d,E1 7→ ill ◦ hos} |

|
← causes(ill ◦ hos, P2, ill ◦ hos) causes(S4, [], S4)
σ7 = {S4 7→ ill ◦ hos, P2 7→ [] |

|
�

Figure 3.1: The SLDE-resolution of ¬causes({̇ill, apt}̇
−I
, P, {̇ill, hos}̇

−I
) yields the

answer substitution {P 7→ [c, [d, []]]}.

1. p is a solution for Q.

2. p is generated by an SLDE-resolution proof of FCQ.

3. p is a firing sequence from I to G of NQ.

Proof. We find that statements 1 and 2 are equivalent, i.e. p is a solution for Q iff

p is generated by an SLDE-resolution proof of FCQ [5]. Hence, to proof the theorem

it suffices to show that 2 implies 3 and 3 implies 2. These implications are proven in

Lemma 3.2 and 3.3.

Chapter 3. Planning Problems 26

apt amb hos

ill

c d

apt amb hos

ill

c d

apt amb hos

ill

c d
c d

Figure 3.2: A firing sequence for the ill man problem with initial marking {̇apt, ill}̇.

Lemma 3.2. If p is a firing sequence from I to G of NQ, then p can also be generated

by an SLDE-resolution proof of FCQ.

Proof. The lemma is proven by induction on the number j of transitions executed in

the firing sequence of NQ.

I.B To show: If [] is a firing sequence from I to G of NQ, then [] is generated by an

SLDE-resolution proof of FCQ.

If [] is a firing sequence I to G of NQ then there is no need to fire any transition to reach

the goal marking because the goal marking coincides with the initial marking, i.e.,

I []−→ I.

Let σ be the substitution

{S 7→ I−I , P 7→ []}.

σ is the AC1-unifier for the atom occurring in

← causes(I−I , P, I−I) (3.5)

and a new variant

causes(S, [], S)

of (3.2). Thus, there exists an SLDE-refutation of (3.5) using the variant of (3.2) and

yielding the plan [].

I.H If [aj , . . . , a1] is a firing sequence from Ij to G of NQ, then [aj , . . . , a1] can also be

generated by an SLDE-resolution proof of FCQ.

I.C To show: If [aj+1, aj , . . . , a1] is a firing sequence from I to G of NQ, then

[aj+1, aj , . . . , a1] can also be generated by an SLDE-resolution proof of FCQ.

I.S Suppose [aj+1, aj , . . . , a1] is a firing sequence from I to G of NQ, i.e.,

I
[aj+1,aj ,...,a1]−−−−−−−−−→ G.

Chapter 3. Planning Problems 27

aj+1 is the first enabled transition and assume that •aj+1 =̇ C and aj+1• =̇ E such that

I
aj+1−−−→ (I \̇ C) ∪̇ E .

From the construction of NQ, we may conclude that there is an action in Q in the form

aj+1 : C ⇒ E . Therefore, we can find the corresponding fact

action(C−I , aj+1, E−I). (3.6)

in FCQ s.t. the conditions and effects are C and E , respectively.

Let I ′ =̇ I \̇ C, and σ be a substitution

{I 7→ I−I , G 7→ G−I , P 7→ [A | P ′]}.

It is easy to see that σ is the AC1-unifier between the atom occurring in

← causes(I−I , P,G−I) (3.7)

and the head of a new variant

causes(I, [A | P ′], G)← applicable(I, A, S) ∧ causes(S, P ′, G)

of (3.3). Therefore, there is an SLDE-derivation from (3.7) to

← applicable(C−I ◦ I ′−I , A, S) ∧ causes(S, P ′,G−I) (3.8)

using the variant of (3.3) and AC1-unifier σ. There is an SLDE-derivation of (3.8)

yielding

← action(C−I , A,E) ∧ causes(E ◦ I ′−I , P ′,G−I) (3.9)

using the head of a new variant

applicable(C ◦ S′, A′, E ◦ S′)← action(C,A′, E)

of (3.1) and the AC1-unifier

σ′ = {C 7→ C−I , S′ 7→ I ′−I , A′ 7→ A,S 7→ E ◦ I ′−I}.

Once more, we can find an AC1-unifier

σ′′ = {E 7→ E−I , A 7→ aj+1}

Chapter 3. Planning Problems 28

between the atom of the first literal in (3.9) and (3.6). Thus, we find an SLDE-derivation

from (3.9) to

← causes(I ′−I ◦ E−I , P,G−I) (3.10)

using (3.6) and the AC1-unifier σ′′.

By executing aj+1 at the initial marking I in NQ, we have a firing sequence [aj , . . . , a1]

of NQ such that

I ′ ∪̇ E
[aj ,...,a1]−−−−−→ G. (3.11)

Because this proof contains [aj , . . . , a1] and the goal marking in (I.H) is the same as

in (3.11), we may conclude that Ij
.
= I ′ ∪̇ E . We can apply the induction hypothesis

and learn that there is an SLDE-refutation of (3.10) yielding the computed answer

substitution {W 7→ [aj , ..., a1]}.

Combining this refutation with derivation from (3.7) to (3.10) yields an SLDE-derivation

of (3.7) with the computed answer substitution {P 7→ [aj+1, ..., a1]}, i.e., the sequence

of actions [aj+1, ..., a1] is generated. �

The proof of this lemma directly defines a procedure to transform a firing sequence

of Petri nets into SLDE-refutations. In particular, the firing sequence in Figure 3.2 is

transformed into the SLDE-refutation in Figure 3.1.

Lemma 3.3. If plan p is generated by an SLDE-refutation of FCQ, then p is a firing

sequence from I to G of NQ.

Proof. The lemma is an immediate consequence of the following claim.

If there is an SLDE-refutation of ← causes(I−I , P,G−I) generating plan p,

then there is a firing sequence p from I to G of NQ.

The claim is proven by induction on the length j of the SLDE-refutation.

I.B To show: If there is an SLDE-refutation of ← causes(I−I , P,G−I) with length 1

generating plan p, then there is a firing sequence p of NQ from I to G.

If the length of the SLDE-refutation is 1, then the atom occurring in

← causes(I−I , P,G−I) (3.12)

and a variant

causes(S, [], S)

of (3.2) must be AC1-unifiable and SLDE-refutation of (3.12) generates the empty plan

[]. Furthermore, the first and the third argument of the variant of (3.2) refer to the same

Chapter 3. Planning Problems 29

fluent term. Therefore, we get that I−I ≈AC1 G−I . We may conclude that AC1-unifier

for (3.12) and the variant of (3.2) is of the form

{P 7→ [], S 7→ I−I}.

Since I−I ≈AC1 G−I , we obtain I .
= G. We may conclude that in Petri net NQ, the

initial marking and the goal marking are the same. Therefore, there is no need to fire

any transition, i.e,

I []−→ I.

Hence, there is a firing sequence [] from I to I of NQ.

I.H If there is an SLDE-refutation of ← causes(I−Ij , Pj ,G−I) with length j generating

plan pj , then there is a firing sequence pj from Ij to G of NQ.

I.C To show: If there is an SLDE-refutation of← causes(I−I , P,G−I) with length j+ 1

generating plan p, then there is a firing sequence p from I to G of NQ.

I.S Suppose there is an SLDE-refutation of

← causes(I−I , P,G−I) (3.13)

with length j + 1 and generating plan [a1, ..., aj].

The first atom occurring in (3.13) can only be AC1-unified with the head of a new

variant

causes(I, [A | P ′], G)← applicable(I, A, S) ∧ causes(S, P ′, G)

of (3.3) with an AC1-unifier of the form

σ = {I 7→ I−I , G 7→ G−I , P 7→ [A | P ′]}.

It gives an SLDE-derivation from (3.13) to

← applicable(I−I , A, S) ∧ causes(S, P ′,G−I) (3.14)

The first atom occurring in (3.14) can only be AC1-unified with the head of a new

variant

applicable(C ◦ S′, A′, E ◦ S′)← action(C,A′, E)

of (3.1) with an AC1-unifier of the form

{C 7→ c1 ◦ ... ◦ cl, S′ 7→ i1 ◦ . . . ◦ in, A′ 7→ A,S 7→ E ◦ i1 ◦ ... ◦ in}.

Chapter 3. Planning Problems 30

where I−I ≈AC1 c1 ◦ . . . ◦ cl ◦ i1 ◦ . . . ◦ in. The SLDE-derivation of (3.14) yields

← action(c1 ◦ ... ◦ cl, A,E) ∧ causes(E ◦ i1 ◦ ... ◦ in, P ′,G−I) (3.15)

Since we assume that there is an SLDE-refutation of (3.13), there must be a fact

action(c1 ◦ ... ◦ cl, a1, e1 ◦ ... ◦ ek) (3.16)

in FCQ which can be AC1-unified with the first atom occurring in (3.15). Let

σ′ = {A 7→ a1, E 7→ e1 ◦ ... ◦ ek}

be a substitution. σ′ is the AC1-unifier between the atom of the first literal of clause

(3.15) and (3.16) [15]. Hence, there is an SLDE-refutation from (3.15) to

← causes(e1 ◦ ... ◦ ek ◦ i1 ◦ ... ◦ in, P ′,G−I) (3.17)

From (3.16), we may conclude that there must be an action a1 : (c1 ◦ ... ◦ cl)I ⇒
(e1 ◦ ... ◦ ek)I in Q. Furthermore, we know that a1 is applicable in the initial state I
from the fact that (c1 ◦ ... ◦ cl)I ⊆̇ I. Hence, we can find the corresponding enabled

transition a1 in NQ with •a1 =̇ {̇c1, ..., cl}̇ and a1• =̇ {̇e1, ..., ek}̇ such that

I a1−→ (i1 ◦ ... ◦ in ◦ e1 ◦ ... ◦ ek)I (3.18)

We can apply (I.H) to (3.17) since the SLDE-refutation only has length j. We learn a

firing sequence [a2, . . . , aj] from (i1 ◦ ... ◦ in ◦ e1 ◦ ... ◦ ek)I to G of NQ, i.e.,

(i1 ◦ ... ◦ in ◦ e1 ◦ ... ◦ ek)I
[a2,...,aj]−−−−−→ G (3.19)

Combining (3.18) and (3.19), we obtain a firing sequence [a1, . . . , am] such that

I
[a1,...,aj]−−−−−→ G

Because there is a firing sequence p from I to G of NQ, the claim is true. �

The proof defines the counter part procedure of Lemma 3.2 which transforms an SLDE-

refutation into a firing sequence of Petri nets.

Chapter 4

Advanced Planning Problems

In the previous chapter we have shown that Petri nets and fluent calculus are capable

to find a sequence of actions solving conjunctive planning problems. These kind of

problems come with simple actions where actions are only equipped with conditions and

effects. They do not distinguish between conditions that are consumed and conditions

that must be present without being consumed. Furthermore, there is no such thing like

obstacles which may hinder an action from being taken.

Lets modify the ill man problem presented in the previous chapter as follows:

Suppose now the ill man was really fat such that he could not fit through his

apartment’s door.

In the example above, being fat is an obstacle for the ill man to get rescued. It inhibits

the action carry-to-the-ambulance from being taken. It is clear that a normal conjunctive

planning problem is not able to model the problem above because there is a restriction

to the action carry-to-the-ambulance named that the ill man can not be fat.

To model the modified example about the ill man in conjunctive planning problem,

we introduce what so-called obstacles to an action. Informally, obstacles are resources

at which if the number of them is enough then they can hinder an action from being

taken. An action can be taken whenever the number of the resources is not enough to

cause any trouble to the action. Unlike conditions and effects of an action, obstacles are

neither consumed nor produced. Moreover, we also introduced so-called preconditions.

Preconditions are conditions that must be present whenever an action is being taken.

For instance, the man being ill in our example is a precondition for all considered actions.

This modification is focused on the set of actions. There is no alternation regarding the

initial state and the goal state.

31

Chapter 4. Advanced Planning Problems 32

Definition 4.0.1. An advanced conjunctive planning problem (acpp) Q = 〈I,G,A〉 is a

conjunctive planning problem where A is a finite set of extended actions of the form

A : C R,O==⇒ E ,

where C,R,O, E are simple fluents and C ∩̇ E .
= ∅̇. A, C,R,O, E are the name, the

conditions, the preconditions, the obstacles, and the effects of the action respectively.

We extend the definition of applicable action for acpp as follows:

Definition 4.0.2. Let S be a multiset of simple fluents, and Q = 〈I,G,A〉 be an acpp.

An extended action

A : C R,O==⇒ E

is applicable to S iff

C ⊆̇ S,R ⊆̇ S and ∀e ∈k O (e ∈j S → j < k)

The application of an extended action leads to the multiset

(S \̇ C) ∪̇ E .

We broaden the definition of applicable in acpp such that obstacles and preconditions

are included as the prerequisite for an action. An action is applicable in a state whenever

the state contains all conditions and preconditions which are needed to produce effects

and it does not have enough elements of obstacles for each different obstacles which

may hinder the action. One important point for an action is that once there are enough

elements of one type of obstacles at particular states, they are enough to make an action

not to be applicable. Definitions of a plan and a solution still follow definitions described

in Chapter 3.

Some may argue why our definition of applicable actions separates R ⊆̇ S from C ⊆̇ S
because it is possible to combine them together as R ∪̇ C ⊆̇ S. We separate R ⊆̇ S from

C ⊆̇ S to obtain the possibility to have S ⊆̇ (C ∪̇ R). Our definition has more flexibility

to model some real-life problems than the restriction R ∪̇ C ⊆̇ S could have.

4.1 Advanced Petri Nets

An extended Petri net is a Petri net with inhibitor arcs [12]. Originally, the introduction

of inhibitor arcs adds the ability to test ”zero” (i.e., absence of tokens in a place) and

increases the modelling power of Petri nets to the level of Turing machine [11]. David

Chapter 4. Advanced Planning Problems 33

and Alla in [23] modified the original definition by adding weight to inhibitor arcs.

Their definition states that a transition can only be fired at a particular marking, if the

marking has fewer tokens than the weight of inhibitor arcs connected to the transition

[23].

Apart from the existence of inhibitor arcs, Barret introduced new arcs called test arcs.

These arcs were intended to aid discrete Petri nets to work with places holding real

values. The appearance of test arcs in Petri nets adds the ability to check ”threshold”

of a place (i.e., whether a place has more tokens than the threshold). A test arc is a

modified arc going from a place to a transition that does not consume any tokens when

the transition fires but still disables the transition whenever that input place does not

have enough tokens [3].

Combining these two special arcs in one Petri net gives us advanced Petri nets. Formally,

Definition 4.1.1. An advanced Petri net N is a tuple (P, T ,F ,H,L), where:

1. (P, T ,F) is a marked Petri net;

2. H ⊆̇ P × T ; and

3. L ⊆̇ P × T .

H are called inhibitor arcs whereas L are called test arcs. Inhibitor arcs and test

arcs of an advanced Petri net N constitute submultisets of PN × TN . We denote by

(P, T ,F ,H,L) an advanced Petri net (APN). From the definition of an advanced Petri

net, we get that ordinary Petri nets are Petri nets with H .
= L .

= ∅. Graphically, an

inhibitor arc is depicted by arrows with a diamond head, whereas a test arc is depicted

by a dash arrow. An instance of Petri nets with inhibitor arcs and test arcs are shown

in Figure 4.1.

p1 p2

t1

t2 t3

Figure 4.1: A Petri net with an inhibitor arc, connected to t2, and a test arcs,
connected to t3.

Definition 4.1.2. Let N = (P, T ,F ,H,L) be an APN, we define the multiset of inhibitor

places of transition t as follows

p ∈k Ht iff p ∈ P ∧ (p, t) ∈k H

Chapter 4. Advanced Planning Problems 34

and the multiset of test places of transition t as follows

p ∈k Nt iff p ∈ P ∧ (p, t) ∈k L

It is well known that inhibitor arcs can properly increase the expressive power of a

net. The argument is that two-counter machines can be modeled by deterministic finite

nets with (at least two) unbounded places and adjacent inhibitor arcs [12]. Moreover,

inhibitor arcs provide a formal way to represent coordination in parallel systems.

Definition 4.1.3. Let N = (P, T ,F ,H,L) be an advanced Petri net and M a marking.

t ∈ T is enabled at M in N iff •t ⊆̇ M, ∀p ∈ P((p, t) ∈k L ∧ p ∈j M→ k ≤ j), and

∀p ∈ P((p, t) ∈m H ∧ p ∈nM→ m > n).

The enabling condition of the firing rule is extended by two constraints. ∀p ∈ P((p, t) ∈k
L ∧ p ∈j M → k ≤ j) is to ensure no transition will violate test arcs, whereas

∀p ∈ P((p, t) ∈k H ∧ p ∈j M→ k > j) is to ensure no transition will violate inhibitor

arcs. The notion fire and firing sequence are defined as before.

ACPP Representation in APN

It is clear that ordinary Petri nets are not able to represent advanced conjunctive plan-

ning problems. The reason is that ordinary Petri nets do not have a mechanism to

prevent a transition from being fired. To cope with this problem, we use an advanced

Petri net. Barret showed that advanced Petri nets are able to model concurrent events

where perceived information from an environment can affect what actions are and are

not allowed to be taken [3].

ACPP representation in APN is divided into two parts where the ordinary cpp is rep-

resented using an ordinary Petri net, preconditions are represented by test arcs and

obstacles are represented by inhibitor arcs. Formally,

Definition 4.1.4. Let Q = 〈I,G,A〉 be an acpp. A tuple ANQ = (P, T ,F ,H,L, I,G) is

a representation of Q in a (marked) advanced Petri net where

• (P, T ,F , I,G) follows the definition (3.1.1);

• (p, t) ∈k H iff ∃(t : C R,O==⇒ E) ∈ A s.t p ∈k O;

• (p, t) ∈k L iff ∃(t : C R,O==⇒ E) ∈ A s.t p ∈k R.

From the definition above, we know that for every action t : C R,O==⇒ E in Q, we have a

transition t ∈ T in APN ANQ with Ht
.
= O, Nt

.
= R, •t .

= C, and t• .
= E . One may

Chapter 4. Advanced Planning Problems 35

notice that the requirements for the firing rule of a transition are the requirements for

an applicable action in acpp. Hence, a transition t is enabled at markingM in ANQ iff

there exists an action t in Q where t is applicable in M

The question of whether there exists a plan P solving an acpp Q = 〈I,G,A〉 is rep-

resented by the question whether there exists a firing sequence from I to G of APN

ANQ.

4.2 ACPP in Advanced Fluent Calculus

The representation of an acpp in fluent calculus is based on our specification given in

Chapter 3. Actions are still represented using a ternary predicate symbol action/3 where

the first argument encodes the condition, the second argument encodes the name, and

the third argument encodes the effect of an action.

To cope with the new feature in acpp, we introduce three new binary predicates:

precon/2, hinder/2, inhib/2. inhib is a predicate to serve obstacles of an action. For

all actions of the form (a : C R,O==⇒ E) in Q = 〈I,G,A〉 and for each fluent o ∈k O, we

have a fact inhib(O,A) where O encodes o appearing k times in O and A encodes the

name a of the action. Hence, if there are n different fluents in the obstacles of an action

then there are n different inhib-clause for that action.

The preconditions of an action are encoded with the help of binary predicate precon

and are of the form

precon(R,A)

where R encodes the preconditions of an action and A encodes the name of the action.

Both inhib and precon clauses are added in the set KA.

hinder is a predicate to give information whether an action is hindered by obstacles at

a particular state. A clause involving hinder is of the form

hinder(O ◦ S,A)← inhib(O,A). (4.1)

The clause above specifies that if the obstacles O of an action A are part of the state

O ◦ S then action A is hindered in this state.

Chapter 4. Advanced Planning Problems 36

We modify KC especially the clause (3.1) to cover wider requirements of an applicable

action in acpp. The modification is done as follows

applicable(C ◦ S,A,E ◦ S)← action(C,A,E)

∧ precon(R,A)

∧ R ◦R′ ≈ C ◦ S
∧ ¬hinder(C ◦ S,A)

(4.2)

The applicable clause is read declaratively as follows:

An action A is applicable at state C ◦S and its application yields a state E ◦S
if condition C of A is a part of C ◦ S and so is precondition R of A and there

is no obstacle with action A at state C ◦ S.

With this modification, KC now contains a fact (3.2), clause (3.3), clause (4.1), clause

(4.2), and S ≈ S.

With the introduction of negation in the body of clause (4.2), we use SLDENF-resolution

proofs instead of SLDE-resolution proofs. For that, we need to guarantee that our ad-

vanced fluent calculus is satisfiable. Furthermore, the SLDENF-resolutions must be free

from floundering and infinite derivation [2]. This is all needed to ensure the complete-

ness of SLDENF-resolution. We will show that the completion of KA ∪KC ∪ EAC1 ∪ E≈
is satisfiable.

Let Q = 〈I,G,A〉 be an acpp, and AFCQ the fluent calculus representation of Q. We

denote by AFC∗Q a completion of KA ∪ KC ∪ EAC1 ∪ E≈.

Lemma 4.1. AFC∗Q is satisfiable.

Proof. A model of AFC∗Q can be constructed as follows. From [2], AC1∗ turns out to

be satisfiable. Let

MAC1∗ = {s ≈ t | AC1∗ |= s ≈ t ∧ s, t are ground terms }

then MAC1∗ is a model of AC1∗. Let

Maction =MAC1∗ ∪ {action(c, t, e) | action(c, t, e) ∈ KA},

Minhib =Maction ∪ {inhib(o, t) | inhib(o, t) ∈ KA},

and

Mprecon =Minhib ∪ {precon(a, t) | precon(a, t) ∈ KA},

Chapter 4. Advanced Planning Problems 37

then Mprecon is a model of KA ∪AC1∗. Let

Mhinder =Mprecon ∪ {hinder(s, t) | ∃o, s′ {inhib(o, t), o ◦ s′ ≈ s} ⊆̇ Mprecon},

Mapp =Mhinder ∪ {applicable(s, t, n) | ∃s′, c, e, a, a′ s.t {action(c, t, e), c ◦ s′ ≈ s,
e ◦ s′ ≈ n, precon(a, t), a ◦ a′ ≈ s} ⊆ Mhinder

∧ hinder(s, t) 6∈ Mhinder},

M0 =Mapp ∪ {causes(i, [], g) | i ≈ g ∈Mapp},

and for all k ≥ 1 let

Mk =Mk−1 ∪ {causes(i, p, g) | ∃p′, t, e s.t {applicable(i, t, e), causes(e, p′, g),

p ≈ [t | p′]} ⊆ Mk−1}.

Then, by a straightforward induction on the length of the second argument of causes

we learn that M =
⋃
k∈NMk is a model of KC ∪KA ∪AC1∗ and, consequently, M is a

model for AFC∗Q. �

We would like to have a syntactical condition which guarantees that no derivation floun-

ders or infinite. Unfortunately, clauses in KC are recursive. The number of recursive

calls to causes depends on the second argument of causes, which is a list. If the length

of this list is known in advance, then each derivation of a goal clause of the form

← causes(i, p, g) is finite, where i and g are (possibly uninstantiated) fluent terms denot-

ing the initial and the goal state of acpp, respectively, and p is a (possibly uninstantiated)

list of a given length. Furthermore, to avoid floundering in SLDENF-resolutions, the

initial state i in← causes(i, p, g) must be a ground fluent term. These two observations

regarding finiteness and non-floundering are combined in the following propositions.

Proposition 4.2. Let s, a be two simple fluent terms. Then, no SLDENF-resolution

proof of ← hinder(s, a) is infinite.

Proof. The goal clause ← hinder(s, a) can only AC1-unify with the head of a new

variant

hinder(O ◦ S,A)← inhib(O,A)

of (4.1) where it yields to

← inhib(o, a)

Hence, the AC1-unifiers for hinder(o, a) and the head of the clause (4.1) must be of the

form

σ = {O 7→ o, S 7→ s′, A 7→ a}

Chapter 4. Advanced Planning Problems 38

where s ≈AC1 o ◦ s′. At this point, the derivation either fails or the literal inhib(o, a)

can be solved with a fact in KA to continue to an empty clause. �

Proposition 4.3. No SLDENF-resolution proof of ← causes(I−I , [a1, . . . , an],G−I)
flounders or is infinite.

Proof. The proposition is proven by induction on the length of the list of the second

argument in causes.

I.B To show: No SLDENF-resolution proof of ← causes(I−I , [],G−I) flounders or is

infinite.

In case where n = 0, i.e., the list is empty, causes(I−I , [],G−I) can only be AC1-unified

with a new variant

causes(S, [], S)

of (3.2) and only if I−I ≈AC1 G−I . Hence, we obtain the empty clause or the derivation

fails immediately.

I.H No SLDENF-resolution proof of ← causes(I−In , [an, . . . , a1],G−I) flounders or is

infinite.

I.C No SLDENF-resolution proof of ← causes(I−I , [an+1, . . . , a1],G−I) flounders or is

infinite.

I.S In the case n+ 1 > 0, causes(I−I , [an+1, . . . , a1],G−I) can only be AC1-unified with

the head of a new variant

causes(I, [A | P], G)← applicable(I, A, S) ∧ causes(S, P,G)

of (3.3) where the successful derivation yields

← applicable(I−I , an+1, S) ∧ causes(S, [an, . . . , a1],G−I) (4.3)

with an AC1-unifier of the form

{I 7→ I−I , A 7→ an+1, P 7→ [an, . . . , a1], G 7→ G−I}

The first atom in (4.3) and the head of a new variant

applicable(C ◦ S′, A′, E ◦ S′)← action(C,A′, E) ∧ precon(R,A′)

∧ R ◦R′ ≈ C ◦ S′ ∧ ¬hinder(C ◦ S′, A′)

of (4.2) are AC1-unifiable with an AC1-unifier of the form

{C 7→ C−I , S′ 7→ I ′−I , A′ 7→ an+1, S 7→ E ◦ I ′−I}

Chapter 4. Advanced Planning Problems 39

leading to

← action(C−I , an+1, E) ∧ precon(R, an+1) ∧ R ◦R′ ≈ C−I ◦ I ′−I

∧ ¬hinder(C−I ◦ I ′−I , an+1) ∧ causes(E ◦ I ′−I , [an, . . . , a1],G−I)
(4.4)

where I .
= C ∪̇ I ′. At this point, there are two possibilities. Either the derivation finitely

fails, or the atom action(C−I , an+1, E) and a fact

action(C−I , an+1, E−I)

from KA are AC1-unifiable with an AC1-unifier of the form

{E 7→ E−I}.

If the latter is the case, then there is an SLDENF-derivation of (4.4) to

← precon(R, an+1) ∧ R ◦R′ ≈ C−I ◦ I ′−I ∧ ¬hinder(C−I ◦ I ′−I , an+1)

∧ causes(E−I ◦ I ′−I , [an, . . . , a1],G−I)
(4.5)

Once more, there are two possibilities. Either the derivation finitely fails, or the atom

precon(R, an+1) and a fact

precon(R−I , an+1)

from KA are AC1-unifiable with an AC1-unifier of the form

{R 7→ R−I}.

If the latter is the case, then there is an SLDENF-derivation of (4.5) to

← R−I ◦R′ ≈ C−I ◦ I ′−I ∧ ¬hinder(C−I ◦ I ′−I , an+1)

∧ causes(E−I ◦ I ′−I , [an, . . . , a1],G−I)

Again, there are two possibilities. Either the derivation finitely fails, or the atom

R−I ◦A′ ≈ C−I ◦ I ′−I and a new variant

X ≈ X

of S ≈ S in KC are AC1-unifiable. If I is a multiset of simple fluents then C−I ◦ I ′−I

is a ground fluent term. Hence, if the latter is the case we obtain an AC1-unifier of the

form

{R′ 7→ (I \̇ R)−I , X 7→ C−I ◦ I ′−I}

Chapter 4. Advanced Planning Problems 40

and it yields

← ¬hinder(C−I ◦ I ′−I , an+1) ∧ causes(E−I ◦ I ′−I , [an, . . . , a1],G−I).

According to the preceding definition in chapter 2, the negative literal ¬hinder(I−I , an+1)

can be selected since it is ground. Proposition (4.2) proves that the corresponding

SLDENF-tree is finite. Thus, there are two cases, either the derivation finitely fails or

the derivation continues with

← causes(I ′−I ◦ E−I , [an, . . . , a1],G−I). (4.6)

If the derivation continues with (4.6) then we can use the induction hypothesis where

I−In ≈AC1 I ′−I ◦ E−I to show that the derivation neither flounders nor is infinite since

the plan [an, . . . , a1] has the length n. �

Proposition 4.3 tells that the length of the second argument of causes must be fixed

in advanced to prevent from having a possible infinite derivation. Based on this result,

we refine the question of finding a plan solving an acpp to finding a plan with length n

solving an acpp with an initial state I and a goal state G. In advanced fluent calculus,

this is a question of whether

(∃A1, . . . , An)causes(I−I , [A1, . . . , An],G−I)

is a logical consequence of the completion of the logic program KA ∪KC and the (AC1)

axioms E≈ ∪ EAC1.

One should remember that we only count the number of SLDENF-refutation steps in-

volving subgoals causes. Therefore, the length of an SLDENF-resolution is the number

of SLDENF-refutation steps involving subgoals causes. Furthermore, we are still deal-

ing with simple fluents in advanced cpp. Hence, when we do SLDENF-resolution proofs,

the substitutions being AC1-unifiers for two atoms are still unique [15].

4.3 An Instance of ACPP

Consider the simple modification of the ill man problem mentioned in the introduction

of this chapter:

Chapter 4. Advanced Planning Problems 41

Suppose there was a man who was severely ill living in an apartment. He could

not go by himself to see a doctor. An ambulance car was asked to bring him to

hospital. He was supposed to be taken from his apartment to the ambulance car.

However, he was really fat such that he could not fit through his apartment’s

door.

This problem is no longer a cpp, but rather an acpp. The fluents are ill, apt, amb, hos, fat

as the ill man, the apartment, the ambulance, the hospital, and being fat, respectively.

The actions are to carry him to the ambulance (c), and to drive the ambulance car to

hospital (d). The solution by carrying him to the ambulance and driving the ambulance

car to hospital is no longer valid since now the ill man is really fat such that he can

not pass through his door in his apartment. Within the advanced conjunctive planning

problem we obtain

Q = 〈 {̇ill, fat, apt}̇, {̇ill, fat, hos}̇, {c : {̇apt}̇ {̇ill}̇,{̇fat}̇======⇒ {̇amb}̇,

d : {̇amb}̇ {̇ill}̇,∅̇===⇒ {̇hos}̇} 〉

As it is shown here, action (c) has an obstacle {̇fat}̇. Since the initial state {̇ill, fat, apt}̇
has fat in it, we can not perform action (c). Furthermore, action (d) can not be per-

formed because the initial state does not have amb in it at which it is needed as the

condition to perform action (d). Therefore, there is no solution to this problem.

In the fluent calculus, the actions are represented by the set of clauses

{action(apt, c, amb), action(amb, d, hos)}.

Inhibitors of action c are represented by the set of clauses

{inhib(fat, c)}

and the preconditions of action c and d are represented by the set of clauses

{precon(ill, c), precon(ill, d)}

If we ask, whether there exists a plan P such that its execution transforms state

{̇ill, fat, apt}̇ into state {̇ill, fat, hos}̇, i.e.

∃P : causes({̇ill, fat, apt}̇
−I
, P, {̇ill, fat, hos}̇

−I
)

then we will not obtain any successful SLDENF-refutation. One potential SLDENF-

refutation is failed because there is an SLDENF-refutation of hinder({̇ill, fat, apt}̇
−I
, c).

Chapter 4. Advanced Planning Problems 42

← causes({̇ill, fat, apt}̇
−I
, P, {̇ill, fat, hos}̇

−I
) causes(I, [A | P], G)

|
σ1 = {I 7→ apt ◦ ill ◦ fat, P 7→ [A | P ′], |

G 7→ ill ◦ fat ◦ hos} |
|

← applicable(ill ◦ fat ◦ apt, A, S) applicable(C ◦ S′, A,E ◦ S′)
∧ causes(S, P ′, ill ◦ fat ◦ hos) |

|
σ2 = {C 7→ apt, S′ 7→ ill ◦ fat, S 7→ E ◦ ill ◦ fat} |

|
← action(apt, A,E) ∧ . . . action(apt, c, amb)

∧ causes(ill ◦ fat ◦ E,P ′, ill ◦ fat ◦ hos) |
|

σ3 = {A 7→ c, E 7→ amb} |
|

← precon(R, c) ∧ . . . precon(ill, c)
∧ causes(ill ◦ fat ◦ amb, P ′, ill ◦ fat ◦ hos) |

|
σ4 = {R 7→ ill} |

← ill ◦R′ ≈ ill ◦ fat ◦ apt ∧ . . . X ≈ X
∧causes(ill ◦ fat ◦ amb, P ′, ill ◦ fat ◦ hos) |

|
σ5 = {R′ 7→ fat ◦ apt,X 7→ ill ◦ fat ◦ apt} |

|
← ¬hinder(ill ◦ fat ◦ apt, c) ∧ causes(ill ◦ fat ◦ amb, P ′, ill ◦ fat ◦ hos)

|
fail

Figure 4.2: A fail SLDENF-resolution proof of

causes({̇ill, fat, apt}̇
−I
, P, {̇ill, fat, hos}̇

−I
).

← hinder(ill ◦ fat ◦ apt, c) hinder(O ◦ S,A)
|

σ1 = {O 7→ ill, S 7→ fat ◦ apt, A 7→ c} |
|

← inhib(fat, c) inhib(fat, c)
|

σ2 = ∅ |
|
�

Figure 4.3: An SLDENF-resolution proof of hinder({̇ill, fat, apt}̇
−I
, c).

Figure 4.2 shows how the potential SLDENF-refutation of causes({̇ill, fat, apt}̇
−I
, P,

{̇ill, fat, hos}̇
−I

) fails. Figure 4.3 shows the SLDENF-refutation of

hinder({̇ill, fat, apt}̇
−I
, c).

Chapter 4. Advanced Planning Problems 43

apt amb hos

ill

fat

c d

Figure 4.4: An advanced Petri net for the modified ill man problem.

In APN, the modified ill man problem can be represented as

ANQ = ({ill, apt, amb, hos, fat}, {c, d}, {̇(apt, c), (c, amb), (amb, d), (d, hos)}̇,
{̇(fat, c)}̇, {̇(ill, c), (ill, d)}̇, {̇ill, fat, apt}̇, {̇ill, fat, hos}̇)

If we ask, whether there exists a firing sequence P such that its execution transforms

marking {̇ill, fat, apt}̇ into {̇ill, fat, hos}̇, i.e.

{̇ill, fat, apt}̇ P−→ {̇ill, fat, hos}̇

then we obtain no firing sequence because transition c can not be fired due to an in-

hibitory arc connecting fat and c and the initial marking which has token fat. Figure

4.4 shows the initial configuration of APN ANQ.

Let’s continue the story by adding the following information:

A helicopter was sent to help him. A crane was used to carry him out of his

windows to the helicopter. The helicopter brought him to the hospital.

We have a helicopter (hel) as the additional simple fluent. We also have two additional

actions: carrying him out of his windows by a crane (cr) and piloting the helicopter to

the hospital (p). The acpp is

Q′ = 〈 {̇ill, fat, apt}̇, {̇ill, fat, hos}̇, {c : {̇apt}̇ {̇ill}̇,{̇fat}̇======⇒ {̇amb}̇,

d : {̇amb}̇ {̇ill}̇,∅̇===⇒ {̇hos}̇, cr : {̇apt}̇ {̇ill}̇,∅===⇒ {̇hel}̇, p : {̇hel}̇ {̇ill}̇,∅===⇒ {̇hos}̇} 〉

It is easy to see that the only solution for this problem is by carrying him out of his

windows by the crane and piloting the helicopter to the hospital. In the fluent calculus,

the additional actions are represented by the set of clauses

{action(apt, cr, hel), action(hel, p, hos)}.

and the preconditions of action cr and p are represented by the set of clauses

{precon(ill, cr), precon(ill, p)}

Chapter 4. Advanced Planning Problems 44

← causes({̇ill, fat, apt}̇
−I
, P, {̇ill, fat, hos}̇

−I
) causes(I, [A | P ′], G)

|
σ1 = {I 7→ apt ◦ ill ◦ fat, P 7→ [A | P ′], |

G 7→ ill ◦ fat ◦ hos} |
|

← applicable(ill ◦ fat ◦ apt, A, S) applicable(C ◦ S′, A,E ◦ S′)
∧ causes(S, P ′, ill ◦ fat ◦ hos) |

|
σ2 = {C 7→ apt, S′ 7→ ill ◦ fat |

S 7→ E ◦ ill ◦ fat} |
|

← action(apt, A,E) ∧ . . . action(apt, cr, hel)
∧ causes(ill ◦ fat ◦ E,P ′, ill ◦ fat ◦ hos) |

|
σ3 = {A 7→ cr, E 7→ hel} |

...
← causes(ill ◦ fat ◦ hel, P ′, ill ◦ fat ◦ hos) causes(I ′, [A′ | P ′′], G′)

|
σ4 = {I ′ 7→ ill ◦ fat ◦ hel, P ′ 7→ [A′ | P ′′], |

G′ 7→ ill ◦ fat ◦ hos} |
|

← applicable(ill ◦ fat ◦ hel, A′, S′)∧ applicable(C ′ ◦ S′′, A′, E′ ◦ S′′)
∧ causes(S′, P ′′, ill ◦ fat ◦ hos) |

|
σ5 = {C ′ 7→ hel, S′′ 7→ ill ◦ fat, |

S′ 7→ E′ ◦ fat ◦ ill} |
|

← action(hel, A′, E′) ∧ . . . action(hel, p, hos)
∧ causes(ill ◦ fat ◦ E′, P ′′, ill ◦ fat ◦ hos) |

|
σ6 = {A′ 7→ p,E′ 7→ hos} |

...
← causes(ill ◦ fat ◦ hos, P ′′, ill ◦ fat ◦ hos) causes(S′′′, [], S′′′)

|
σ7 = {S′′′ 7→ ill ◦ fat ◦ hos, P ′′ 7→ []} |

�

Figure 4.5: A succesful SLDENF-resolution proof of

causes({̇ill, fat, apt}̇
−I
, P, {̇ill, fat, hos}̇

−I
).

No inhibitors are needed for these new actions. The solution for this problem is depicted

in the SLDENF-resolution proof shown in Figure 4.5.

In APN, the modified problem with additional actions can be represented as

AN ′Q = ({ill, apt, amb, hos, fat, hel}, {c, d, cr, p}, {̇(apt, c), (c, amb), (amb, d),

(d, hos), (apt, cr), (cr, hel), (hel, p), (p, hos)}̇, {̇(fat, c)}̇, {̇(ill, c), (ill, d),

(ill, cr), (ill, p)}̇, {̇ill, fat, apt}̇, {̇ill, fat, hos}̇)

Figure 4.6 shows the firing sequence of APN AN ′Q as the solution for Q′.

Chapter 4. Advanced Planning Problems 45

apt

ill

fat

c

amb

d

hos

cr

hel
p

apt

ill

fat

c

amb

d

hos

cr

hel
p

apt

ill

fat

c

amb

d

hos

cr

hel
p

cr p

Figure 4.6: A solution for the modified ill man problem in APN AN ′Q.

4.4 A Correspondence Between AFC and APN

We have modeled a situation where some resources may hinder an action under advanced

conjunctive planning problems and have shown that these problems can also be modeled

in the fluent calculus. Here, we will show that a slight modification of Theorem 3.1

holds when we change cpp to acpp, ordinary Petri nets to APN, and fluent calculus to

advanced fluent calculus. Throughout this section let Q = 〈I,G,A〉 denote an advanced

conjunctive planning problem and let AFCQ, and ANQ denote its presentation in the

advanced fluent calculus, and APN, respectively.

Proposition 4.4. There are enough obstacles in a state S to hinder an action a in Q
iff there is an SLDENF-resolution proof of ← hinder(S−I , a) in AFCQ.

Proof. ⇒ To show: there is an SLDENF-resolution proof of ← hinder(S−I , a).

Assume there are enough obstacles in a state S to hinder an action a. Furthermore,

assume that the action a is of the form

a : C R,O==⇒ E

At least one type of obstacles in O appears in state S. Let O′ ⊆̇ S contain only fluents o

with multiplicity n where o is the obstacle. Hence, we have o ∈m S, o ∈n O and m ≥ n.

Hence, there must be a corresponding fact

inhib(O′−I , a) (4.7)

in AFCQ. Let σ

{O 7→ O′−I , S 7→ (S \̇ O′)−I , A 7→ a}

be a substitution. σ is the AC1-unifier for the atom occurring in

← hinder(S−I , a) (4.8)

Chapter 4. Advanced Planning Problems 46

and the head of a new variant

hinder(O ◦ S,A)← inhib(O,A)

of (4.1). Therefore, there is an SLDENF-derivation from (4.8) to

← inhib(O′−I , a) (4.9)

We can do an SLDENF-derivation using (4.7) and an empty substitution to (4.9) to

reach an empty clause. Hence, there is an SLDENF-resolution proof of (4.8).

⇐ To show: There are enough obstacles in a state S to hinder an action a.

Assume there is an SLDENF-resolution proof of a goal clause

← hinder(S−I , a) (4.10)

It means there is an SLDENF-derivation from (4.10) to

← inhib(O′−I , a) (4.11)

using a new variant

hinder(O ◦ S,A)← inhib(O,A)

of (4.1) and an AC1-unifier σ which must have the form

{O 7→ O′−I , S 7→ S ′−I , A 7→ a},

where S .
= O′ ∪̇ S ′. We can find a fact

inhib(O′−I , a) (4.12)

in AFCQ to obtain an SLDENF-derivation from (4.11) to the empty clause using the

empty substitution and (4.12).

From (4.12), we know that there is an action a in Q. Assume that the action a is of the

form

a : C R,O==⇒ E (4.13)

From (4.12) and (4.13), we conclude that O′ ⊆̇ O. Furthermore, (4.12) shows that O′−I

is a fluent term of the form o ◦ . . . ◦ o. We obtain o ∈n O′ and o ∈n O. As O′ ⊆̇ S, we

may conclude that o ∈m S where m ≥ n. Hence, there are enough obstacles o at S to

hinder the action a. �

Chapter 4. Advanced Planning Problems 47

In the following theorem, we show that a solution for an acpp can either be generated

by an SLDENF-resolution proof of AFCQ or be a firing sequence from the initial state

to the goal state in ANQ.

Theorem 4.5. The following statements are equivalent for a plan p of acpp Q .

1. p is a solution for Q.

2. p is generated by an SLDENF-resolution proof of AFCQ.

3. p is a firing sequence from I to G of ANQ.

Proof. To proof the theorem it suffices to show that 1 implies 2, 2 implies 3, and 3

implies 1. These implications are proven in Lemma 4.6, 4.7, and 4.8.

Lemma 4.6. If p is a solution for Q then p is generated by an SLDENF-resolution

proof of AFCQ.

Proof. We prove it by induction on length n of solution p.

I.B To show: If [] is a solution for Q then [] is generated by an SLDENF-resolution

proof of AFCQ.

If [] is both a plan and a solution for Q. It means that I .
= G so that there is no need

to do any action. Let

σ = {S 7→ I−I , P 7→ []}

be a substitution. Then σ is the AC1-unifier for the atom occurring in

← causes(I−I , P, I−I) (4.14)

and a new variant

causes(S, [], S)

of (3.2). Thus, there exists an SLDENF-refutation of (4.14) generating the plan [].

I.H If [aj , . . . , a1] is a solution for Qj = 〈Ij ,G,A〉 then [aj , . . . , a1] is generated by an

SLDENF-resolution proof of AFCQ.

I.C To show: If [aj+1, . . . , a1] is a solution for Q then [aj+1, . . . , a1] is generated by an

SLDENF-resolution proof of AFCQ.

I.S Suppose [aj+1, . . . , a1] is a solution for Q. aj+1 is the first action taken. Lets assume

that action aj+1 is of the form

aj+1 : C R,O==⇒ E

Chapter 4. Advanced Planning Problems 48

such that by applying action aj+1 from the initial state I, we obtain a state (I \̇ C) ∪̇ E .

For the action aj+1, we find the corresponding facts

action(C−I , aj+1, E−I) (4.15)

precon(R−I , aj+1) (4.16)

in AFCQ. Let

σ = {I 7→ I−I , G 7→ G−I , P 7→ [A | P ′]}

σ is the AC1-unifier between the atom occurring in

← causes(I−I , P,G−I) (4.17)

and the head of a new variant

causes(I, [A | P ′], G)← applicable(I, A, S) ∧ causes(S, P ′, G)

of (3.3). Therefore, there is an SLDENF-derivation from (4.17) to

← applicable(I−I , A, S) ∧ causes(S, P ′,G−I) (4.18)

The first atom occurring in (4.18) and the head of a new variant

applicable(C ◦ S′, A′, E ◦ S′)← action(C,A′, E) ∧ precon(R,A′)

∧ R ◦R′ ≈ C ◦ S′ ∧ ¬hinder(C ◦ S′, A′)

of (4.2) are AC1-unifiable with

σ1 = {A′ 7→ A,C 7→ C−I , S′ 7→ I ′−I , S 7→ E ◦ I ′−I}

as the AC1-unifier where I .
= C ∪̇ I ′. The SLDENF-derivation of (4.18) is

← action(C−I , A,E) ∧ precon(R,A) ∧ R ◦R′ ≈ C−I ◦ I ′−I

∧ ¬hinder(C−I ◦ I ′−I , A) ∧ causes(I ′−I ◦ E,P ′,G−I)
(4.19)

The first atom occurring in (4.19) and the fact (4.15) are AC1-unifiable with

{A 7→ aj+1, E 7→ E−I}

yielding an SLDENF-derivation from (4.19) to

← precon(R, aj+1) ∧ R ◦R′ ≈ C−I ◦ I ′−I

∧ ¬hinder(C−I ◦ I ′−I , aj+1) ∧ causes(I ′−I ◦ E−I , P ′,G−I)
(4.20)

Chapter 4. Advanced Planning Problems 49

There is an SLDENF-derivation of (4.20) yielding

← R−I ◦R′ ≈ C−I ◦ I ′−I ∧ ¬hinder(C−I ◦ I ′−I , aj+1) ∧ causes(I ′−I ◦ E−I , P ′,G−I)
(4.21)

between the first atom occurring in (4.20) and (4.16), using a substitution

{R 7→ R−I}

as AC1-unifier.

Since aj+1 is applicable to the initial state I in acpp Q, it means that the preconditions

are parts of the initial state I, i.e., R ⊆̇ I. Hence, there is an SDLE-derivation of (4.21)

yielding

← ¬hinder(C−I ◦ I ′−I , aj+1) ∧ causes(I ′−I ◦ E−I , P ′,G−I) (4.22)

between the first atom occurring in (4.21) and a new variant

X ≈ X

of S ≈ S in KC , and with substitution

{R′ 7→ (I \̇ R)−I , X 7→ C−I ◦ I ′−I}.

We can safely say that there are not enough obstacles at I for the action aj+1 which can

hinder aj+1 due to the fact that aj+1 is applicable in I. Hence, we can use Proposition

4.4 to say that there is no SLDENF-resolution proof of hinder(C−I ◦ I ′−I , aj+1). In

other words, all SLDENF-resolutions of hinder(C−I ◦ I ′−I , aj+1) finitely fail. Hence, we

can construct the corresponding finitely failed SLDENF-tree of hinder(C−I ◦I ′−I , aj+1).

Thus, there is an SLDENF-derivation from (4.22) to

← causes(I ′−I ◦ E−I , P ′,G−I). (4.23)

By applying aj+1 to the initial state I, we end up to a new acpp with a new initial state

Ij
.
= (I \̇ C) ∪̇ E with a plan [aj , . . . , a1] as the solution to go to the goal state G. Hence,

we can apply the induction hypothesis and learn that there is an SLDENF-refutation of

(4.23) yielding the computed answer substitution {P ′ 7→ [aj , . . . , a1]}.

Combining this refutation with derivation from (4.17) to (4.23) yields an SLDENF-

refutation of (4.17) with computed answer substitution {P 7→ [aj+1, . . . , a1]}, i.e, the

plan [aj+1, . . . , a1] is generated. �

Chapter 4. Advanced Planning Problems 50

Lemma 4.7. If p is generated by an SLDENF-resolution proof of AFCQ then p is a

firing sequence from I to G of ANQ.

Proof. The lemma is an immediate consequence of the following claim.

If there is an SLDENF-refutation of ← causes(I−I , P,G−I) generating plan

p, then there is a firing sequence p from I to G of ANQ.

The claim is proven by induction on the length j of the SLDENF-refutation.

I.B To show: If there is an SLDENF-refutation of ← causes(I−I , P,G−I) with length 1

generating plan p, then there is a firing sequence p of ANQ from I to G.

If the length of the SLDENF-refutation is 1, then the atom occurring in

← causes(I−I , P,G−I) (4.24)

and a new variant

causes(S, [], S)

of (3.2) must be AC1-unifiable and SLDENF-refutation of (4.24) generates the empty

plan []. Furthermore, the first and the third argument of causes in (4.24) refer to the

same fluent term. Therefore, we get that I−I ≈AC1 G−I . We may conclude that the

AC1-unifier for (4.24) and the variant of (3.2) is of the form

{P 7→ [], S 7→ I−I}.

Since I−I ≈AC1 G−I , we obtain I .
= G. We may conclude that in Petri net ANQ, the

initial marking and the goal marking are the same. Therefore, there is no need to fire

any transition, i.e,

I []−→ I.

Hence, there is a firing sequence [] from I to I of ANQ.

I.H If there is an SLDENF-refutation of ← causes(I−Ij , Pj ,G−I) with length j genera-

ting plan pj , then there is a firing sequence pj of ANQ from Ij to G.

I.C If there is an SLDENF-refutation of ← causes(I−I , P,G−I) with length j + 1 gene-

rating plan p, then there is a firing sequence p of ANQ from I to G.

I.S Assume there is an SLDENF-refutation of

← causes(I−I , P,G−I) (4.25)

Chapter 4. Advanced Planning Problems 51

with length j + 1 and generating plan [a1, ..., aj]. Hence, we can find an SLDENF-

derivation from (4.25) to

← applicable(I−I , A, S) ∧ causes(S, P ′,G−I) (4.26)

as a result of the atom occurring in (4.25) and the head of a new variant

causes(I, [A | P ′], G)← applicable(I, A, S) ∧ causes(S, P ′, G)

of (3.3) with AC1-unifier

{I 7→ I−I , P 7→ [A | P ′], G 7→ G−I}.

The first atom occurring in (4.26) can only be AC1-unified with the head of a new

variant

applicable(C ◦ S′, A′, E ◦ S′)← action(C,A′, E) ∧ precon(R,A′)

∧ R ◦R′ ≈ C ◦ S′ ∧ ¬hinder(C ◦ S′, A′)

of (4.2) with AC1-unifier

{C 7→ C−I , S′ 7→ I ′−I , A′ 7→ A,S 7→ E ◦ I ′−I},

where I−I ≈AC1 C−I ◦ I ′−I . It yields an SLDENF-derivation of (4.26) to

← action(C−I , A,E) ∧ precon(R,A) ∧ R ◦R′ ≈ C−I ◦ I ′−I

∧ ¬hinder(C−I ◦ I ′−I , A) ∧ causes(I ′−I ◦ E,P ′,G−I).
(4.27)

We can find a fact

action(C−I , a1, E−I) (4.28)

in AFCQ which is AC1-unifiable with the first atom occurring in (4.27) with AC1-unifier

{A 7→ a1, E 7→ E−I}.

It yields an SLDENF-derivation of (4.27) to

← precon(R, a1) ∧ R ◦R′ ≈ C−I ◦ I ′−I

∧ ¬hinder(C−I ◦ I ′−I , a1) ∧ causes(I ′−I ◦ E−I , P ′,G−I).
(4.29)

We can, once again, find a fact

precon(R−I , a1) (4.30)

Chapter 4. Advanced Planning Problems 52

in AFCQ which is AC1-unifiable with the first atom occurring in (4.29) with AC1-unifier

{R 7→ R−I}.

It yields an SLDE-derivation from (4.29) to

← R−I ◦R′ ≈ C−I ◦I ′−I∧¬hinder(C−I ◦I ′−I , a1) ∧ causes(I ′−I ◦E−I , P ′,G−I). (4.31)

There is an SLDENF-derivation of (4.31) yielding

← ¬hinder(C−I ◦ I ′−I , a1) ∧ causes(I ′−I ◦ E−I , P ′,G−I) (4.32)

between the first atom occurring in (4.31) and a new variant

X ≈ X

of S ≈ S in KC and with substitution

{X 7→ C−I ◦ I ′−I , R′ 7→ (I \̇ R)−I}

as AC1-unifier. For the first literal occurring in (4.32), there must be a finitely failed

SLDENF-refutation of hinder(C−I◦I ′−I , a1) such that the successful SLDENF-derivation

of (4.32) leads to

← causes(I ′−I ◦ E−I , P ′,G−I). (4.33)

From (4.28) and (4.30) we may conclude that there must be an action a1 with precondi-

tions R, conditions C and effects E in Q. Therefore, there must be a transition a1 with

Na1
.
= R, •a1

.
= C and a1•

.
= E in ANQ.

Because there is a derivation from (4.32) to (4.33), we can conclude that there is a finitely

failed SLDENF-tree of hinder(C−I ◦ I ′−I , a1). It means all the SLDENF-resolution

proofs of hinder(C−I ◦ I ′−I , a1) finitely fail. We can use Proposition 4.4 and learn that

there are not enough obstacles in state I for the action a1. Let assume action a1 is of

the form

a1 : C R,O==⇒ E

where O is multiset of simple fluents for obstacles. As C ⊆̇ I,R ⊆̇ I and there are not

enough obstacles, i.e., ∀o ∈n O (o ∈m I → n > m), we can conclude that action a1 is

applicable at I in Q. Thus, transition a1 is enabled and can be fired such that

I a1−→ (I \̇ C) ∪̇ E . (4.34)

Chapter 4. Advanced Planning Problems 53

We can apply (I.H) to (4.33) by setting Ij
.
= (I \̇ C) ∪̇ E , G as it is, and Pj = [a2, . . . , aj]

since the SLDENF-refutation only has length j. We find a firing sequence [a2, . . . , aj]

from (I \̇ C) ∪̇ E to G of ANQ,i.e.,

(I \̇ C) ∪̇ E
[a2,...,aj]−−−−−→ G. (4.35)

Combining (4.34) and (4.35), we obtain a firing sequence [a1, . . . , aj] such that

I
[a1,...,aj]−−−−−→ G.

Because there is a firing sequence p from I to G of ANQ, the claim is true. �

Lemma 4.8. If p is a firing sequence from I to G of ANQ then p is a solution for Q.

Proof. We prove the lemma by induction on the length of firing sequence p.

I.B To show: If [] is a firing sequence from I to G of ANQ then [] is a solution for Q.

If [] is a firing sequence from I to G of ANQ, i.e.,

I []−→ G

then we can conclude that I .
= G. Trivially, in Q, we do not need to do any action since

I .
= G.

I.H If [aj , . . . , a1] is a firing sequence from Ij to G of ANQ then [aj , . . . , a1] is a solution

for Qj = 〈Ij ,G,A〉.
I.C If [aj+1, . . . , a1] is a firing sequence from I to G of ANQ then [aj+1, . . . , a1] is a

solution for Q.

I.S Suppose [aj+1, . . . , a1] is a firing sequence from I to G of ANQ, i.e.,

I
[aj+1,...,a1]−−−−−−−→ G.

aj+1 is the first enabled transition and assume that •aj+1
.
= C, aj+1•

.
= E , Naj+1

.
= R

and Haj+1
.
= O. Hence, there is an action

aj+1 : C R,O==⇒ E

in Q. aj+1 is enabled at initial marking I and is fired leading to a new marking

(I \̇ C) ∪̇ E , i.e.,

I
aj+1−−−→ (I \̇ C) ∪̇ E .

Since the definitions of firing rule in advanced Petri nets and an applicable action in acpp

are the same, we can conclude that aj+1 obeys the firing rule in ANQ and is applicable

at state I in Q. Thus, we can apply the action aj+1 to I yielding a new state (I \̇ C) ∪̇ E .

Chapter 4. Advanced Planning Problems 54

By executing aj+1 at the initial marking I, we have a firing sequence [aj , . . . , a1] such

that

(I \̇ C) ∪̇ E
[aj ,...,a1]−−−−−→ G (4.36)

Because this proof contains [aj , . . . , a1] and the goal marking in (I.H) is the same as in

(4.36), we may conclude that Ij
.
= (I \̇ C) ∪̇ E and apply the induction hypothesis to

learn that [aj , . . . , a1] is a solution for Qj = 〈Ij ,G,A〉.

Qj with solution [aj , . . . , a1] has the initial state (I \̇ C) ∪̇ E . Applying aj+1 at state I in

Q leads to state (I \̇ C) ∪̇ E which leads acpp Qj . Thus, by combining this information,

we learn that [aj+1, . . . , a1] is a solution for the acpp Q. �

Chapter 5

Advanced Planning ProblemsR

Up to now we defined conjunctive planning problems with the help of simple fluents.

Simple fluents are an excellent representation of resources. Inspired by Petri nets as

designed in [3] to use real values to model concurrent action, we would like to enhance

our planning problems with information in the form of real values. To cover planning

problems with real-valued information, we define conjunctive planning problems with

fluents which can contain real-valued information. For that, we allow fluents with one

argument which is an arithmetic expression. We introduce a set of simple arithmetic

expressions as follows:

Definition 5.0.1. The set Exp of simple arithmetic expressions is the smallest set of

expressions satisfying the following conditions:

1. Every variable is an arithmetic expression;

2. Every real number is an arithmetic expression;

3. If s is an arithmetic expression then so is −s; and

4. If s, t are arithmetic expressions then s + t, s − t, s ∗ t, and st are arithmetic

expressions.

Then fluents with arithmetic expressions are defined as follows:

Definition 5.0.2. Rf is the smallest set of unary function symbols. Real-valued fluents

are fluents of the form r(v) at which r ∈ Rf and v ∈ Exp.

To operate on real numbers, the usual arithmetic operations along with their standard

interpretation accompany the real numbers. Values from arithmetic operations can

be obtained by evaluating mathematical expressions inside real-valued fluents using a

function eval defined as follows:

55

Chapter 5. Advanced Planning ProblemsR 56

Definition 5.0.3. Let eval : Exp 7→ R be a function which evaluates ground arithmetic

expressions as usual and returns their value.

• eval′ is a mapping extending the function eval such that

eval′(t) =

{
r(eval(v)) if t is a ground real-valued fluent of the form r(v)

t otherwise

}
,

• eval′′ is a mapping extending the function eval′ to multisets such that

eval′(t) ∈k eval′′(M) iff t ∈kM ∧ t is ground

where M is a multiset of fluents.

We drop the quote symbols from eval′ and eval′′ whenever we perform arithmetic eval-

uations on fluent terms and multisets if the evaluations are clear from the context.

We define an extension of advanced conjunctive planning problems by taking real-valued

fluents into consideration. We split the set of actions into two disjoint sets of actions.

The first one is a set of actions that is intended to handle discrete resources which can

be consumed and produced. The second one is a set of actions which should deal with

real-valued fluents. Actions in the latter set do not consume values in their inputs.

Definition 5.0.4. Let Ss be a finite set of simple fluents and Sr be a finite set of real-valued

fluents, and Ssm,Srm be finite multisets constructed from Ss and Sr, respectively. An

advanced conjunctive planning problem with real values (acppR) is a tuple 〈I,G,A,Areal〉,
where

• I ⊆̇ (Ssm ∪̇ Srm) s.t all fluents in I are ground;

• G ⊆̇ (Ssm ∪̇ Srm) s.t all fluents in G are ground;

• For each r ∈ Rf , r appears at most once in I and in G;

• A is a finite set of concrete actions of the form A : C R,O==⇒ E s.t C ⊆̇ Ssm, E ⊆̇ Ssm,

R ⊆̇ (Ssm ∪̇ Srm), O ⊆̇ (Ssm ∪̇ Srm), and all fluents in R ∪̇ O are ground;

• For each concrete action in A and for each r ∈ Rf , r appears at most once in R
and O;

• Areal is finite set of theory actions of the form Areal : Creal
Rreal,Oreal=======⇒ Ereal s.t

Creal ⊆̇ Srm and Ereal ⊆̇ Srm, Rreal ⊆̇ Ssm, and Oreal ⊆̇ Ssm;

• Each variable occurring in its effects must also occur in its conditions for each

theory action in Areal;

Chapter 5. Advanced Planning ProblemsR 57

• For each r ∈ Rf , r appears at most once in Areal; and

• All action names must be either in A or in Areal but not in both sets.

One can observe that an acppR Q = 〈I,G,A,Areal〉 is an advanced cpp where I,G
only contain simple fluents and Areal is an empty set. We extend the definition of an

applicable action in acppR to take real-valued fluents into consideration. We redefine

the definition of applicable action as follows:

Definition 5.0.5. Let S be a multiset of simple and ground real-valued fluents, Rs,Os
be multisets of simple fluents, Rr,Or be a multiset of ground real-valued fluents and

Q = 〈I,G,A,Areal〉 be an acppR. A concrete action

A : C Rs ∪̇ Rr,Os ∪̇ Or
===========⇒ E

is applicable to S iff the following conditions

• C ⊆̇ S; Rs ⊆̇ S;

• ∀o ∈n Os (o ∈m S → m < n);

• ∀r(v) ∈1 Or ∃r(v′) ∈1 S (eval(v) > eval(v′)); and

• ∀r(v) ∈1 Rr ∃r(v′) ∈1 S (eval(v) ≤ eval(v′))

are satisfied. The application of a concrete action leads to the multiset

(S \̇ C) ∪̇ E .

A theory action

Areal : Creal
Rs,Os
===⇒ Ereal

is applicable to S iff the following conditions

• there exists a substitution σ such that Cσ ⊆̇ S;

• Rs ⊆̇ S; and

• ∀o ∈n Os (o ∈m S → m < n)

are satisfied. The application of a theory action to S leads to the multiset

(S \̇ {r(v) | r(v) ∈1 S ∧ ∃r(v′) ∈1 Ereal}) ∪̇ eval(Erealσ).

We denote by Areal(S) a set of theory actions in Areal which are applicable in state S.

Chapter 5. Advanced Planning ProblemsR 58

An applicable concrete action in a state is an extension of applicable actions for extended

actions in acpp. It is extended by the rules ∀r(v) ∈1 Or ∃r(v′) ∈1 S (eval(v) > eval(v′))

and ∀r(v) ∈1 Rr ∃r(v′) ∈1 S (eval(v) ≤ eval(v′)) to ensure that real-valued fluents are

measured by their values if they appear either in the preconditions or the obstacles of

the action.

A theory action has preconditions of simple fluents that must be met and the obstacles

of simple fluents that must be avoided. However, to be applicable a theory action has to

have a ground substitution for the conditions of the action such that they become part

of the state. The application of a theory action replaces the current value of real-valued

fluents in the state with the new one. One should note that the effects of an applicable

theory action are ground as a result of having a ground substitution for the conditions

of the action.

One should note that each real-valued fluents appears at most once in every state.

This is the result of restricting the appearance of real-valued fluents in an initial state,

conditions of a theory action, and effects of a theory action to at most once. Hence,

when we mention states, we mean states in which each real-valued fluent appears at

most once.

Definition 5.0.6. Let Q = 〈I,G,A,Areal〉 be an acppR, and S,S ′ be states. S ′ is the

closed state of S, denoted by S ↓, iff S ′ is the closure of S under the theory actions in

Areal.

The following lemma shows that applying two applicable theory actions to a state in

any order ends up in the same state.

Lemma 5.1. Let S,S ′ be states and a1, a2 be theory actions in S. If S [a1,a2]−−−−→ S ′ then

S [a2,a1]−−−−→ S ′.

Proof. To show: S [a2,a1]−−−−→ S ′.
Assume that S [a1,a2]−−−−→ S ′ holds. Furthermore, assume a1 is of the form

a1 : C1
R1,O1
====⇒ E1

and a2 is of the form

a2 : C2
R2,O2
====⇒ E2

The restriction stating that “for each r ∈ Rf , r appears at most once in Areal” implies

that each r ∈ Rf appears at most once either in C1, in C2, in E1 or in E2.

a1 is the first executed theory action in S. It means that there is a ground substitution

σ such that C1σ ⊆̇ S. Hence, the state S is of the form C1σ ∪̇ S1. The result of applying

Chapter 5. Advanced Planning ProblemsR 59

a1 adds E1σ to (S1 \̇ E ′1) where E ′1 = {r(v) | r(v) ∈1 S1 ∧ ∃r(v′) ∈1 E1}. In other words,

C1σ ∪̇ S1
a1−→ C1σ ∪̇ ((S1 \̇ E ′1) ∪̇ E1σ)

holds. When executing a2 in C1σ ∪̇ ((S1 \̇ E ′1) ∪̇ E1σ), it satisfies that there exists a

ground substitution σ′ such that C2σ′ ⊆̇ (S1 \̇ E ′1). Hence, (S1 \̇ E ′1) = C2σ′ ∪̇ S2 is true.

The result of applying a2 adds E2σ′ specifically to (S2 \̇ E ′2) where E ′2 = {r(v) | r(v) ∈1
S2 ∧ ∃r(v′) ∈1 E2}. In other words,

C1σ ∪̇ ((C2σ′ ∪̇ S2)
a2−→ C1σ ∪̇ ((C2σ′ ∪̇ ((S2 \̇ E ′2) ∪̇ E2σ′)

holds where S ′ = ((C2σ′ ∪̇ ((S2 \̇ E ′2) ∪̇ E2σ′).

Because (C2σ′ ∪̇ S2) ⊆̇ S, we can apply a2 in S. There is no problem with R2 since

R2 is constructed from simple fluents and S2 are the possible multiset containing simple

fluents. Hence, R2 ⊆̇ S2 must hold. ∀o ∈j O2 (o ∈m S2 → m < j) is also satisfied

based on our assumption that a2 is executed in C1σ ∪̇ ((C2σ′ ∪̇ S2). Hence, the following

transformation

S a2−→ C1σ ∪̇ ((S1 \̇ E ′2) ∪̇ E2σ′)

holds. The statementsR1 ⊆̇ S2 and ∀o ∈j O1 (o ∈m S2 → m < j) are true because S2 are

the only possible multiset containing simple fluents and the fact that S2 is a submultiset

of C1σ ∪̇ ((S1 \̇ E ′2) ∪̇ E2σ′). Hence, a1 can be applied in C1σ ∪̇ ((S1 \̇ E ′2) ∪̇ E2σ′), i.e,

C1σ ∪̇ ((S1 \̇ E ′2) ∪̇ E2σ′)
a1−→ S ′

Hence, S [a2,a1]−−−−→ S ′ is true. �

The following lemma shows that we do not need to apply an applicable theory action

more than once because the resulting state does not change after the first application.

Lemma 5.2. Let S,S ′,S ′′ be states and a be a theory action. If S a−→ S ′ and S ′ a−→ S ′′

then S ′ = S ′′.

Proof. To show S ′ = S ′′.
Assume that S a−→ S ′ and S ′ a−→ S ′′. Furthermore, assume that the theory action a is of

the form

a : C R,O==⇒ E

Since a is applicable both in S and S ′ then there must exists σ and σ′ such that Cσ ⊆̇ S
and Cσ′ ⊆̇ S ′ respectively. Hence, the state S is of the form Cσ ∪̇ S1 and the state S ′ is

of the form Cσ′ ∪̇ S ′1. Both S and S ′ must also satisfy the preconditions R and obstacles

Chapter 5. Advanced Planning ProblemsR 60

O. Executing a transforms S to S ′ and S ′ to S ′′, i.e.,

Cσ ∪̇ S1
a−→ Cσ ∪̇ ((S1 \̇ E ′) ∪̇ Eσ)

Cσ′ ∪̇ S ′1
a−→ Cσ′ ∪̇ ((S ′1 \̇ E ′1) ∪̇ Eσ′)

where E ′ = {r(v) | r(v) ∈1 S1 ∧ ∃r(v′) ∈1 E} and E ′1 = {r(v) | r(v) ∈1 S ′1 ∧ ∃r(v′) ∈1 E}.
We can safely say that S ′ = Cσ′ ∪̇ S ′1 = Cσ ∪̇ ((S1 \̇ E ′) ∪̇ Eσ). We can conclude that

σ = σ′ since each r ∈ Rf in C appears exactly once in S ′.

S ′1 is S1 where each r ∈ Rf which appears both in E and in S1 is replaced by Eσ. Hence,

we can safely say that (S1 \̇ E ′) = (S ′1 \̇ E ′1) is true. As a result

Cσ ∪̇ ((S1 \̇ E ′) ∪̇ Eσ)
a−→ Cσ ∪̇ ((S1 \̇ E ′) ∪̇ Eσ)

In other words, S ′ = S ′′. �

The following lemma shows that all applicable theory actions on state S are still ap-

plicable on state S ′ if state S ′ is the result of applying a sequence of theory actions on

state S.

Lemma 5.3. Let S,S ′ be states and a be a theory action. If S a−→ S ′ then Areal(S ′) =

Areal(S).

Proof. To show: Areal(S ′) = Areal(S).

Assume that S a−→ S ′. Furthermore, assume that Areal(S) = {a, a1, . . . , an} and theory

action a is of the form

a : C R,O−−−→ E

Since a is executed in S, there exists a substitution σ such that Cσ ⊆̇ S. Hence, the

state S is of the form Cσ ∪̇ S ′′. Executing a in S leads to S ′, i.e.,

Cσ ∪̇ S ′′ a−→ Cσ ∪̇ ((S ′′ \̇ E ′) ∪̇ Eσ)

where S ′ = Cσ ∪̇ ((S ′′ \̇ E ′) ∪̇ Eσ) and E ′ = {r(v) | r(v) ∈1 S ′′ ∧ ∃r(v′) ∈1 E}. S ′ is

basically S by replacing each r ∈ Rf which appears both in S and in E with the ones

in Eσ.

Cσ ⊆̇ Cσ ∪̇ ((S ′′ \̇ E ′) ∪̇ Eσ), and R ⊆̇ Cσ ∪̇ ((S ′′ \̇ E ′) ∪̇ Eσ) are true. Furthermore,

the statement ∀o ∈j O (o ∈m (S ′′ \̇ E ′) → m < j) is true because (S ′′ \̇ E ′) is the only

possible submultiset containing simple fluents and (S ′′ \̇ E ′) ⊆̇ S. Hence, a is applicable

in Cσ ∪̇ ((S ′′ \̇ E ′) ∪̇ Eσ).

Chapter 5. Advanced Planning ProblemsR 61

For any ai, 1 ≤ i ≤ n of the form

ai : Ci
Ri,Oi
===⇒ Ei

we know that Ri ⊆̇ (S ′′ \̇ E ′) and ∀o ∈j Oi (o ∈m (S ′′ \̇ E ′)→ m < j) are true because

(S ′′ \̇ E ′) ⊆̇ S is true. Hence, preconditions and obstacles are satisfied in the state

Cσ ∪̇ ((S ′′ \̇ E ′) ∪̇ Eσ). Moreover, since ai is applicable in state S and state S is of the

form Cσ ∪̇ S ′′ then there must exist a substitution σi such that Ciσi ⊆̇ (S ′′ \̇ E ′). The

Ciσi is specifically a submultiset of (S ′′ \̇ E ′) because each r ∈ Rf which appears in Ci
can not appear in C or E due to the restriction ‘for each r ∈ Rf , r appears at most

once in Areal”. Hence, we can safely say that each ai, 1 ≤ i ≤ n is applicable in state

Cσ ∪̇ ((S ′′ \̇ E ′) ∪̇ Eσ). With this, we can safely say that Areal(S ′) ⊆ Areal(S).

Now, we need to prove that Areal(S) ⊆ Areal(S ′). Let assume, there is another theory

action ak, k > n of the form

ak : Ck
Rk,Ok====⇒ Ek

To be applicable in state Cσ ∪̇ ((S ′′ \̇ E ′) ∪̇ Eσ), there must exist a substitution σk for

ak such that Ckσk ⊆̇ (S ′′ \̇ E ′). With the restriction stating that “for each r ∈ Rf , r

appears at most once in Areal”, any element of Ck can not appear in C or in E . Since,

(S ′′ \̇ E ′) is a submultiset of S and ak is not applicable in S, hence, ak is not applicable

in Cσ ∪̇ ((S ′′ \̇ E ′) ∪̇ Eσ) either. Therefore, Areal(S ′) = Areal(S) is true. �

S↓ is a result of performing a sequence of theory actions to a state S where each applica-

ble theory action must be applied exactly once. This is shown by the following corollary

which is deducted from the three lemmas above.

Corollary 5.4. S↓ is compiled by applying each element of Areal(S) exactly once and

in any order.

Proof. By Lemma 5.1, applying each element of Areal(S) on S in any order will bring

to the same state. Lemma 5.2 ensures that applying an element of Areal(S) more than

once does not bring to a different state. Lemma 5.3 ensures that there is no case that

the successive state S ′ of state S by applying elements of Areal(S) introduces a new

theory action that is not an element of Areal(S). Furthermore, what is applicable on S
is still applicable in the successive state. Hence, we can apply each element of Areal(S)

on S exactly once and in any order to obtain S↓. �

One should note that as long as a state is not closed, all applicable theory actions can

be executed and yield the same result, i.e., to its closed state.

Definition 5.0.7. Let Q = 〈I,G,A,Areal〉 be an acppR, and S,S ′,S ′′ be states. Let l be

a list of actions, t be a list of theory actions and a be a concrete action.

Chapter 5. Advanced Planning ProblemsR 62

• A plan is defined as follows:

– S ↓ []−→ S ↓.

– If S ↓ [a]−→ S ′, S ′ t−→ S ′ ↓ and S ′ ↓ l−→ S ′′ ↓ then S ↓ append([a|t],l)−−−−−−−−→ S ′′ ↓.

• A plan p is a solution for Q iff plan p transforms I↓ into G↓.

A plan in acppR is a sequence of actions transforming a closed state into another closed

state. A solution for an acpp Q = 〈I,G,A,Areal〉 is a plan transforming closed initial

state I↓ into the closed goal state G↓. Without losing of generality, we consider the

initial state I = I↓ and the goal state G = G↓.

In the following section, we will explain the fluent calculus with real-valued information

to represent and solve acppR. We mainly aim at an extension of the fluent calculus. We

will not present any Petri nets which can correlate with acppR because there is none.

Petri nets designed by Barret in [3] may be able to model acppR. However, these Petri

nets do no come with a well defined semantic. The only semantic is informal which can

be found in [3].

5.1 ACPPR in the Real-valued Fluent Calculus

The representation of ACPPR in real-valued fluent calculus is basically a representation

of ACPP in the advanced fluent calculus combined with real-valued information. The

problem here is that how to represent real-valued fluents in the fluent calculus. As we

know, each acppR may have a different set of real-valued fluents. We would like to have

a general representation for each real-valued fluent so that we can have a general fluent

calculus to represent and solve acppR. However, taking real-valued fluents as they are

will rise a problem especially when we want to model the application of a theory action

in a state. It means that for each acppR, we will have a different set of rules representing

the application process of a theory action.

The general representation can be achieved by quantifying the function symbol r ∈ Rf
for each real-valued fluent. However, this is not the case since logic programs are a

representation of first order logic. In order to achieve the general representation, we

treat each function symbol r ∈ Rf as a simple fluent. We introduce a binary function

symbol real/2 to represent real-valued fluents where the first argument encodes the

function symbol and the second argument encodes the arithmetic expression of the real-

valued fluents.

Concrete actions are represented by the ternary predicate action where the conditions

are encoded in the first argument, the name is encoded in the second argument, and the

Chapter 5. Advanced Planning ProblemsR 63

effects are encoded in the third argument. Theory actions are represented with the help

of new predicate taction/3 where the conditions of the actions are encoded in the first

argument, the name is encoded in the second argument, and the effects are encoded in

the third argument. One should remember that the restriction in acppR stating that

each variable occurring in the effects must also occur in the conditions is still present

here. Moreover, one should notice that all action clauses are ground, whereas some

taction clauses may not be ground.

Preconditions of concrete and theory actions are represented with the help of binary

predicate precon where the first argument encodes the preconditions of the actions and

the second argument encodes the name.

The representation for all simple fluents occurring in obstacles for both concrete and

theory actions follows the representation that we have described in previous chapter

for obstacles in an advanced cpp. We separate all real-valued fluents in obstacles for a

concrete action from simple fluents. We use the same binary predicate inhib in the form

inhib(O,A)

where O encodes all real-valued fluents and A encodes the name of the concrete action.

To deal with real-valued information and arithmetic expressions e ∈ Exp, we add three

binary predicates val/2, ≤ /2, and ≥ /2. val is used as fact clauses where the first

argument encodes a ground arithmetic expression e and the second argument encodes

the evaluation result of e. ≤ and ≥ are used as fact clauses where the first and the

second argument are real values. ≤ and ≥ are interpreted as usual comparators. We

further assume that there is a background knowledge Ereal containing all ground fact

clauses val(e, eval(e)), eval(e) ≤ eval(e′), and eval(e) ≥ eval(e′) where e, e′ are ground

arithmetic expressions.

Apart from Ereal, five new predicates fulfil/2, member/2, replace/3, nonclosed/1, and

reapplicable/3 are introduced here. fulfil/2 is a predicate to give information whether

the first argument (i.e., a state) fulfils the second argument (preconditions of an action).

Clauses involving fulfil are of the form

fulfil(S, 1), (5.1)

fulfil(P ◦ S, P ◦ Pr)← fulfil(S, Pr), (5.2)

fulfil(real(R, V) ◦ S, real(R, V l) ◦ P)← val(V, V v) ∧ val(V l, V vl) (5.3)

∧ V v ≥ V vl ∧ fulfil(S, P).

Chapter 5. Advanced Planning ProblemsR 64

The first clause tells that state S fulfils preconditions 1. The second clause tells that

state P ◦ S fulfils preconditions P ◦ Pr if state S fulfils preconditions Pr. The third

clause is read declaratively as follows:

A state real(R, V) ◦ S fulfils preconditions real(R, V l) ◦ P if the evaluation

of V of the real-valued fluent real(R, V) evaluates to V v and the evaluation

of V l of the real-valued fluent real(R, V l) evaluates to V vl and V v is greater

than or equal to V vl and a state S fulfils preconditions P .

member is a predicate to check whether a particular real-valued fluent is part of a state.

A clause involving member is of the form

member(real(R, V), real(R, V l) ◦ S). (5.4)

replace is a predicate to replace some part of the first argument with the second argument

where the result is put in the third argument. This predicate is intended for replacing

real-valued fluents from a state with effects of a theory action. Clauses involving replace

are of the form

replace(S, 1, S), (5.5)

replace(S, real(R, V) ◦ E, real(R, V l) ◦N)← ¬member(real(R, V), S) (5.6)

∧ val(V, V l)

∧ replace(S,E,N),

replace(real(R, V) ◦ S, real(R, V l) ◦ E, real(R, V vl) ◦N)← val(V l, V vl) (5.7)

∧ replace(S,E,N).

The first clause tells that there is nothing to be replaced in state S if the second argument

is 1. The second clause is read declaratively as follows:

A state S is replaced with a state real(R, V l) ◦N by effects real(R, V) ◦E if

real(R, V) is not a part of state S and the evaluation of V gives V l and the

state S is replaced with a new state N by effects E.

The third clause is read declaratively as follows:

A state real(R, V) ◦S is replaced with a new state real(R, V vl) ◦N by effects

real(R, V l) ◦ E if the evaluation of V l of the real-valued fluent real(R, V l)

gives V vl and there is a state replacement N for state S by E.

Chapter 5. Advanced Planning ProblemsR 65

nonclosed is a predicate to check whether a state is a non-closed state or not. A clause

involving nonclosed is of the form

nonclosed(C ◦ S)← taction(C,A,E) ∧ precon(P,A) (5.8)

∧ fulfil(C ◦ S, P) ∧ ¬hinder(C ◦ S,A)

∧ replace(C ◦ S,E,N) ∧ C ◦ S 6≈ N.

The clause is read declaratively as follows:

A state C ◦S is not a closed state if there exists a theory action named A with

conditions C, effects E, and preconditions P and C ◦ S fulfils P and there is

no possible obstacle for state C ◦S in A and the replacement of the state C ◦S
with E can give the new state N and and current state C ◦S does not appear

to be the same as the future state N .

reapplicable is a predicate to apply all possible theory actions after a state is transformed

by a concrete action. Clauses involving reapplicable are of the form

reapplicable(S, [], S)← ¬nonclosed(S), (5.9)

reapplicable(C ◦ S, [A | T], N)← taction(C,A,E) ∧ precon(P,A) (5.10)

∧ fulfil(C ◦ S, P) ∧ ¬hinder(C ◦ S,A)

∧ replace(C ◦ S,E,Z) ∧ C ◦ S 6≈ Z

∧ reapplicable(Z, T,N).

The first clause tells that if state S is a closed state then state S is transformed into S

by []. The second clause is read declaratively as follows:

A series of theory actions [A | T] transforms state C ◦ S into new closed state

N if there exists a theory action named A with conditions C, effects E, and

preconditions P and C ◦ S fulfils P and there is no possible obstacle for state

C ◦ S in A and the replacement of the state C ◦ S with E can give new state

Z and and current state C ◦ S does not appear to be the same as the future

state Z and a series of theory actions T transforms state Z into new closed

state N .

We add a new clause for predicate hinder to include the comparison for real-valued

fluents.

hinder(real(R, V) ◦ S,A)← inhib(real(R, V l) ◦O,A) ∧ val(V, V v) (5.11)

∧ val(V l, V vl) ∧ V v ≥ V vl

Chapter 5. Advanced Planning ProblemsR 66

The clause above tells that an action A is hindered in a state real(R, V) ◦ S if there

exists an obstacle R with value V l in a set of obstacles real(R, V l) ◦ O of the action

A where the evaluated value V v of value V is greater than the evaluated value V vl of

value V l.

Besides those new clauses, we modify the clause (4.2) such that an applicable concrete

action can be represented and executed by ternary predicate applicable. The modifica-

tion goes as follows:

applicable(C ◦ S,A,E ◦ S)← action(C,A,E) ∧ precon(P,A) (5.12)

∧ fulfil(C ◦ S, P) ∧ ¬hinder(C ◦ S,A).

The clause is read declaratively as follows:

A concrete action A transforms state C ◦ S into state E ◦ S if there exists a

concrete action named A with conditions C, effects E and preconditions P

and the state C ◦ S fulfils P and there is no possible obstacle for state C ◦ S
in T .

We also modify the clause (3.3) due to the introduction of new actions and closed states.

The modification involves predicate append to append a series of theory actions applied

to a new state with another series of actions leading to the goal state. The modification

goes as follows:

causes(I, [A | L], G)← applicable(I, A, S) ∧ append(T, P, L) (5.13)

∧ reapplicable(S, T,N) ∧ causes(N,P,G).

The clause is read as follows:

The execution of the plan [A | L] transforms closed state I into closed state G

if a concrete action A is applicable in state I and yields state S and appending

a series of theory actions T with a plan P gives a plan L and a series of theory

actions T transforms a state S into a closed state N and there is a plan P

which transforms closed state N into a closed state G.

action, taction, inhib and precon are put in KA. Clauses (5.1), (5.2), (5.3), (5.4), (5.5),

(5.6), and (5.7) are categorized under KCom. Clauses (4.1), (5.8), (5.9), (5.10), (5.11),

and (5.12) are categorized under KApp. The last group is KC which only consists of (3.2)

and (5.13).

Once more, we need to guarantee that our fluent calculus is satisfiable. We denote by

AFCR∗Q a completion of KA ∪ KC ∪ KCom ∪ KApp ∪ EAC1 ∪ E≈ ∪ Ereal.

Chapter 5. Advanced Planning ProblemsR 67

Proposition 5.5. K∗Com ∪ E∗AC1 ∪ E∗real is satisfiable.

Proof. A model of K∗Com ∪ E∗AC1 ∪ E∗real can be constructed as follows. From [2], EAC1

turns out to be satisfiable. Let

MAC1 = {s ≈ t | E∗AC1 |= s ≈ t ∧ s, t are ground terms }.

Let

Marit =MAC1 ∪ {val(arit, value) | val(arit, value) ∈ Ereal
∧ arit, value are ground terms }

∪ {s X t | s X t ∈ Ereal ∧ X ∈ {≤,≥}
∧ s, t are ground terms }.

Let

Mmem =Marit ∪ {member(e, s) | ∃r, v, vl, s′ {e ≈ real(r, v)

∧ s ≈ real(r, vl) ◦ s′} ⊆ Marit},
M0 =Mmem ∪ {fulfil(s, 1) | s is a ground term }

∪ {replace(s, 1, ns) | s ≈ ns ∈Mmem}

and for all k ≥ 1 let

Mk = Mk−1 ∪ {fulfil(s, p) | (∃p′, s′, pr {s ≈ p ◦ s′, p ≈ p′ ◦ pr,
fulfil(s′, pr)} ⊆ Mk−1) ∨ (∃r, v, vv, s′, vl, vvl, p′

{s ≈ real(r, v) ◦ s′, p ≈ real(r, vl) ◦ p′, val(v, vv),

val(vl, vvl), vv ≥ vvl, fulfil(s′, p′)} ⊆ Mk−1)}
∪ {replace(s, e, n) | (∃r, v, vl, e′, n′ {e ≈ real(r, v) ◦ e′, replace(s, e′, n′)

n ≈ real(r, v) ◦ n′, val(v, vl)} ⊆ Mk−1 ∧
member(real(r, v), s) 6∈ Mk−1}) ∨ (∃r, v, s′, vl,
vvl, e′, n′ {s ≈ real(r, v) ◦ s′, e ≈ real(r, vl) ◦ e′,
val(vl, vvl), n ≈ real(r, vvl) ◦ n′,
replace(s′, e′, n′)} ⊆ Mk−1}

Then, by a straightforward induction on the length of the second argument of fulfil and

replace we learn thatM =
⋃
k∈NMk is a model of KCom∪E∗AC1∪E∗real and, consequently,

M is a model for K∗Com ∪ E∗AC1 ∪ E∗real. �

Proposition 5.6. K∗A ∪ K∗App ∪ K∗Com ∪ E∗AC1 ∪ E∗real is satisfiable.

Proof. Proposition 5.5 has proven that K∗Com ∪E∗AC1 ∪E∗real is satisfiable. We just need

to prove that K∗A ∪ K∗App is satisfiable. Let Mcom be a model for K∗Com ∪ E∗AC1 ∪ E∗real.

Chapter 5. Advanced Planning ProblemsR 68

Let
Maction =Mcom ∪ { action(c, a, e) | action(c, a, e) ∈ KA},
Mtaction =Maction ∪ { taction(c, a, e) | taction(c, a, e) ∈ KA},
Minhib =Mtaction ∪ { inhib(o, a) | inhib(o, a) ∈ KA},
Mprecon =Minhib ∪ { precon(p, a) | precon(p, a) ∈ KA},

Let

Mhin =Mprecon ∪ { hinder(s, a) | ∃o, s′ {inhib(o, a),

o ◦ s′ ≈ s} ⊆̇ Mprecon},
Mhincon =Mhin ∪ { hinder(s, a) | ∃s′, r, v, vv, vl, vvl, o

{inhib(real(r, vl) ◦ o, a), v ≥ vl
s ≈ s′ ◦ real(r, v), val(v, vv),

val(vl, vvl)} ⊆ Mhin}
Mclos =Mhincon ∪ { nonclosed(s) | ∃c, a, e, p, s′, n{taction(c, a, e),

precon(p, a), fulfil(s, p), s ≈ c ◦ s′,
replace(s, e, n)} ⊆̇ Mhincon ∧
{hinder(s, a), s ≈ n} ∩Mhincon = ∅}

Mapp =Mclos ∪ { applicable(s, a, n) | ∃c, s′, e, p {action(c, a, e),

precon(p, a), fulfil(s, p), s ≈ c ◦ s′,
n ≈ e ◦ s′} ⊆ Mclos ∧
hinder(s, a) 6∈ Mclos}

M0 =Mapp ∪ { reapplicable(s, [], n) | s ≈ n ∈Mapp

nonclosed(s) 6∈ Mapp}

and for all k ≥ 1 let

Mk =Mk−1 ∪ { reapplicable(s, [a | t], n) | ∃c, e, p, s′, z
{hinder(s, a), s ≈ z} ∩Mk−1 = ∅
∧ {taction(c, a, e), precon(p, a),

fulfil(s, p), replace(s, e, z),

reapplicable(z, t, n)} ⊆ Mk−1}

Then, by a straightforward induction on the length of the second argument of reapplicable

we learn that M =
⋃
k∈NMk is a model of KA ∪ KApp ∪ K∗Com ∪ E∗AC1 ∪ E∗real and, con-

sequently, M is a model for K∗A ∪ K∗App ∪ K∗Com ∪ E∗AC1 ∪ E∗real. �

Lemma 5.7. AFCR∗Q is satisfiable.

Proof. Proposition 5.6 has proven that K∗A ∪K∗App ∪K∗Com ∪ E∗AC1 ∪ E∗real is satisfiable.

We just need to prove that K∗C is satisfiable. Let Mapp be a model for K∗A ∪ K∗App ∪

Chapter 5. Advanced Planning ProblemsR 69

K∗Com ∪ E∗AC1 ∪ E∗real ∪ K∗Com ∪ E∗AC1 ∪ E∗real. Let

M0 =Mapp ∪ {causes(i, [], g) | i ≈ g ∈Mapp},

and for all k ≥ 1 let

Mk =Mk−1 ∪ { causes(i, [a | l], g) | ∃s, t, p, n {applicable(i, a, s), append(t, p, l),

reapplicable(s, t, n), causes(n, p, g)} ⊆ Mk−1}

Then, by a straightforward induction on the length of the second argument of causes

we learn that M =
⋃
k∈NMk is a model of KC ∪K∗A ∪K∗App ∪K∗Com ∪ E∗AC1 ∪ E∗real and,

consequently, M is a model for AFCR∗Q. �

Syntactical conditions which guarantee that no derivation flounders or is infinite need to

be assured. They are important since we deal with SLDENF-resolution proofs. We focus

on all recursive clauses such as clauses where predicate fulfil , replace, reapplicable, are

the head of the clauses. We also need to reprove Lemma 4.3 since there is a modification

in clauses where causes is the head. There is no need to worry about clauses (5.11),

(5.8), and (5.12) because these clauses are not recursive.

Clauses (5.1), (5.2), and (5.3) will not have infinite derivations as long as the second

argument is finite. This is shown by the following proposition.

Proposition 5.8. Let p1, . . . , pn be ground fluent terms, and s be an arbitrary fluent

term. No SLDENF-resolution proof of ← fulfil(s, pn ◦ . . . ◦ p1) is infinite.

Proof. The proposition is proven by induction on the length of the second argument in

fulfil .

I.B To show: No SLDENF-resolution proof of ← fulfil(s, 1) is infinite.

In the case where n = 0, what is left in the second argument is 1 since p1 ◦ . . . ◦ pn ◦ 1 ≈
p1 ◦ . . . ◦ pn. In this case, fulfil(s, 1) can only be AC1-unified with a new variant of (5.1).

Thus, we obtain the empty clause or the derivation fails immediately.

I.H No SLDENF-resolution proof of ← fulfil(sn, pn ◦ . . . ◦ p1) is infinite.

I.C To show: No SLDENF-resolution proof of ← fulfil(s, pn+1 ◦ . . . ◦ p1) is infinite.

I.S In the case n + 1 > 0, there are two possibilities for fulfil(s, pn+1 ◦ . . . ◦ p1) to be

AC1-unified with. The first is with the head of a new variant

fulfil(P ◦ S, P ◦ Pr)← fulfil(S, Pr)

of (5.2) with AC1-unifier

{P 7→ pj ◦ . . . ◦ p1, S 7→ sn, Pr 7→ pn+1 ◦ . . . ◦ pj+1}

Chapter 5. Advanced Planning ProblemsR 70

yielding

← fulfil(sn, pn+1 ◦ . . . ◦ pj+1) (5.14)

where s ≈AC1 pj ◦ . . . ◦ p1 ◦ sn, and 1 ≤ j ≤ n + 1. The second is with the head of a

new variant

fulfil(real(R, V) ◦ S, real(R, V l) ◦ P)← val(V, V v) ∧ val(V l, V vl)
∧V v ≥ V vl ∧ fulfil(S, P)

of (5.3) with AC1-unifier

{R 7→ r, V 7→ v, S 7→ sn, V l 7→ vl, P 7→ pn ◦ . . . ◦ p1}

yielding

← val(v, V v) ∧ val(vl, V vl) ∧ V v ≥ V vl ∧ fulfil(sn, pn ◦ . . . ◦ p1) (5.15)

where s ≈AC1 real(r, v) ◦ sn, and pn+1 ≈AC1 real(r, vl). At this state, (5.15) either fails

or yields a successful derivation

← val(vl, V vl) ∧ vv ≥ V vl ∧ fulfil(sn, pn ◦ . . . ◦ p1) (5.16)

with the fact

val(v, vv)

and AC1-unifier

{V v 7→ vv}.

At this state, (5.16) either fails or there is an SLDENF-derivation between the first

literal of (5.16) and the fact

val(vl, vvl)

in Ereal yielding

← vv ≥ vvl ∧ fulfil(sn, pn ◦ . . . ◦ p1) (5.17)

with AC1-unifier

{V vl 7→ vvl}.

Again, at this point, (5.17) either fails or the first literal of (5.17) can be AC1-unified

with the fact

vv ≥ vvl

Chapter 5. Advanced Planning ProblemsR 71

and AC1-unifier ∅ leading to

← fulfil(sn, pn+1 ◦ . . . ◦ p1) (5.18)

Both (5.14) and (5.18) have the length of the second argument less or equal to n. We

can apply I.H and learn that no SLDENF-resolution proof of ← fulfil(sn, pn ◦ . . . ◦ p1) is

infinite. Combining this result and the derivations of ← fulfil(s, pn+1 ◦ . . . ◦ p1), we can

safely conclude that no SLDENF-resolution proof of← fulfil(s, pn+1 ◦ . . .◦p1) is infinite.

�

Clauses (5.5), (5.6) and (5.7) will not lead to derivations which flounder or are infinite

if the second argument is ground and finite and the first argument is ground. This is

shown by the following proposition.

Proposition 5.9. Let s, e1, . . . , en be ground fluent terms, and ns be an arbitrary fluent

term. Then, no SLDENF-resolution proof of ← replace(s, e1 ◦ . . . ◦ en, ns) flounders or

is infinite.

Proof. The proposition is proven by induction on the length of the second argument in

replace.

I.B To show: No SLDENF-resolution proof of← replace(s, 1, ns) flounders or is infinite.

In the case where n = 0, what is left in the second argument is 1 since en ◦ . . . ◦ e1 ◦ 1 ≈
en ◦ . . . ◦ e1. replace(s, 1, ns) can only be AC1-unified with a new variant of (5.5) and

only if s ≈ ns. Hence, we obtain the empty clause or the derivation fails immediately.

I.H No SLDENF-resolution proof of ← replace(sn, en ◦ . . . ◦ e1, nsn) flounders or is

infinite.

I.C No SLDENF-resolution proof of ← replace(s, en+1 ◦ . . . ◦ e1, ns) flounders or is

infinite.

I.S In the case n + 1 > 0, replace(s, en+1 ◦ . . . ◦ e1, ns) can only be AC1-unified with

either the head of a new variant

replace(real(R, V) ◦ S, real(R, V l) ◦ E, real(R, V vl) ◦N)← val(V l, V vl)

∧ replace(S,E,N)

of (5.7) or the head of a new variant

replace(S, real(R, V) ◦ E, real(R, V l) ◦N)← ¬member(real(R, V), S) ∧ val(V, V l)
∧ replace(S,E,N)

of (5.6). If it is AC1-unified with the former then the successful derivation yields

← val(vl, vvl) ∧ replace(sn, en ◦ . . . ◦ e1, nsn) (5.19)

Chapter 5. Advanced Planning ProblemsR 72

with AC1-unifier

{R 7→ r, V 7→ v, S 7→ sn, V l 7→ vl, V vl 7→ vvl, E 7→ en ◦ . . . ◦ e1, N 7→ nsn}

where s ≈AC1 real(r, v) ◦ sn, en+1 ≈AC1 real(r, vl), and ns ≈AC1 real(r, vvl) ◦ nsn. At

this point, (5.19) either fails or there is an SLDENF-derivation between the first literal

of (5.19) and the fact

val(vl, vvl)

in Ereal with AC1-unifier ∅ yielding

← replace(sn, en ◦ . . . ◦ e1, nsn) (5.20)

If replace(s, en+1◦. . .◦e1, ns) is AC1-unified with the latter then the successful derivation

yields

← ¬member(real(r, v), s) ∧ val(v, vl) ∧ replace(s, en ◦ . . . ◦ e1, nsn) (5.21)

with AC1-unifier

{S 7→ s,R 7→ r, V 7→ v, V l 7→ vl, E 7→ en ◦ . . . ◦ e1, N 7→ nsn}

where en+1 ≈AC1 real(r, v), and ns ≈AC1 real(r, vl)◦nsn. At this point, the derivation

of (5.21) may either fail because there is an SLDENF-resolution proof of

member(real(c, r), cs) or continue with

← val(v, vl) ∧ replace(s, en ◦ . . . ◦ e1, nsn) (5.22)

Once more, at this point, the derivation of (5.22) may either fail or continue with

← replace(s, en ◦ . . . ◦ e1, nsn) (5.23)

As the second argument has the length n for both (5.20) and (5.23), we can apply I.H

to (5.20) and (5.23) to conclude that both (5.20) and (5.23) has no infinite SLDENF-

resolution proof and do not flounder. Combining this result with the derivation of

← replace(s, en+1 ◦ . . . ◦ e1, ns), we can conclude that ← replace(s, en+1 ◦ . . . ◦ e1, ns)
has no either infinite or floundering SLDENF-resolution proof. �

From the above proposition, we can also conclude that if the first and the second argu-

ment of replace are ground fluent terms then so is the third argument. In the following,

we will show that clauses involving hinder do not have infinite derivations.

Chapter 5. Advanced Planning ProblemsR 73

Proposition 5.10. Let s be a ground fluent term and a be a simple fluent term. Then,

all SLDENF-resolution proofs of ← hinder(s, a) are finite.

Proof. Assume that s ≈AC1 o ◦ s′, then the atom occurring

← hinder(s, a)

can only be AC1-unifiable with either the head of a new variant

hinder(O ◦ S,A)← inhib(O,A)

of (4.1) where it yields to

← inhib(o, a) (5.24)

or the head of a new variant

hinder(real(R, V) ◦ S,A)← inhib(real(R, V l) ◦O,A) ∧ val(V, V v)

∧ val(V l, V vl) ∧ V v ≥ V vl

of (5.11) where it yields to

← inhib(real(r, V l) ◦O, a) ∧ val(v, V v) ∧ val(V l, V vl) ∧ V v ≥ V vl. (5.25)

If ← hinder(s, a) is AC1-unified with the head of the variant of (4.1) then the AC1-

unifier is of the form

σ = {O 7→ o, S 7→ s′, A 7→ a}.

At this point, the derivation (5.24) either fails or the literal inhib(o, a) can be solved

with the fact

inhib(o′, a)

in KA to continue to the empty clause where o ≈AC1 o
′.

If ← hinder(s, a) is AC1-unified with the head of the variant of (5.11) then the AC1-

unifier is of the form

σ = {R 7→ r, V 7→ v, S 7→ s′, A 7→ a}

where o ≈AC1 real(r, v). At this point, the derivation (5.25) either fails or the literal

inhib(real(r, V l) ◦O, a) can be solved with the fact

inhib(real(r, vl) ◦ o′, a)

Chapter 5. Advanced Planning ProblemsR 74

in KA to continue to

← val(v, V v) ∧ val(vl, V vl) ∧ V v ≥ V vl (5.26)

with AC1-unifier

{V l 7→ vl, O 7→ o′}.

At this point, (5.26) either fails or there is an SLDENF-derivation between the first

literal of (5.26) and the fact

val(v, vv)

in Ereal yielding

← val(vl, V vl) ∧ vv ≥ V vl (5.27)

with AC1-unifier

{V v 7→ vv}.

(5.27) either fails or there is an SLDENF-derivation between the first literal of (5.27)

and the fact

val(vl, vvl)

in Ereal yielding

← vv ≥ vvl (5.28)

with AC1-unifier

{V vl 7→ vvl}.

Once more, at this point, the derivation (5.27) either fails or the literal v ≥ vl can be

solved with the fact v ≥ vl in Ereal to continue to the empty clause. �

Clause (5.8) does not cause floundering if the argument is ground. This is shown in the

following proposition.

Proposition 5.11. Let s be a ground fluent term. Then, no SLDENF-resolution proof

of ← nonclosed(s) flounders.

Proof. The atom occurring in

← nonclosed(s)

can only be AC1-unified with the head of a new variant

nonclosed(C ◦ S)← taction(C,A,E) ∧ precon(P,A)

∧ fulfil(C ◦ S, P) ∧ ¬hinder(C ◦ S,A)

∧ replace(C ◦ S,E,N) ∧ C ◦ S 6≈ N

Chapter 5. Advanced Planning ProblemsR 75

of (5.8) with AC1-unifier

{C 7→ c, S 7→ s′}

where s ≈AC1 c ◦ s′. The derivation yields

← taction(c, A,E) ∧ precon(P,A) ∧ fulfil(c ◦ s′, P) ∧ ¬hinder(c ◦ s′, A)

∧ replace(c ◦ s′, E,N) ∧ c ◦ x 6≈ N
(5.29)

At this point, the derivation (5.29) either fails or the literal taction(c, A,E) can be solved

with the fact

taction(c, a, e)

in KA leading to

← precon(P, a) ∧ fulfil(c ◦ s′, P) ∧ ¬hinder(c ◦ s′, a)

∧ replace(c ◦ s′, e,N) ∧ c ◦ x 6≈ N
(5.30)

with AC1-unifier

{A 7→ a,E 7→ e}.

Derivation (5.30) either fails or the literal precon(P, a) can be solved with the fact

precon(p, a)

in KA leading to

← fulfil(c ◦ s′, p) ∧ ¬hinder(c ◦ s′, a)

∧ replace(c ◦ s′, e,N) ∧ c ◦ x 6≈ N
(5.31)

with AC1-unifier

{P 7→ p}.

Proposition 5.8 ensures that SLDENF-resolution proofs of fulfil(c◦s′, p) are finite. Hence,

derivation (5.31) either fails because there is no SLDENF-resolution proof of fulfil(c◦s′, p)
or there is a finite SLDENF-resolution proof of fulfil(c ◦ s′, p) an answer substitution ∅
leading to

← ¬hinder(c ◦ s′, a) ∧ replace(c ◦ s′, e,N) ∧ c ◦ s′ 6≈ N (5.32)

Proposition 5.10 ensures that SLDENF-resolution proofs of hinder(c ◦ s′, a) are finite.

Since all arguments of hinder are ground, derivation (5.32) either fails because there is

an SLDENF-resolution proof of hinder(c◦ s′, a) or there is no finite SLDENF-resolution

proof of hinder(c ◦ s′, a). If the latter is the case, then there is an SLDENF-derivation

from (5.32) to

← replace(c ◦ s′, e,N) ∧ c ◦ s′ 6≈ N (5.33)

Chapter 5. Advanced Planning ProblemsR 76

Proposition 5.9 ensures that SLDENF-resolution proofs of replace(c◦ s′, e,N) are finite.

Furthermore, the restriction stating that all variables in e must appear in c forces e to be

ground because c ◦ s′ is ground. Hence, derivation (5.33) either fails because there is no

SLDENF-resolution proof of replace(c ◦ s′, e,N) or there is a finite SLDENF-resolution

proof of replace(c ◦ s′, e,N) with an answer substitution {N 7→ n}. If the latter is the

case then there are SLDENF-derivations from (5.33) to

← c ◦ s′ 6≈ n (5.34)

where variable N is replaced by a ground term n in the process. At this point, the

derivation either fails because there is a successful SLDENF-resolution proof of c◦s′ 6≈ n
or continues because there is no successful SLDENF-resolution proof of c◦ s′ 6≈ n. If the

latter is the case then there is a SLDENF-derivation from (5.34) to the empty clause. �

For clauses (5.9) and (5.10), we have to impose that the second argument of reapplicable

is finite. Then we can be sure that the SLDENF-derivations are finite. On the other

hand, floundering in SLDENF-derivations of reapplicable can be avoided as long as the

first argument of reapplicable is a ground term.

Proposition 5.12. Let s be a ground term, and ns be an arbitrary fluent term. No

SLDENF-resolution proof of ← reapplicable(s, [an, . . . , a1], ns) flounders or is infinite.

Proof. The proposition is proven by induction on the length of the list of the second

argument in reapplicable.

I.B To show: No SLDENF-resolution proof of ← reapplicable(s, [], ns) flounders or is

infinite.

In case where n = 0, i.e., the list is empty, reapplicable(s, [], ns) can only be AC1-unified

with a new variant

reapplicable(S, [], S)← ¬nonclosed(S)

of (5.9) and only if s ≈AC1 ns. If s ≈AC1 ns then the derivation yields

← ¬nonclosed(s) (5.35)

Since s is a ground term and Proposition 5.11 ensures that all derivations nonclosed(s)

do not flounder, then the derivation of (5.35) is either fail or continue to the empty

clause.

I.H No SLDENF-resolution proof of ← reapplicable(sn, [an, . . . , a1], ns) flounders or is

infinite.

I.C To show: No SLDENF-resolution proof of ← reapplicable(s, [an+1, . . . , a1], ns)

flounders or is infinite.

Chapter 5. Advanced Planning ProblemsR 77

I.S In the case n + 1 > 0, reapplicable(s, [an+1, . . . , a1], ns) can only be AC1-unified

with the head of a new variant

reapplicable(C ◦ S, [A | T], N)← taction(C,A,E) ∧ precon(P,A) ∧ fulfil(C ◦ S, P)

∧ ¬hinder(C ◦ S,A) ∧ replace(C ◦ S,E,Z)

∧ C ◦ S 6≈ Z ∧ reapplicable(Z, T,N)

of (5.10) with AC1-unifier

{C 7→ c, S 7→ s′, A 7→ an+1, T 7→ [an, . . . , a1], N 7→ ns}

where s ≈AC1 c ◦ s′. The derivation yields

← taction(c, an+1, E) ∧ precon(P, an+1) ∧ fulfil(c ◦ s′, P) ∧ ¬hinder(c ◦ s′, an+1)

∧ replace(c ◦ s′, E, Z) ∧ c ◦ s′ 6≈ Z ∧ reapplicable(Z, [an, . . . , a1], ns)
(5.36)

At this point, the derivation (5.36) either fails or the literal taction(c, an+1, E) can be

solved with the fact

taction(c, an+1, e)

in KA leading to

← precon(P, an+1) ∧ fulfil(c ◦ s′, P) ∧ ¬hinder(c ◦ s′, an+1)

∧ replace(c ◦ s′, e, Z) ∧ c ◦ s′ 6≈ Z ∧ reapplicable(Z, [an, . . . , a1], ns)
(5.37)

with AC1-unifier

{E 7→ e}.

Derivation (5.37) either fails or the literal precon(P, an+1) can be solved with the fact

precon(p, an+1)

in KA leading to

← fulfil(c ◦ s′, p) ∧ ¬hinder(c ◦ s′, an+1) ∧ replace(c ◦ s′, e, Z)

∧ c ◦ s′ 6≈ Z ∧ reapplicable(Z, [an, . . . , a1], ns)
(5.38)

with AC1-unifier

{P 7→ p}.

Proposition 5.8 ensures that SLDENF-resolution proofs of fulfil(c◦s′, p) are finite. Hence,

derivation (5.38) either fails because there is no SLDENF-resolution proof of fulfil(c◦s′, p)

Chapter 5. Advanced Planning ProblemsR 78

or there is a finite SLDENF-resolution proof of fulfil(c ◦ s′, p) leading to

← ¬hinder(c ◦ s′, an+1) ∧ replace(c ◦ s′, e, Z)

∧ c ◦ s′ 6≈ Z ∧ reapplicable(Z, [an, . . . , a1], ns)
(5.39)

Proposition 5.10 ensures that SLDENF-resolution proofs of hinder(c◦s′, an+1) are finite.

Since all arguments of hinder are ground, derivation (5.39) either fails because there is an

SLDENF-resolution proof of hinder(c◦s′, an+1) or there is no finite SLDENF-resolution

proof of hinder(c◦s′, an+1). If the latter is the case, then there is an SLDENF-derivation

from (5.39) to

← replace(c ◦ s′, e, Z) ∧ c ◦ s′ 6≈ Z ∧ reapplicable(Z, [an, . . . , a1], ns) (5.40)

Proposition 5.9 ensures that SLDENF-resolution proofs of replace(c ◦ s′, e, Z) are finite.

Furthermore, the restriction stating that all variables in e must appear in c forces e to be

ground because c ◦ s′ is ground. Hence, derivation (5.40) either fails because there is no

SLDENF-resolution proof of replace(c ◦ s′, e, Z) or there is a finite SLDENF-resolution

proof of replace(c ◦ s′, e, Z) with an answer substitution {Z 7→ sn}. If the latter is the

case then there are SLDENF-derivations from (5.40) to

← c ◦ s′ 6≈ sn ∧ reapplicable(sn, [an, . . . , a1], ns) (5.41)

where variable Z is replaced with a ground term sn in the process. c ◦ s′ is known as

a ground term, whereas sn is a ground term due to the previous derivation involving

replace. Hence, at this point, the derivation either fails because there is a successful

SLDENF-resolution proof of c ◦ s′ 6≈ sn or continues because there is no successful

SLDENF-resolution proof of c◦s′ 6≈ sn. If the latter is the case then there is a SLDENF-

derivation from (5.41) to

← reapplicable(sn, [an, . . . , a1], ns) (5.42)

We can apply the induction hypothesis and learn that no SLDENF-resolution proof of

(5.42) flounders or is infinite. Combining the derivations from ← reapplicable(s, [an+1,

. . . , a1], ns) to (5.42) with the result from induction hypothesis, we learn that no SLDENF-

resolution proof of ← reapplicable(s, [an+1, . . . , a1], ns) flounders or is infinite. �

The following proposition shows that clause (5.12) does not cause infinite SLDENF-

derivations as long as the second argument has finite length. Furthermore, it does not

cause floundering if the first argument is a ground fluent term.

Proposition 5.13. Let s, a be ground fluent terms and ns be an arbitrary fluent term.

No SLDENF-resolution proof of ← applicable(s, a, ns) flounders or is infinite.

Chapter 5. Advanced Planning ProblemsR 79

Proof. The atom occurring in applicable(s, a, ns) can only be AC1-unified with the

head of a new variant

applicable(C ◦ S,A,E ◦ S)← action(C,A,E) ∧ precon(P,A)

∧ fulfil(C ◦ S, P) ∧ ¬hinder(C ◦ S,A)

of (5.12) with AC1-unifier

{C 7→ c, S 7→ s′, A 7→ a,E 7→ e}

where s ≈AC1 c ◦ s′ and ns ≈AC1 e ◦ s′. The derivation yields

← action(c, a, e) ∧ precon(P, a) ∧ fulfil(c ◦ s′, P) ∧ ¬hinder(c ◦ s′, a) (5.43)

At this point, the derivation (5.43) either fails or the literal action(c, a, e) can be solved

with a fact in KA and AC1-unifier ∅ leading to

← precon(P, a) ∧ fulfil(c ◦ s′, P) ∧ ¬hinder(c ◦ s′, a) (5.44)

Derivation (5.44) either fails or the literal precon(P, a) can be solved with a fact

precon(p, a)

in KA leading to

← fulfil(c ◦ s′, P) ∧ ¬hinder(c ◦ s′, a) (5.45)

with AC1-unifier

{P 7→ p}.

Proposition 5.8 ensures that SLDENF-resolution proofs of fulfil(c◦s′, p) are finite. Hence,

derivation (5.45) either fails because there is no SLDENF-resolution proof of fulfil(c◦s′, p)
or there is a finite SLDENF-resolution proof of fulfil(c ◦ s′, p) leading to

← ¬hinder(c ◦ s′, a) (5.46)

Proposition 5.10 ensures that SLDENF-resolution proofs of hinder(c ◦ s′, a) are finite.

Since all arguments of hinder are ground, derivation (5.46) either fails because there is

an SLDENF-resolution proof of hinder(c◦ s′, a) or there is no finite SLDENF-resolution

proof of hinder(c ◦ s′, a). If the latter is the case, then there is an SLDENF-derivation

from (5.46) to the empty clause. Therefore, combining all derivations starting from

← applicable(s, a, ns) to (5.46), we conclude that no SLDENF-resolution proof of

← applicable(s, a, ns) flounders or is infinite. �

Chapter 5. Advanced Planning ProblemsR 80

The modification of advanced fluent calculus involving real values changes several clauses

such as clauses with applicable and causes in their head. Hence, Proposition 4.3 is no

longer valid for advanced fluent calculus with real values. Hence, we have to reprove

Proposition 4.3. Let Q = 〈I,G,A,Areal〉 be an acppR and Ifc,Gfc are the representa-

tion of I,G in fluent calculus where real-valued fluents are represented in the form of

real(R, V).

Lemma 5.14. No SLDENF-resolution proof of ← causes(I−Ifc , [a1, . . . , an],G−Ifc) floun-

ders or is infinite.

Proof. The lemma is proven by induction on the length of the list of the second

argument in causes.

I.B To show: No SLDENF-resolution proof of ← causes(I−Ifc , [],G−Ifc) flounders or is

infinite.

In case where n = 0, i.e., the list is empty, causes(I−Ifc , [],G−Ifc) can only be AC1-unified

with a new variant

causes(S, [], S)

of (3.2) and only if I−Ifc ≈AC1 G−Ifc . Hence, we obtain the empty clause or the derivation

fails immediately.

I.H No SLDENF-resolution proof of ← causes(I−Ifcn, [an, . . . , a1],G
−I
fc) flounders or is

infinite.

I.C To show: No SLDENF-resolution proof of← causes(I−Ifc , [an+1, . . . , a1],G−Ifc) floun-

ders or is infinite.

I.S In the case n+ 1 > 0, causes(I−Ifc , [an+1, . . . , a1],G−Ifc) can only be AC1-unified with

the head of a new variant

causes(I, [A | L], G)← applicable(I, A, S) ∧ append(T, P, L)

∧ reapplicable(S, T,N) ∧ causes(N,P,G)

of (5.13) where the successful derivation yields

← applicable(I−Ifc , an+1, S) ∧ append(T, P, [an, . . . , a1])

∧ reapplicable(S, T,N) ∧ causes(N,P,G−Ifc)
(5.47)

with AC1-unifier

{I 7→ I−Ifc , A 7→ an+1, L 7→ [an, . . . , a1], G 7→ G−Ifc }.

Proposition 5.13 ensures that SLDENF-resolution proofs of ← applicable(I−Ifc , an+1, S)

are finite and do not cause floundering. It means SLDENF-derivations of (5.47) either

Chapter 5. Advanced Planning ProblemsR 81

fail or continue. If they continue, we can find the corresponding SLDENF-derivations

from (5.47) to

← append(T, P, [an, . . . , a1]) ∧ reapplicable(s, T,N) ∧ causes(N,P,G−Ifc) (5.48)

where variable S is replaced by an arbitrary fluent term s. Proposition 2.2 ensures

that SLDENF-resolution proofs of ← append(T, P, [an, . . . , a1]) are finite. It means

SLDENF-derivations of (5.48) either fail or continue. If they continue, we can find the

corresponding SLDENF-derivations from (5.48) to

← reapplicable(s, [an, . . . , aj+1], N) ∧ causes(N, [aj , . . . , a1],G−Ifc) (5.49)

where along the derivation process, variables T and P are replaced by [an, . . . , aj+1] and

[aj , . . . , a1], respectively. Proposition 5.12 ensures that SLDENF-resolution proofs of

← reapplicable(s, [an, . . . , aj+1], N) are finite and do not flounder. It means SLDENF-

derivations of (5.49) either fail or continue. If they continue, we can find the correspond-

ing SLDENF-derivations from (5.49) to

← causes(ns, [aj , . . . , a1],G−Ifc) (5.50)

where variable N is replaced by an arbitrary fluent term ns. We can apply the in-

duction hypothesis to (5.50) by assuming that I−Ifcn ≈AC1 ns because the list in the

second argument is shorter than the original one. We learn that there is no SLDENF-

resolution proof of (5.50) flounders or is infinite. Combining all derivations from ←
causes(I−Ifc , [an+1, . . . , a1],G−Ifc) to (5.50) with the result of induction hypothesis, we can

conclude that there is no SLDENF-resolution proof of← causes(I−Ifc , [an+1, . . . , a1],G−Ifc)

flounders or is infinite. �

Proposition 5.14 shows that the length of the second argument of causes must be fixed

in advanced to prevent from having possible infinite derivations. As the consequence,

the question of whether there is a plan with length n solving an acppR with an initial

state I and a goal state G is a question of whether

(∃A1, . . . , An)causes(Ifc ↓−I , [A1, . . . , An],Gfc ↓−I)

is a logical consequence of AFCR∗Q. We may change n to a greater number in the search

for a solution of the planning problem.

One should notice that we only count the number of SLDENF-refutation steps involving

subgoals causes and reapplicable. Therefore, the length of an SLDENF-resolution is

the number of SLDENF-refutation steps involving these two subgoals.

Chapter 5. Advanced Planning ProblemsR 82

5.2 An Instance of ACPPR

Once more, we modify the ill man problem as follows:

Suppose there was a man who had weight 1.0 quintal living in an apartment.

He lived in the highest floor and there was no lift in this apartment. He was

severely ill and needed to see a doctor. He could not go by himself; a helicopter

was sent to help him. The helicopter could carry 2 quintal at maximum. The

pilot who had weight 0.8 quintal helped him to the helicopter. Once the man

was in the helicopter, the pilot brought him to hospital.

The problem above is considered as an advanced conjunctive planning problem with real

values. The simple fluents are the apartment (apt), the helicopter (hel), and the hospital

(hos), whereas the real-valued fluents are the ill man with weight 1.0 quintal (ill(1.0)),

the pilot with weight 0.8 quintal (pil(0.8)), and the total weight (wei(X)). The concrete

actions are to help him to the helicopter (h), and to drive to the hospital (d), whereas

the theory action is to calculate the weight of both the pilot and the ill man (c). We

may conclude that the only solution is by helping him to the helicopter, calculating the

weight, and driving the helicopter to the hospital. Within the advanced conjunctive

planning problem with real values we obtain

Q = 〈 {̇ill(1.0), pil(0.8), apt}̇, {̇ill(1.0), pil(0.8), wei(1.8), hos}̇,

{h : {̇apt}̇ ∅̇,∅̇=⇒ {̇hel}̇, d : {̇hel}̇ ∅̇,{̇wei(2.0)}̇=======⇒ {̇hos}̇},

{c : {̇ill(X), pil(Y)}̇ {̇hel}̇,∅̇====⇒ {̇wei(X + Y)}̇} 〉

We could start solving the problem by executing h, c, and d consecutively to the initial

state, i.e,

{̇ill(1.0), pil(0.8), apt}̇ h−→ {̇ill(1.0), pil(0.8), hel}̇ c−→
{̇ill(1.0), pil(0.8), wei(1.8), hel}̇ d−→ {̇ill(1.0), pil(0.8), wei(1.8), hos}̇

The obstacle wei(2.0) in the concrete action d does not hinder the action from being ex-

ecuted because the threshold 2.0 for the real-valued fluent wei in the obstacles is greater

than the value 1.8 possessed by the real-valued fluent wei in state {̇ill(1.0), pil(0.8),

wei(1.8), hel}̇.

In the fluent calculus, the actions are represented by the set of clauses

{ action(apt, h, hel), action(hel, d, hos),

taction(real(ill,X) ◦ real(pil, Y), c, real(wei,X + Y)) }

Chapter 5. Advanced Planning ProblemsR 83

← causes({̇real(ill, 1.0), real(pil, 0.8), apt}̇
−I
, causes(I, [A | L], G)

P, {̇real(ill, 1.0), real(pil, 0.8), |
real(wei, 1.8), hos}̇

−I
) |

|
σ1 = {I 7→ real(ill, 1.0) ◦ . . . ◦ apt, P 7→ [A | L], |

G 7→ real(ill, 1.0) ◦ . . . ◦ hos} |
|

← applicable(real(ill, 1.0) ◦ . . . ◦ apt, A, S) ∧ . . . ∧ causes(N,P1, real(ill, 1.0) ◦ . . . ◦ hos)
...

σ2 = {A 7→ h, S 7→ real(ill, 1.0)
...

◦real(pil, 0.8) ◦ hel}
...
...

← append(T, P1, L) ∧ . . . ∧ causes(N,P1, real(ill, 1.0) ◦ . . . ◦ hos)
...

σ3 = {T 7→ [T1], P1 7→ [P2], L 7→ [T1, P2]}
...
...

← reapplicable(real(ill, 1.0) ◦ . . . ◦ hel, [T1], N) ∧ causes(N, [P2], real(ill, 1.0) ◦ . . . ◦ hos)
...

σ4 = {T1 7→ c,N 7→ real(ill, 1.0) ◦ real(pil, 0.8)
...

◦real(wei, 1.8) ◦ hel}
...
...

← causes(real(ill, 1.0) ◦ . . . ◦ hel, [P2], real(ill, 1.0) ◦ . . . ◦ hos)
...

σ5 = {P2 7→ d}
...
...
�

Figure 5.1: An SLDENF-resolution proof of causes({̇real(ill, 1.0) ◦ real(pil, 0.8) ◦
apt}̇

−I
, P, {̇real(ill, 1.0) ◦ real(pil, 0.8) ◦ real(wei, 1.8) ◦ hos}̇

−I
).

inhibitors of action d are represented by the set of clauses

{ inhib(real(wei, 2.0), d) }

and the preconditions of action c are represented by the set of clauses

{ precon(hel, c) }

Chapter 5. Advanced Planning ProblemsR 84

If we ask, whether there exists a plan P such that its execution transforms state

{̇ill(1.0), pil(0.8), apt}̇ into state {̇ill(1.0), pil(0.8), wei(1.8), hos}̇, i.e.

∃P : causes(real(ill, 1.0) ◦ real(pil, 0.8) ◦ apt, P,
real(ill, 1.0) ◦ real(pil, 0.8) ◦ real(wei, 1.8) ◦ hos)

then we obtain the refutation shown in Figure 5.1 yielding the answer substitution

{P 7→ [h, [c, [d, []]]]}

Hence, the ill man has to be helped to the helicopter (h) first, the calculation of the

weight follows after (c), and the pilot drives the helicopter to hospital (d) afterwards,

and they have reached the goal ([]).

5.3 Sound and Completeness of the Real-valued Fluent

Calculus

In the previous section, we modeled the modified ill man problem with advanced con-

junctive planning problems with real values. We also showed that this problem can be

represented and solved within the real-valued fluent calculus. In this section, we will

show that the real-valued fluentcalculus is sound and complete in solving real-valued

conjunctive planning problems. We assume that whenever a multiset containing simple

and real-valued fluents is transformed into a fluent term, the process also transforms

real-valued fluents to their representation in the real-valued fluent calculus and vice

versa.

Throughout this section let Is,Gs denote finite multisets of simple fluents, Ic,Gc denote

finite multisets of ground real-valued fluents, I .
= Is ∪̇ Ic, G

.
= Gs ∪̇ Gc, and

Q = 〈I,G,A,Areal〉 denotes a real-valued conjunctive planning problem. Furthermore,

let AFCRQ denotes its presentation in the real-valued fluent calculus.

Proposition 5.15. There are obstacles at a state S to hinder an action a in Q iff there

is an SLDENF-resolution proof of ← hinder(S−I , a) in AFCRQ.

Proof. The action a can be either a concrete action or a theory action. Both types

of actions have the same form and have the same rules for obstacles. However, theory

actions can only have obstacles containing simple fluents, whereas concrete actions can

have obstacles containing both simple and real-valued fluents. Hence, considering a as

a concrete action is enough to show that the proposition holds.

Chapter 5. Advanced Planning ProblemsR 85

⇒ To show: there is an SLDENF-resolution proof of ← hinder(S−I , a).

Assume there are obstacles at a state S to hinder a concrete action a. Assume that the

action a is of the form

a : C R,O==⇒ E

There are two possibilities for obstacles to hinder an action. The first is the obstacles

in O are simple fluents which appear in state S. Let O′ ⊆̇ S contain only fluents o with

multiplicity n where o is the obstacle. Hence, we have o ∈m S, o ∈n O and m ≥ n.

Hence, there must exist a corresponding fact

inhib(O′−I , a) (5.51)

in AFCRQ. Let σ

{O 7→ O′−I , S 7→ (S \̇ O′)−I , A 7→ a}

be a substitution. σ is the AC1-unifier for the atom occurring in

← hinder(S−I , a) (5.52)

and the head of a new variant

hinder(O ◦ S,A)← inhib(O,A)

of (4.1). Therefore, there is an SLDENF-derivation from (5.52) to

← inhib(O′−I , a). (5.53)

We can do an SLDENF-derivation using (5.51) and the empty substitution to (5.53) to

reach the empty clause. Hence, there is an SLDENF-resolution proof of (5.52).

The second possibility is if the obstacles in O are real-valued fluents which appear in

state S. Let r(v) ∈1 O be the obstacle that hinder the action a in S. It infers that

there is r(v′) ∈1 S such that eval(v′) ≥ eval(v). Furthermore, there must exist the

corresponding fact

inhib(real(r, v) ◦ o, a) (5.54)

containing all real-valued fluents appearing in O in AFCRQ and we can also find facts

val(v′, vv) (5.55)

and

val(v, vvl) (5.56)

Chapter 5. Advanced Planning ProblemsR 86

in Ereal reflecting the evaluation function on v′ and v. Let

σ′ = {R 7→ r, V 7→ v′, S 7→ S ′−I , A 7→ a}

be a substitution. σ′ is the AC1-unifier for the atom occurring in

← hinder(real(r, v′) ◦ S ′−I , a) (5.57)

and the head of a new variant

hinder(real(R, V) ◦ S,A)← inhib(real(R, V l) ◦O,A) ∧ val(V, V v)

∧ val(V l, V vl) ∧ V v ≥ V vl

of (5.11) where S−I ≈AC1 real(r, v
′) ◦ S ′−I . Therefore, there is an SLDENF-derivation

from (5.57) to

← inhib(real(r, V l) ◦O, a) ∧ val(v′, V v) ∧ val(V l, V vl) ∧ V v ≥ V vl (5.58)

We can do an SLDENF-derivation from (5.58) using (5.54) and AC1-unifier

{O 7→ o, V l 7→ v}

to obtain

← val(v′, V v) ∧ val(v, V vl) ∧ V v ≥ V vl. (5.59)

There is an SLDENF-derivation of (5.59) between the first atom occurring in (5.59) and

(5.55) yielding

← val(v, V vl) ∧ vv ≥ V vl (5.60)

with AC1-unifier

{V v 7→ vv}.

There is an SLDENF-derivation of (5.60) between the first atom occurring in (5.60) and

(5.56) yielding

← vv ≥ vvl (5.61)

with AC1-unifier

{V vl 7→ vvl}.

From our assumption we know that vv ≥ vvl, hence, there must exist the fact vv ≥ vvl
in Ereal which can be AC1-unified with the atom occurring in (5.61) with AC1-unifier ∅
yielding the empty clause.

Chapter 5. Advanced Planning ProblemsR 87

⇐ To show: There are obstacles at state S to hinder a discrete action a in O.

Assume there is an SLDENF-resolution proof of a goal clause

← hinder(S−I , a). (5.62)

It means there are two possible SLDENF-derivations of (5.62). The first possibility is

the SLDENF-derivation from (5.62) to

← inhib(O′−I , a) (5.63)

using a new variant

hinder(O ◦ S,A)← inhib(O,A)

of (4.1) and AC1-unifier

{O 7→ O′−I , S 7→ S ′−I , A 7→ a}

where S .
= O′ ∪̇ S ′. We can find the fact

inhib(O′−I , a) (5.64)

in AFCRQ to have an SLDENF-derivation from (5.63) to the empty clause using the

empty substitution and (5.64).

The second possibility is the SLDENF-derivation from (5.62) to

← inhib(real(r, V l) ◦O, a) ∧ val(v, V v) ∧ val(V l, V vl) ∧ V v ≥ V vl (5.65)

using a new variant

hinder(real(R, V) ◦ S,A)← inhib(real(R, V l) ◦O,A) ∧ val(V, V v)

∧ val(V l, V vl) ∧ V v ≥ V vl

of (5.11) and AC1-unifier

{R 7→ r, V 7→ v, S 7→ S ′−I , A 7→ a}

where S−I ≈AC1 real(r, v) ◦ S ′−I . We can find the fact

inhib(real(r, v′) ◦ o, a) (5.66)

Chapter 5. Advanced Planning ProblemsR 88

in AFCRQ to have an SLDENF-derivation from (5.65) to

← val(v, V v) ∧ val(v′, V vl) ∧ V v ≥ V vl (5.67)

with AC1-unifier

{O 7→ o, V l 7→ v′}.

The first atom occurring in (5.67) and the fact

val(v, vv)

in Ereal are AC1-unifiable with AC1-unifier

{V v 7→ vv}

yielding

← val(v′, V vl) ∧ vv ≥ V vl (5.68)

The first atom occurring in (5.68) and the fact

val(v′, vvl)

with AC1-unifier

{V vl 7→ vvl}

yielding

← vv ≥ vvl (5.69)

Once more, the atom occurring in (5.69) and the fact

vv ≥ vvl

with AC1-unifier ∅ yielding the empty clause.

From (5.64) and (5.66), we know that there is a concrete action a in Q. Assume that

the action a is of the form

a : C R,O==⇒ E

The derivation from (5.62), (5.63) to the empty clause suggests that O′ ⊆̇ O. The fact

(5.64) contains either only simple fluents o ◦ . . . ◦ o or all ground real-valued fluents in

O. If the former is the case then we obtain o ∈n O′, therefore, o ∈n O. As O′ ⊆̇ S, we

may conclude that o ∈m S where m ≥ n. Hence, there are obstacles o at S to hinder

the action a.

Chapter 5. Advanced Planning ProblemsR 89

If the latter is the case then all ground real-valued fluents in O are in S. It infers that

∀o(m) ∈1 O ∃o(n) ∈1 S (eval(n) = eval(m)) is true. Hence, all of these real-valued

fluents are obstacles for the concrete action a in state S.

The other derivation from (5.62) to the empty clause suggests that ∀o(m) ∈1 O ∃o(n) ∈1
S (eval(n) ≥ eval(m)) is true. Hence, this particular real-valued fluent is the obstacle

for action a in S. �

The following lemma shows the correlation between state transformations when a theory

action is applied in acppR and the corresponding SLDENF-resolution proofs in the real-

valued fluent calculus. One should recall that all variables occurring in the effects must

also occur in the conditions of the real-valued action. Moreover, an initial state as well

as all other states only contain ground fluents. As a result, whenever a real-valued fluent

is applied to a state, the corresponding effects will only contain ground fluents.

Lemma 5.16. The a theory action with ground effects E transforms S into state S ′ iff

there is an SLDENF-resolution proof of ← replace(S−I , E−I ,S ′−I) in AFCRQ.

Proof. The lemma is proven by Proposition 5.17 and 5.18.

Proposition 5.17. If a theory action with ground effects E transforms state S into state

S ′ then there is an SLDENF-resolution proof of ← replace(S−I , E−I ,S ′−I) in AFCRQ.

Proof. The proposition is proven by induction on the number of real-valued fluents in

E .

I.B To show: If a theory action with ground effects ∅̇ transforms state S into state S ′

then there is an SLDENF-resolution proof of ← replace(S−I , 1,S ′−I) in AFCRQ.

If state S is transformed into state S ′ by a theory action with effects ∅̇, then it is clear

that S .
= S ′.

Let σ = {S 7→ S−I} be a substitution. σ is the AC1-unifier for the atom occurring in

← replace(S−I , 1,S−I) (5.70)

and a new variant

replace(S, 1, S)

of (5.5). Hence, there is an SLDENF-derivation from (5.70) to the empty clause using

σ.

I.H If a theory action with ground effects En = {̇e1, . . . , en}̇ transforms state Sn into

state S ′n then there is an SLDENF-resolution proof of ← replace(S−In , E−In ,S ′−In) in

Chapter 5. Advanced Planning ProblemsR 90

AFCRQ.

I.C To show: If a theory action with ground effects E = {̇e1, . . . , en+1}̇ transforms state

S into state S ′ then there is an SLDENF-resolution proof of ← replace(S−I , E−I ,S ′−I)
in AFCRQ.

I.S Suppose state S is transformed into state S ′ by a theory action with effects E =

{̇e1, . . . , en+1}̇. The transformation consists of two options for each element in E . Lets

assume en+1 = r(v) is the first element either to replace one element in or to be added

in S .

The first option is that the real-valued fluent r appears in S. Hence, the transformation

is done by replacing the real value v′ of r in S with eval(v). Let

σ = {R 7→ r, V 7→ v′, S 7→ S−In , V l 7→ v, V vl 7→ vl, E 7→ En, N 7→ S′−In }

be a substitution. σ is the AC1-unifier for the atom occurring in

← replace(real(r, v′) ◦ S−In , real(r, v) ◦ E−In , real(r, vl) ◦ S ′−In) (5.71)

and the head of a new variant

replace(real(R, V) ◦ S, real(R, V l) ◦ E, real(R, V vl) ◦N)← val(V l, V vl)

∧ replace(S,E,N)

of (5.7). Hence, there is an SLDENF-derivation of (5.71) yielding

← val(v, vl) ∧ replace(S−In , E−In ,S ′−In) (5.72)

where S .
= {̇r(v′)}̇ ∪̇ Sn, E = {̇r(v)}̇ ∪̇ En, and S ′n

.
= {̇r(vl)}̇ ∪̇ S ′n. We can find the fact

val(v, vl) (5.73)

in Ereal because vl is the value of r(vl) in S ′ and vl is the result of eval(v). Hence, there

is an SLDENF-derivation of (5.72) to

← replace(S−In , E−In ,S ′−In) (5.74)

using (5.73) and AC1-unifier ∅.

The second option is that the real-valued fluent r does not appear in S. Hence, the

transformation is done by adding the real-valued fluent r(eval(v)) into S. Let

σ′ = {S 7→ S−I , R 7→ r, V 7→ v, V l 7→ vl, E 7→ E−In , N 7→ S ′−In }

Chapter 5. Advanced Planning ProblemsR 91

be a substitution. σ is the AC1-unifier for the atom occurring in

← replace(S−I , real(r, v) ◦ E−In , real(r, vl) ◦ S ′−In) (5.75)

and the head of a new variant

replace(S, real(R, V) ◦ E, real(R, V l) ◦N)← ¬member(real(R, V), S) ∧ val(V, V l)
∧ replace(S,E,N)

of (5.6). Hence, there is an SLDENF-derivation of (5.75) yielding

← ¬member(real(r, v),S−I) ∧ val(v, vl) ∧ replace(S−I , E−In ,S ′−In) (5.76)

where E = {̇r(v)}̇ ∪̇ En, and S ′n
.
= {̇r(vl)}̇ ∪̇ S ′n. Since the real-valued fluent r does

not appear in S, we may safely conclude that there is no successful SLDENF-resolution

proof of member(real(r, v),S−I) due to non existence of AC1-unifiers. Therefore, there

is an SLDENF-derivation of (5.76) yielding

← val(v, vl) ∧ replace(S−I , E−In ,S ′−In) (5.77)

vl is the evaluation of v using eval since vl is in r(vl) of state S ′. Hence, there must

exist the corresponding fact

val(v, vl)

in Ereal which is AC1-unifiable with the first atom occurring in (5.77). Therefore, there

is an SLDENF-derivation from (5.77) to

← replace(S−I , E−In ,S ′−In) (5.78)

with AC1-unifier ∅. We can apply induction hypothesis to (5.74) and (5.78) by assuming

that S−I .
= S−In for (5.78) to learn that there is an SLDENF-resolution proof of

← replace(S−In , E−In ,S ′−In) in AFCRQ. Combining this derivation with either the ones

starting from (5.71) to (5.74) or the ones starting from (5.75) to (5.78), we may conclude

that there is an SLDENF-resolution proof of ← replace(S−I , E−I ,S ′−I) in AFCRQ. �

Proposition 5.18. If there is an SLDENF-resolution proof of← replace(S−I , E−I ,S ′−I)
in AFCRQ then a theory action with ground effects E transforms S into state S ′.

Proof. The proposition is an immediate consequence of the following claim.

If there is an SLDENF-resolution proof of ← replace(S−I , E−I ,S ′−I) in

AFCRQ with n subgoals of replace then a theory action with ground effects

E transforms state S into state S ′.

Chapter 5. Advanced Planning ProblemsR 92

The claim is proven by induction on the number of subgoals of replace in the SLDENF-

resolution proof.

I.B To show: If there is an SLDENF-resolution proof of ← replace(S−I , E−I ,S ′−I) in

AFCRQ with only one subgoal of replace then a theory action with ground effects E
transforms state S into state S ′.
If subgoal replace only appears once then the atom occurring in

← replace(S−I , E−I ,S ′−I)

can only be AC1-unified with a new variant

replace(S, 1, S)

of (5.5) with an AC1-unifier of the form

σ = {S 7→ S−I}

yielding the empty clause. This happens only if E .
= ∅̇ and S .

= S ′. Hence, the theory

action with ground effect ∅̇ transforms state S into S.

I.H If there is an SLDENF-resolution proof of ← replace(S−In , E−In ,S ′−In) in AFCRQ
with n subgoals of replace then a theory action with ground effects En transforms state

Sn into state S ′n.

I.C If there is an SLDENF-resolution proof of ← replace(S−I , E−I ,S ′−I) in AFCRQ
with n + 1 subgoals of replace then a theory action with ground effects E transforms

state S into state S ′.
I.S Suppose there is an SLDENF-resolution proof of

← replace(S−I , E−I ,S ′−I) (5.79)

with n + 1 subgoals of replace. Then, the atom occurring in (5.79) can only be AC1-

unified with either the head of a new variant

replace(real(R, V) ◦ S, real(R, V l) ◦ E, real(R, V vl) ◦N)← val(V l, V vl)

∧ replace(S,E,N)

of (5.7) or the head of a new variant

replace(S, real(R, V) ◦ E, real(R, V l) ◦N)← ¬member(real(R, V), S) ∧ val(V, V l)
∧ replace(S,E,N)

Chapter 5. Advanced Planning ProblemsR 93

of (5.6). If the former is the case then the successful derivation yields

← val(vl, vvl) ∧ replace(S−In , E−In ,S ′−In) (5.80)

with AC1-unifier

σ = {R 7→ r, V 7→ v, S 7→ S−In , V l 7→ vl, E 7→ E−In , V vl 7→ vvl,N 7→ S ′−In }

where S−I ≈AC1 real(r, v)◦S−In , E−I ≈AC1 real(r, vl)◦E−In and S ′−I ≈AC1 real(r, vvl)◦
S ′−In . The first atom occurring in (5.80) and the fact

val(vl, vvl)

in Ereal are AC1-unifiable with AC1-unifier ∅. The successful SLDENF-derivation yields

← replace(S−In , E−In ,S ′−In) (5.81)

If the latter is the case then the successful derivation yields

← ¬member(real(r, v),S−I) ∧ val(v, vl) ∧ replace(S−I , E−In ,S ′−In) (5.82)

with AC1-unifier

σ′ = {R 7→ r, V 7→ v, S 7→ S−I , E 7→ E−In , V l 7→ vl,N 7→ S ′−In }

where E−I ≈AC1 real(r, v)◦E−In and S ′−I ≈AC1 real(r, vl)◦S ′−In . There is an SLDENF-

derivation from (5.82) to

← val(v, vl) ∧ replace(S−I , E−In ,S ′−In). (5.83)

The reason is that there is no successful SLDENF-resolution proof of member(real(r, v),

S−I). there must exist an SLDENF-derivation between the first atom occurring in (5.83)

and the fact

val(v, vl)

in Ereal yielding

← replace(S−I , E−In ,S ′−In) (5.84)

with AC1-unifier ∅.

Based on the definition of application of a theory action, the real value v possessed by r

in S must be replaced by eval(vl) iff r(vl) is in E . The SLDENF-derivations from (5.79)

Chapter 5. Advanced Planning ProblemsR 94

to (5.81) show that the real-valued fluent r appears both in S and E . The real value

v possessed by r in S is replaced by the arithmetic evaluation of vl which is vvl in S ′.
By applying induction hypothesis on (5.81) we learn that a theory action with ground

effects En transforms state Sn into state S ′n. Since S−I ≈AC1 real(r, v) ◦ S−In , E−I ≈AC1

real(r, vl) ◦ E−In and S ′−I ≈AC1 real(r, vvl) ◦ S ′−In , we conclude that the theory action

with ground effects E transforms state S into state S ′.

On the other hand, if the real-valued fluent r does not appear in S then r(v) in E
is added into S. The SLDENF-derivations from (5.79) to (5.82) to (5.84) show that

the real-valued fluent r possessed by E does not appear in S. As the result, the real-

valued fluent r is added to S. By applying induction hypothesis on (5.84) we learn

that a theory action with ground effects En transforms state Sn into state S ′n. Since

S−I ≈AC1 S−In , E−I ≈AC1 real(r, vl)◦E−In and S ′−I ≈AC1 real(r, vvl)◦S ′−In , we conclude

that the theory action with ground effects E transforms state S into state S ′. �

Lemma 5.19. State S fulfils preconditions R iff there is an SLDENF-resolution proof

of ← fulfil(S−I ,R−I)

Proof. This lemma is proven by Proposition 5.20 and 5.21.

Proposition 5.20. If state S fulfils preconditions R then there is an SLDENF-resolution

proof of ← fulfil(S−I ,R−I).

Proof. This proposition is proven on the number of elements of R.

I.B To show: If state S fulfils preconditions ∅̇ then there is an SLDENF-resolution proof

of ← fulfil(S−I , 1).

If the preconditions are an empty multiset, i.e, R .
= ∅̇, then the following conditions

• R ⊆̇ S;

• ∀c(r) ∈1 R ∃c(r′) ∈1 S (r′ ≥ r)

are satisfied trivially. Let

σ = {S 7→ S−I}

be a substitution. σ is the AC1-unifier between the atom occurring in

← fulfil(S−I , 1) (5.85)

and a new variant

fulfil(S, 1)

of (5.1). Hence, there is an SLDENF-resolution proof of (5.85) to the empty clause.

Chapter 5. Advanced Planning ProblemsR 95

I.H If state Sn fulfils preconditions Rn then there is an SLDENF-resolution proof of

← fulfil(S−In ,R−In).

I.C To show: If state S fulfils preconditions R then there is an SLDENF-resolution

proof of ← fulfil(S−I ,R−I).
I.S Suppose state S fulfils preconditions R. Preconditions consist of simple fluents and

continuous fluents. Hence, we can split R into Rs for all simple fluents and Rc for all

real-valued fluents appearing in R. It means that the following conditions

• Rs ⊆̇ S;

• ∀c(r) ∈1 Rc ∃c(r′) ∈1 S (r′ ≥ r)

are satisfied. Let r be a fluent in R, then there are two possibilities. The first one is

that p is a simple fluent and it belongs to Rs. Hence, p satisfies {̇p}̇ ⊆̇ S. Let

σ = {P 7→ p, S 7→ (S\̇{̇p}̇)−I , P r 7→ (R\̇{̇p}̇)−I}

be a substitution. σ is the AC1-unifier between the atom occurring in

← fulfil(S−I ,R−I) (5.86)

and the head of a new variant

fulfil(P ◦ S, P ◦ Pr)← fulfil(S, Pr)

of (5.2). Hence, there is an SLDENF-derivation of (5.86) yielding

← fulfil((S\̇{̇p}̇)−I , (R\̇{̇p}̇)−I) (5.87)

The second one is that p is a ground real-valued fluent of the form r(v′) and it belongs

to Rc. Hence, r(v′) satisfies r(v′) ∈1 Rc ∃r(v) ∈1 S (eval(v) ≥ eval(v′)). Let

σ′ = {R 7→ r, V 7→ v′, S 7→ (S\̇{̇c(o′)}̇)−I , V l 7→ v, P 7→ (R\̇{̇c(o)}̇)−I}

be a substitution. σ is the AC1-unifier between the atom occurring in (5.86) and the

head of a new variant

fulfil(real(R, V) ◦ S, real(R, V l) ◦ P)← val(V, V v) ∧ val(V l, V vl)
∧V v ≥ V vl ∧ fulfil(S, P)

Chapter 5. Advanced Planning ProblemsR 96

of (5.3). Hence, there is an SLDENF-derivation of (5.86) yielding

← val(v, V v) ∧ val(v′, V vl) ∧ V v ≥ V vl ∧ fulfil((S\̇{̇p}̇)−I , (R\̇{̇p}̇)−I) (5.88)

The arithmetic evaluation on v provides a real value. Let assume eval(v) is vv. there

must exist the corresponding fact

val(v, vv)

in Ereal which is AC1-unifiable with the first atom occurring in (5.88) with AC1-unifier

{V v 7→ vv}.

Hence, there is an SLDENF-derivation from (5.88) to

← val(v′, V vl) ∧ vv ≥ V vl ∧ fulfil((S\̇{̇p}̇)−I , (R\̇{̇p}̇)−I). (5.89)

The arithmetic evaluation on v′ provides a real value. Let assume eval(v′) is vvl. there

must exist the corresponding fact

val(v′, vvl)

in Ereal which is AC1-unifiable with the first atom occurring in (5.89) with AC1-unifier

{V vl 7→ vvl}.

Hence, there is an SLDENF-derivation from (5.89) to

← vv ≥ vvl ∧ fulfil((S\̇{̇p}̇)−I , (R\̇{̇p}̇)−I). (5.90)

Because of the fact (eval(v) ≥ eval(v′)), there must exist the corresponding fact

vv ≥ vvl

in Ereal which is AC1-unifiable with the first atom occurring in (5.90) with AC1-unifier

∅. Hence, there is an SLDENF-derivation from (5.90) to (5.87).

We can apply the induction hypothesis by assigning Rn
.
= R\̇{̇r}̇ and Sn

.
= S\̇{̇r}̇ and

dropping r since it is already processed. We learn that there is an SLDENF-resolution

proof of (5.87) with a computed answer substitution ∅. Combining either SLDENF-

derivation of (5.86) or SLDENF-derivations of (5.86) with the SLDENF-derivation of

(5.87), we obtain that there is an SLDENF-resolution proof of (5.86). �

Proposition 5.21. If there is an SLDENF-resolution proof of ← fulfil(S−I ,R−I) then

state S fulfils preconditions R.

Chapter 5. Advanced Planning ProblemsR 97

Proof. The proposition is an immediate consequence of the following claim.

If there is an SLDENF-resolution proof of ← fulfil(S−I ,R−I) with n subgoals

of fulfil then state S fulfils preconditions R.

The claim is proven on the number of subgoals of fulfil in the SLDENF-resolution proof

of ← fulfil(S−I ,R−I).
I.B To show: If there is an SLDENF-resolution proof of ← fulfil(S−I ,R−I) with one

subgoal of fulfil then state S fulfils preconditions R.

If there is only one subgoal for fulfil then the atom occurring in

← fulfil(S−I ,R−I) (5.91)

can only be AC1-unified with a new variant

fulfil(S, 1)

of (5.1) with AC1-unifier

{S 7→ S−I}.

From this derivation, we conclude R .
= ∅̇. Hence, state S fulfils preconditions ∅̇.

I.H If there is an SLDENF-resolution proof of ← fulfil(S−In ,R−In) with n subgoals of

fulfil then state Sn fulfils preconditions R.

I.C To show: If there is an SLDENF-resolution proof of ← fulfil(S−I ,R−I) with n+ 1

subgoals of fulfil then state S fulfils preconditions R.

I.S Assume that there is an SLDENF-resolution proof of ← fulfil(S−I ,R−I) with n+ 1

subgoals of fulfil . Then there is an SLDENF-derivation of

← fulfil(S−I ,R−I) (5.92)

leading either to

← fulfil(S−In ,R−In) (5.93)

with AC1-unifier

{P 7→ p, S 7→ S−In , P r 7→ R−In }

between the atom occurring in (5.92) and the head of a new variant

fulfil(P ◦ S, P ◦ Pr)← fulfil(S, Pr)

of (5.2) where S−I ≈AC1 p ◦ S−In and R−I ≈AC1 p ◦ R−In or to

← val(v, V v) ∧ val(vl, V vl) ∧ V v ≥ V vl ∧ qualified(S−In ,R−In) (5.94)

Chapter 5. Advanced Planning ProblemsR 98

with AC1-unifier

{R 7→ r, V 7→ v, S 7→ S−In , V l 7→ vl, P 7→ R−In }

between the atom occurring in (5.92) and the head of a new variant

fulfil(real(R, V) ◦ S, real(R, V l) ◦ P)← val(V, V v) ∧ val(V l, V vl)
∧V v ≥ V vl ∧ fulfil(S, P)

of (5.3) where S−I ≈AC1 real(r, v) ◦ S−In and R−I ≈AC1 real(r, vl) ◦ R−In . If the latter

is the case then there must exist an SLDENF-derivation of (5.94) yielding

← val(vl, V vl) ∧ vv ≥ V vl ∧ qualified(S−In ,R−In) (5.95)

with AC1-unifier

{V v 7→ vv}

between the first atom occurring in(5.94) and the fact

val(v, vv)

in Ereal. there must exist another SLDENF-derivation of (5.95) yielding

← vv ≥ vvl ∧ qualified(S−In ,R−In) (5.96)

with AC1-unifier

{V vl 7→ vvl}

between the first atom occurring in (5.95) and the fact

val(vl, vvl)

in Ereal. There is another SLDENF-derivation of (5.96) yielding (5.93) with AC1-unifier

∅ between the first atom occurring in (5.96) and the fact

vv ≥ vvl

in Ereal.

For preconditions R to be satisfied by state S, then the following conditions

• Rs ⊆̇ S;

• ∀c(r) ∈1 Rc ∃c(r′) ∈1 S (r′ ≥ r)

Chapter 5. Advanced Planning ProblemsR 99

must be met where Rs contains all simple fluents in R and Rc contains all ground

continuous fluents in R.

The SLDENF-derivations of (5.92) suggest that a fluent term p is part of S−I and R−I .
Because p is part of them, then p is constructed from simple fluents and/or ground

real-valued fluents. If p is constructed from simple fluents then pI ⊆̇ S is satisfied. If p

is constructed from ground real-valued fluents then ∀r(v) ∈1 p ∃r(v′) ∈1 S (v′ = v) is

satisfied. Since p satisfies both conditions for preconditions to be met in any ways then

we can drop p from R and S. We just need to verify whether Rn are satisfied by Sn.

The SLDENF-derivations of (5.92) suggest that there exists a fluent term real(r, v) as

part of the fluent term S−I and a fluent term real(r, vl) as part of the fluent term R−I .
Furthermore, the derivations tell that vv ≥ vvl is satisfied where vv is the evaluation

value of v and vvl is the evaluation value of vl. It means that the real-valued fluent r(v)

in S satisfies the real-valued fluent r(vl) in R. Therefore, we can drop real(r, v) from

R and real(r, vl) from S and work only with Sn and Rn.

Since the SLDENF-derivations of (5.93) only contain n subgoals of fulfil , then we can

apply induction hypothesis and learn state Sn fulfils preconditions Rn. Since R is

constructed by Rn and either p or r(vl) and S is constructed by Sn and either p or r(v)

then we can safely conclude that state S fulfils preconditions R. �

The following lemma shows that a state which is not closed can be transformed into

another state by applying a theory action using SLDENF-resolution proof.

Lemma 5.22. A state S is not a closed state iff there is an SLDENF-resolution proof

of ← nonclosed(S−I).

Proof. This lemma is proven by Proposition 5.23 and 5.24.

Proposition 5.23. If a state S is not a closed state then there is an SLDENF-resolution

proof of ← nonclosed(S−I).

Proof. Assume that a state S is not a closed state. Then there must exist a theory

action a which is applicable in S. Lets assume that the theory action a is of the form

a : C R,O==⇒ E .

Hence, we can find the corresponding clauses

taction(C−I , a, E−I) (5.97)

Chapter 5. Advanced Planning ProblemsR 100

and

precon(R−I , a) (5.98)

in AFCRQ. Since a is applicable in S, it means that there is a substitution σ such that

Cσ ⊆̇ S. Furthermore, R ⊆̇ S and ∀o ∈n O (o ∈m S → m > n) are satisfied as well. We

can apply the substitution σ to (5.97) to obtain the corresponding ground clause

taction(C−Iσ, a, E−Iσ) (5.99)

of (5.97). If this theory action is applied then the action transforms the state S into

another state S ′′, i.e.,

S a−→ S ′′

where S 6 .= S ′′. Let

σ′ = {C 7→ C′, S 7→ S ′}

be a substitution. σ′ is the AC1-unifier between the atom occurring in

← nonclosed(S−I) (5.100)

and the head of a new variant

nonclosed(C ◦ S)← taction(C,A,E) ∧ precon(P,A)

∧ fulfil(C ◦ S, P) ∧ ¬hinder(C ◦ S,A)

∧ replace(C ◦ S,E,N) ∧ C ◦ S 6≈ N

of (5.8) where S .
= C′ ∪̇ S ′. Then there is an SLDENF-derivation from (5.100) to

← taction(C′−I , A,E) ∧ precon(P,A) ∧ fulfil(C′−I ◦ S ′−I , P)

∧ ¬hinder(C′−I ◦ S ′−I , A) ∧ replace(C′−I ◦ S ′−I , E,N) ∧ C′−I ◦ S ′−I 6≈ N
(5.101)

using the variant of (5.8) and the AC1-unifier σ′. Let

σ′′ = {E 7→ E−Iσ,A 7→ a}

be a substitution. σ′′ is the AC1-unifier between the first atom occurring in (5.101) and

(5.99). Hence, there is an SLDENF-derivation from (5.101) to

← precon(P, a) ∧ fulfil(C′−I ◦ S ′−I , P) ∧ ¬hinder(C′−I ◦ S ′−I , a)

∧ replace(C′−I ◦ S ′−I , E−Iσ,N) ∧ C′−I ◦ S ′−I 6≈ N
(5.102)

Chapter 5. Advanced Planning ProblemsR 101

using (5.99) and the AC1-unifier σ′′. There is an SLDENF-derivation from (5.102) to

← fulfil(C′−I ◦ S ′−I ,R−I) ∧ ¬hinder(C′−I ◦ S ′−I , a)

∧ replace(C′−I ◦ S ′−I , E−Iσ,N) ∧ C′−I ◦ S ′−I 6≈ N
(5.103)

between the first atom occurring in (5.102) and (5.98) with an AC1-unifier of the form

{P 7→ R−I}.

As state S fulfils preconditions R, we can apply Lemma 5.19 and learn that there is an

SLDENF-resolution proof of ← fulfil(C′−I ◦ S ′−I ,R−I) with an answer substitution ∅.
Hence, we can find the corresponding derivations from (5.103) to

← ¬hinder(C′−I ◦ S ′−I , a) ∧ replace(C′−I ◦ S ′−I , E−Iσ,N) ∧ C′−I ◦ S ′−I 6≈ N (5.104)

As ∀o ∈n O (o ∈m S → m > n) is satisfied, we can apply Lemma 5.15 and learn that

there is no SLDENF-resolution proof of ← hinder(C′−I ◦ S ′−I , a). We can construct a

finitely failed SLDENF-tree of ← hinder(C′−I ◦ S ′−I , a). Hence, there is an SLDENF-

derivation from (5.104) to

← replace(C′−I ◦ S ′−I , E−Iσ,N) ∧ C′−I ◦ S ′−I 6≈ N (5.105)

We can apply Lemma 5.16 to S, Eσ and S ′′ and learn that there is an SLDENF-resolution

proof of ← replace(C′−I ◦ S ′−I , E−Iσ,N) with an answer substitution {N 7→ S ′′−I}.
Hence, we can find the corresponding derivations from (5.105) to

← C′−I ◦ S ′−I 6≈ S ′′−I (5.106)

where variable N is replaced by S ′′−I in the process. Because the new state S ′′ is not

equal to state S, we can conclude that C′−I ◦ S ′−I 6≈AC1 S ′′−I . Hence, we can construct

a finitely failed SLDENF-tree of← C′−I ◦S ′−I ≈ S ′′−I . Therefore, there is an SLDENF-

derivation from (5.106) to the empty clause. �

Proposition 5.24. If there is an SLDENF-resolution proof of ← nonclosed(S−I) then

a state S is not a closed state.

Proof. Assume that there is an SLDENF-resolution proof of

← nonclosed(S−I) (5.107)

Chapter 5. Advanced Planning ProblemsR 102

Hence, the atom occurring in (5.107) can only be AC1-unified with the head of a new

variant
nonclosed(C ◦ S)← taction(C,A,E) ∧ precon(P,A)

∧ fulfil(C ◦ S, P) ∧ ¬hinder(C ◦ S,A)

∧ replace(C ◦ S,E,N) ∧ C ◦ S 6≈ N

of (5.8) with AC1-unifier

{C 7→ c, S 7→ s}

where S−I ≈AC1 c ◦ s. Then the successful derivation of (5.107) yields

← taction(c, A,E) ∧ precon(P,A) ∧ fulfil(c ◦ s, P)

∧ ¬hinder(c ◦ s,A) ∧ replace(c ◦ s, E,N) ∧ c ◦ s 6≈ N
(5.108)

There must exist an AC1-unifier σ between the first atom occurring in (5.108) and a

new variant of the fact

taction(c′, a, e′) (5.109)

such that c ≈AC1 c
′σ, variable A maps to a and Eσ ≈AC1 e

′σ. The successful derivation

of (5.108) yields

← precon(P, a) ∧ fulfil(c ◦ s, P)

∧ ¬hinder(c ◦ s, a) ∧ replace(c ◦ s, e′σ,N) ∧ c ◦ s 6≈ N
(5.110)

There must exist an AC1-unifier

σ′ = {P 7→ p}

between the first atom occurring in (5.110) and the fact

precon(p, a). (5.111)

The successful derivation of (5.110) yields

← fulfil(c ◦ s, p) ∧ ¬hinder(c ◦ s, a) ∧ replace(c ◦ s, e′σ,N) ∧ c ◦ s 6≈ N (5.112)

There must exist a series of derivations from (5.112) to

← ¬hinder(c ◦ s, a) ∧ replace(c ◦ s, e′σ,N) ∧ c ◦ s 6≈ N (5.113)

There is a derivation from (5.113) to

← replace(c ◦ s, e′σ,N) ∧ c ◦ s 6≈ N (5.114)

Chapter 5. Advanced Planning ProblemsR 103

Hence, there must exist a finitely failed SLDENF-tree of ← hinder(c ◦ s, a). There is a

series of derivations from (5.114) to

← c ◦ s 6≈ n (5.115)

where variable N is replaced by a ground fluent term n on the process. There is a

derivation from (5.115) to the empty clause. Therefore we can conclude that there is a

finitely failed SLDENF-tree of ← c ◦ s ≈ n.

From (5.109) and (5.111), we may conclude that there is theory action a in the form of

a : c′I
pI ,O
==⇒ e′I

The derivation from (5.108) to (5.110) shows that there exists substitution σ such that

(c′σ)I ⊆̇ S. Because there is a series of derivations from (5.112) to (5.113), there must

exist a successful SLDENF-resolution proof of ← fulfil(c ◦ s, p). We can apply Lemma

5.19 and learn that preconditions pI are fulfilled by S. There is a finitely failed SLDENF-

tree of← hinder(c◦ s, a). We can apply Lemma 5.15 and learn that there is no obstacle

from O which can hinder the theory action a from being applied in S. Hence, we may

conclude that a is applicable in S.

Because there is a series of derivations from (5.114) to (5.115) where variable N is

replaced by a ground fluent term n, there must exist a successful SLDENF-resolution

proof of ← replace(c ◦ s, e′σ,N) with an answer substitution {N 7→ n}. We can apply

Lemma 5.16 and learn that the application of a with ground effects e′σI in S transforms

S into a new state nI . There is a finitely failed SLDENF-tree of ← c ◦ s 6≈ n. We can

conclude that c ◦ s 6≈AC1 n is true and so is S 6 .= nI . Therefore, state S is not closed. �

The following lemma shows that a sequence of theory actions applied to a state to obtain

a closed state can be generated by an SLDENF-resolution proof.

Lemma 5.25. p is a sequence of theory actions transforming a state S into a closed

state S ↓ iff p can be generated by an SLDENF-resolution proof of

← reapplicable(S−I , P,S ↓−I).

Proof. This lemma is proven by Proposition 5.26 and 5.27.

Proposition 5.26. If p is a sequence of theory actions transforming a state S into a

closed state S ↓ then p can be generated by an SLDENF-resolution proof of

← reapplicable(S−I , P,S ↓−I).

Proof. This proposition is proven on the length of the sequence p.

I.B To show: If [] is a sequence of theory actions transforming a state S into a closed

Chapter 5. Advanced Planning ProblemsR 104

state S ↓ then [] can be generated by an SLDENF-resolution proof of

← reapplicable(S−I , P,S ↓−I).
Assume that [] is a sequence of theory actions transforming a state S into a closed state

S ↓. It means that S .
= S ↓. For each a ∈ Areal(S) does not transform S into a different

state. Let

σ = {S 7→ S−I , P 7→ []}

be a substitution. σ is the AC1-unifier between the head of a new variant

reapplicable(S, [], S)← ¬nonclosed(S)

of (5.9) and

← reapplicable(S−I , P,S−I) (5.116)

The successful derivation of (5.116) yields

← ¬nonclosed(S−I) (5.117)

We can apply Lemma 5.22 from the fact that S is a closed state to obtain that there

is no successful SLDENF-resolution proof of ← nonclosed(S−I). Hence, there is an

SLDENF-derivation from (5.117) to the empty clause. Therefore [] is generated by an

SLDENF-resolution proof of (5.116).

I.H If [aj , . . . , a1] is a sequence of theory actions transforming a state Sj into a closed

state Sj ↓ then [aj , . . . , a1] can be generated by an SLDENF-resolution proof of

← reapplicable(S−Ij , Pj ,Sj ↓−I).
I.C To show: If [aj+1, . . . , a1] is a sequence of theory actions transforming a state S into

a closed state S ↓ then [aj+1, . . . , a1] can be generated by an SLDENF-resolution proof

of ← reapplicable(S−I , P,S ↓−I).
I.S Suppose [aj+1, . . . , a1] is a sequence of theory actions transforming a state S into a

closed state S ↓. aj+1 is the first theory action applied to S. Lets assume that aj+1 is

of the form

aj+1 : C R,O==⇒ E

Hence, there are corresponding clauses

taction(C−I , aj+1, E−I) (5.118)

and

precon(R−I , aj+1) (5.119)

in AFCRQ. Since aj+1 is applicable in S, it means that there is a substitution σ such

Chapter 5. Advanced Planning ProblemsR 105

that Cσ ⊆̇ S. Furthermore, R ⊆̇ S and ∀o ∈n O (o ∈m S → m > n) are satisfied as well.

We can apply the substitution σ to (5.118) to obtain the corresponding ground clause

taction(C−Iσ, aj+1, E−Iσ) (5.120)

of (5.118). The theory action aj+1 transforms the state S into another state S ′′, i.e.,

S
aj+1−−−→ S ′′

where S 6 .= S ′′. Let

σ′ = {C 7→ C′, S 7→ S ′, N 7→ S ↓−I , P 7→ [A | T]}

be a substitution. σ′ is the AC1-unifier between the atom occurring in

← reapplicable(S−I , P,S ↓−I) (5.121)

and the head of a new variant

reapplicable(C ◦ S, [A | T], N)← taction(C,A,E) ∧ precon(P,A)

∧ fulfil(C ◦ S, P) ∧ ¬hinder(C ◦ S,A)

∧ replace(C ◦ S,E,Z) ∧ C ◦ S 6≈ Z
∧ reapplicable(Z, T,N)

of (5.10) where S .
= C′ ∪̇ S ′. Then there is an SLDENF-derivation from (5.121) to

← taction(C′−I , A,E) ∧ precon(P,A) ∧ fulfil(C′−I ◦ S ′−I , P)

∧ ¬hinder(C′−I ◦ S ′−I , A) ∧ replace(C′−I ◦ S ′−I , E, Z)

∧ C′−I ◦ S ′−I 6≈ Z ∧ reapplicable(Z, T,S ↓−I)
(5.122)

using the variant of (5.8) and the AC1-unifier σ′. Let

σ′′ = {E 7→ E−Iσ,A 7→ aj+1}

be a substitution. σ′′ is the AC1-unifier between the first atom occurring in (5.122) and

(5.120). Hence, there is an SLDENF-derivation from (5.122) to

← precon(P, aj+1) ∧ fulfil(C′−I ◦ S ′−I , P) ∧ ¬hinder(C′−I ◦ S ′−I , aj+1)

∧ replace(C′−I ◦ S ′−I , E−Iσ, Z) ∧ C′−I ◦ S ′−I 6≈ Z
∧ reapplicable(Z, T,S ↓−I)

(5.123)

Chapter 5. Advanced Planning ProblemsR 106

using (5.120) and the AC1-unifier σ′′. There is an SLDENF-derivation from (5.123) to

← fulfil(C′−I ◦ S ′−I ,R−I) ∧ ¬hinder(C′−I ◦ S ′−I , aj+1)

∧ replace(C′−I ◦ S ′−I , E−Iσ, Z) ∧ C′−I ◦ S ′−I 6≈ Z
∧ reapplicable(Z, T,S ↓−I)

(5.124)

between the first atom occurring in (5.123) and (5.119) with an AC1-unifier of the form

{P 7→ R−I}.

As state S fulfils preconditions R, we can apply Lemma 5.19 and learn that there is an

SLDENF-resolution proof of ← fulfil(C′−I ◦ S ′−I ,R−I) with an answer substitution ∅.
Hence, we can find the corresponding derivations from (5.124) to

← ¬hinder(C′−I ◦ S ′−I , aj+1) ∧ replace(C′−I ◦ S ′−I , E−Iσ, Z)

∧ C′−I ◦ S ′−I 6≈ Z ∧ reapplicable(Z, T,S ↓−I)
(5.125)

As ∀o ∈n O (o ∈m S → m > n) is satisfied, we can apply Lemma 5.15 and learn that

there is no SLDENF-resolution proof of← hinder(C′−I ◦S ′−I , aj+1). We can construct a

finitely failed SLDENF-tree of← hinder(C′−I ◦S ′−I , aj+1). Hence, there is an SLDENF-

derivation from (5.125) to

← replace(C′−I ◦ S ′−I , E−Iσ, Z) ∧ C′−I ◦ S ′−I 6≈ Z
∧ reapplicable(Z, T,S ↓−I)

(5.126)

We can apply Lemma 5.16 to S, Eσ and S ′′ and learn that there is an SLDENF-resolution

proof of ← replace(C′−I ◦ S ′−I , E−Iσ, Z) with an answer substitution

{Z 7→ S ′′−I}.

Hence, we can find the corresponding derivations from (5.126) to

← C′−I ◦ S ′−I 6≈ S ′′−I ∧ reapplicable(S ′−I , T,S ↓−I) (5.127)

where variable Z is replaced by S ′′−I in the process. Because the new state S ′′ is not

equal to state S, we can conclude that C′−I ◦ S ′−I 6≈AC1 S ′′−I . Hence, we can construct

a finitely failed SLDENF-tree of← C′−I ◦S ′−I ≈ S ′′−I . Therefore, there is an SLDENF-

derivation from (5.127) to

← reapplicable(S ′′−I , T,S ↓−I) (5.128)

Because this proof contains [aj , . . . , a1], we may conclude that S ↓−I= Sj ↓−I and S ′′−I =

Chapter 5. Advanced Planning ProblemsR 107

S−Ij . We can apply the induction hypothesis and learn that there is an SLDENF-

resolution proof of (5.128) with an answer substitution

{T 7→ [aj , . . . , a1]}.

Combining this refutation with derivations from (5.121) to (5.128) yields an SLDENF-

derivation of (5.121) with an answer substitution {P 7→ [aj+1, . . . , a1]}. Hence a sequence

[aj+1, . . . , a1] of theory actions is generated. �

As we mentioned earlier in Subsection 5.1, we only count the number of SLDENF-

refutation steps involving subgoals causes and reapplicable. In the following proposition,

the length of an SLDENF-resolution is the number of SLDENF-refutation steps involving

subgoal reapplicable.

Proposition 5.27. If p can be generated by an SLDENF-resolution proof of

← reapplicable(S−I , P,S ↓−I) then p is a sequence of theory actions transforming a

state S into a closed state S ↓.

Proof. The proposition is proven by induction on the length j of the SLDENF-resolution

proof.

I.B To show: If p can be generated by an SLDENF-resolution proof of

← reapplicable(S−I , P,S ↓−I) with length 1 then p is a sequence of theory actions

transforming a state S into a closed state S ↓.
Assume that there is an SLDENF-resolution proof of← reapplicable(S−I , P,S ↓−I) with

length 1. Hence, the atom occurring in

← reapplicable(S−I , P,S ↓−I) (5.129)

can only be AC1-unified with the head of a new variant

reapplicable(S, [], S)← ¬nonclosed(S)

of (5.9) only if S .
= S ↓. The AC1-unifier is of the form

σ = {S 7→ S−I , P 7→ []}.

The derivation of (5.129) yields

← ¬nonclosed(S−I) (5.130)

there must exist a finitely failed SLDENF-tree of← nonclosed(S−I). Hence, there is an

SLDENF-derivation from (5.130) to the empty clause.

Chapter 5. Advanced Planning ProblemsR 108

We can apply Lemma 5.22 from the fact that there is no successful SLDENF-resolution

proof of ← nonclosed(S−I). We learn that S is a closed state. No theory action which

is applicable in S can bring S into a different state. Hence, [] is a sequence of theory

actions transforming a state S into a closed state S ↓.

I.H If pj can be generated by an SLDENF-resolution proof of

← reapplicable(S−Ij , Pj ,Sj ↓−I) with length j then pj is a sequence of theory actions

transforming a state Sj into a closed state Sj ↓.
I.C To show: If p can be generated by an SLDENF-resolution proof of

← reapplicable(S−I , P,S ↓−I) with length j + 1 then p is a sequence of theory actions

transforming a state S into a closed state S ↓.
I.S Suppose there is an SLDENF-resolution proof of

← reapplicable(S−I , P,S ↓−I) (5.131)

with length j + 1 and generating [aj , . . . , a1]. The first atom occurring in (5.131) can

only be AC1-unified with the head of a new variant

reapplicable(C ◦ S, [A | T], N)← taction(C,A,E) ∧ precon(P ′, A)

∧ fulfil(C ◦ S, P ′) ∧ ¬hinder(C ◦ S,A)

∧ replace(C ◦ S,E,Z) ∧ C ◦ S 6≈ Z
∧ reapplicable(Z, T,N)

of (5.10) with an AC1-unifier of the form

{C 7→ c, S 7→ s, P 7→ [A | T], N 7→ S ↓−I}

where S−I ≈AC1 c ◦ s. The successful derivation yields

← taction(c, A,E) ∧ precon(P ′, A) ∧ fulfil(c ◦ s, P ′) ∧ ¬hinder(c ◦ s,A)

∧ replace(c ◦ s, E, Z) ∧ c ◦ s 6≈ Z ∧ reapplicable(Z, T,S ↓−I)
(5.132)

there must exist a fact

taction(c′, aj , e
′) (5.133)

which can be AC1-unified with the first atom occurring in (5.132). Let σ be a substi-

tution such that c ≈AC1 c
′σ, Eσ ≈AC1 e

′σ and A 7→ aj . σ is the AC1-unifier between

the first atom occurring in (5.132) and (5.133). Hence, there is an SLDENF-derivation

from (5.132) to

← precon(P ′, aj) ∧ fulfil(c ◦ s, P ′) ∧ ¬hinder(c ◦ s, aj)
∧ replace(c ◦ s, e′σ, Z) ∧ c ◦ s 6≈ Z ∧ reapplicable(Z, T,S ↓−I)

(5.134)

Chapter 5. Advanced Planning ProblemsR 109

there must exist a fact

precon(p, aj) (5.135)

which can be AC1-unified with the first atom occurring in (5.134). Let

σ′ = {P ′ 7→ p}

be a substitution. σ′ is the AC1-unifier between the first atom occurring in (5.134) and

(5.135). Hence, there is an SLDENF-derivation from (5.134) to

← fulfil(c ◦ s, p) ∧ ¬hinder(c ◦ s, aj)
∧ replace(c ◦ s, e′σ, Z) ∧ c ◦ s 6≈ Z
∧ reapplicable(Z, T,S ↓−I)

(5.136)

There must exist an SLDENF-resolution proof of ← fulfil(c ◦ s, p) with an answer sub-

stitution ∅. Hence, we can find the corresponding SLDENF-derivations from (5.136)

to
← ¬hinder(c ◦ s, aj) ∧ replace(c ◦ s, e′σ, Z)

∧ c ◦ s 6≈ Z ∧ reapplicable(Z, T,S ↓−I)
(5.137)

There must exist a finitely failed SLDENF-tree of ← hinder(c ◦ s, aj). Hence, there is

an SLDENF-derivation from (5.137) to

← replace(c ◦ s, e′σ, Z) ∧ c ◦ s 6≈ Z
∧ reapplicable(Z, T,S ↓−I)

(5.138)

There must exist an SLDENF-resolution proof of← replace(c◦s, e′σ, Z) with an answer

substitution {Z 7→ z}. Hence, we can find the corresponding SLDENF-derivations from

(5.138) to

← c ◦ s 6≈ z ∧ reapplicable(z, T,S ↓−I) (5.139)

where variable Z is replaced by a ground fluent term z in the process. There must exist

a finitely failed SLDENF-tree of ← c ◦ s ≈ z. Hence, there is an SLDENF-derivation

from (5.139) to

← reapplicable(z, T,S ↓−I) (5.140)

From (5.133) and (5.135), we may conclude that there must exist a theory action aj of

the form

aj : c′I
pI ,O
==⇒ e′I

in Q. The derivation from (5.132) to (5.134) shows that there exists a substitution σ

such that c′σI ⊆̇ S. We can apply Lemma 5.19 because the existence of the SDLENF-

resolution proof of ← fulfil(c ◦ s, p). We learn that state S fulfils the preconditions pI .

Chapter 5. Advanced Planning ProblemsR 110

We can apply Lemma 5.15 because there is a finitely failed SLDENF-tree of

← hinder(c ◦ s, aj). We learn that there are obstacles at a state S to hinder the theory

action aj in Q. Hence, we may conclude that aj is applicable in S.

We can apply Lemma 5.16 because the existence of the SLDENF-resolution proof of

← replace(c ◦ s, e′σ, z). We learn that the application of aj to state S transforms state

S into a new state zI . There is a finitely failed SLDENF-tree of ← c ◦ s ≈ z. We may

conclude that c ◦ s 6≈AC1 z is true and so is S 6 .= zI .

We can apply (I.H) to (5.140) since the SLDENF-resolution proof only has length j.

We learn that [aj−1, . . . , a1] is a sequence of theory actions transforming state zI to a

closed state S ↓. Combining the transformation from S to zI by the theory action aj

and the result from (I.H), we conclude that [aj , . . . , a1] is a sequence of theory actions

transforming state S to a closed state S ↓. �

In the following theorem, we show that a solution for an acppR can be generated by an

SLDENF-resolution proof of AFCRQ.

Theorem 5.28. p is a solution for Q iff p is generated by an SLDENF-resolution proof

of AFCRQ.

Proof. The theorem is proven by Lemma 5.29 and 5.30.

Lemma 5.29. If p is a solution for Q then p is generated by an SLDENF-resolution

proof of AFCRQ.

Proof. We prove it by induction on length n of solution p.

I.B To show: If [] is a solution for Q then [] is generated by an SLDENF-resolution

proof of AFCRQ.

If [] is a solution for Q then it means I .
= G. There is no need to do any action. Let

σ = {S 7→ I−I , P 7→ []}

be a substitution. σ is the AC1-unifier for the atom occurring in

← causes(I−I , [],G−I) (5.141)

and the variant

causes(S, [], S)

of clause (3.2). Thus, there exists an SLDENF-derivation from (5.141) to the empty

clause generating the plan [].

Chapter 5. Advanced Planning ProblemsR 111

I.H If [aj , . . . , a1] is a solution for Qj = 〈Ij ,G,A,Areal〉 then [aj , . . . , a1] is generated

by an SLDENF-resolution proof of AFCRQ.

I.C To show: If [aj+1, . . . , a1] is a solution for Q then [aj+1, . . . , a1] is generated by an

SLDENF-resolution proof of AFCRQ.

I.S Suppose [aj+1, . . . , a1] is a solution for Q. aj+1 is the first concrete action taken and

is followed by a sequence [aj , . . . , an] of theory actions where 1 ≤ n ≤ j. Lets assume

aj+1 is of the form

aj+1 : C R,O==⇒ E

We can find the corresponding clauses

action(C−I , aj+1, E−I) (5.142)

and

precon(R−I , aj+1) (5.143)

in AFCRQ. Since aj+1 is applied to the initial state I, then the conditions C must be a

submultiset of I, the preconditions R are fulfilled by I, and there is not enough obstacle

in I to hinder the action aj+1 from being taken. The application of aj+1 leads to a new

state (I \̇ C) ∪̇ E , i.e.,

I
aj+1
−−−→ (I \̇ C) ∪̇ E

From state (I \̇ C) ∪̇ E , the sequence [aj , . . . , an] is applied leading to a closed state

((I \̇ C) ∪̇ E)↓, i.e.,

(I \̇ C) ∪̇ E
[aj ,...,an]−−−−−→ ((I \̇ C) ∪̇ E)↓ (5.144)

From the closed state ((I \̇ C) ∪̇ E)↓, a sequence [an−1, . . . , a1] of actions is applied to

transform it to the goal state G, i.e.,

((I \̇ C) ∪̇ E)↓ [an−1,...,a1]−−−−−−−→ G (5.145)

With function append, we can combine list [aj+1 | [aj , . . . , an]] and [an+1, . . . , a1] to

obtain the plan [aj+1, . . . , a1]. Let

σ = {I 7→ I−I , G 7→ G−I , P 7→ [A | L]}

σ is the AC1-unifier between the first atom occurring in

← causes(I−I , P,G−I) (5.146)

Chapter 5. Advanced Planning ProblemsR 112

and the head of a new variant

causes(I, [A | L], G)← applicable(I, A, S) ∧ append(T, P ′′, L)

∧ reapplicable(S, T,N) ∧ causes(N,P ′′, G)

of clause (5.13). Hence, there is an SLDENF-derivation from (5.146) to

← applicable(I−I , A, S) ∧ append(T, P ′′, L)

∧ reapplicable(S, T,N) ∧ causes(N,P ′′,G−I)
(5.147)

using the new variant of clause (5.13) and the AC1-unifier σ. Let I be equal to I ′ ∪̇ C
and

σ′ = {C 7→ C−I , S′ 7→ I ′−I , S 7→ E ◦ I ′−I}

be a substitution. σ′ is the AC1-unifier between the head of a new variant

applicable(C ◦ S′, A,E ◦ S′)← action(C,A,E) ∧ precon(P ′, A)

∧ fulfil(C ◦ S′, P ′) ∧ ¬hinder(C ◦ S′, A)

of clause (5.12) and the first atom occurring in (5.147). The successful derivation yields

← action(C−I , A,E) ∧ precon(P ′, A) ∧ fulfil(C−I ◦ I ′−I , P ′)
∧ ¬hinder(C−I ◦ I ′−I , A) ∧ append(T, P ′′, L)

∧ reapplicable(E ◦ I ′−I , T,N) ∧ causes(N,P ′′,G−I)
(5.148)

There is a successful derivation from (5.148) to

← precon(P ′, aj+1) ∧ fulfil(C−I ◦ I ′−I , P ′)
∧ ¬hinder(C−I ◦ I ′−I , aj+1) ∧ append(T, P ′′, L)

∧ reapplicable(E−I ◦ I ′−I , T,N) ∧ causes(N,P ′′,G−I)
(5.149)

between the first atom occurring in (5.149) and (5.142) with an AC1-unifier of the form

{E 7→ E−I , A 7→ aj+1}

There is a successful derivation from (5.149) to

← fulfil(C−I ◦ I ′−I ,R−I)
∧ ¬hinder(C−I ◦ I ′−I , aj+1) ∧ append(T, P ′′, L)

∧ reapplicable(E−I ◦ I ′−I , T,N) ∧ causes(N,P ′′,G−I)
(5.150)

between the first atom occurring in (5.149) and (5.143) with an AC1-unifier of the form

{P ′ 7→ R−I}

Chapter 5. Advanced Planning ProblemsR 113

We can apply Lemma 5.19 from the fact that S fulfils R and obtain that there is an

SLDENF-resolution proof of ← fulfil(C−I ◦ I ′−I ,R−I) with an answer substitution ∅.
Hence, there must exist the corresponding derivations from (5.150) to

← ¬hinder(C−I ◦ I ′−I , aj+1) ∧ append(T, P ′′, L)

∧ reapplicable(E−I ◦ I ′−I , T,N) ∧ causes(N,P ′′,G−I)
(5.151)

We can apply Lemma 5.15 from the fact that there is not enough obstacle in S to hinder

the action aj+1 from being taken. We learn that there is a finitely failed SLDENF-tree

of ← hinder(C−I ◦ I ′−I , aj+1). Hence, there is an SLDENF-derivation from (5.151) to

← append(T, P ′′, L) ∧ reapplicable(E−I ◦ I ′−I , T,N) ∧ causes(N,P ′′,G−I) (5.152)

From the fact that the function append used in Q combines list [aj+1 | [aj , . . . , an]]

and [an+1, . . . , a1] to obtain the plan [aj+1, . . . , a1], we can conclude that there is an

SLDENF-resolution proof of ← append(T, P ′′, L) with an answer substitution

σ′′ = {T 7→ [Aj , . . . , An], P ′′ 7→ [An−1, . . . , A1], L 7→ [Aj , . . . , A1]}

Hence, there must exist the corresponding SLDENF-derivations from (5.152) to

← reapplicable(E−I ◦ I ′−I , [Aj , . . . , An], N) ∧ causes(N, [An−1, . . . , A1],G−I) (5.153)

where variable T and P ′′ are replaced by [Aj , . . . , An] and [An−1, . . . , A1], respectively.

We can apply Lemma 5.25 from the fact shown in (5.144). We learn that there is an

SLDENF-resolution proof of← reapplicable(E−I ◦I ′−I , [Aj , . . . , An], N) with an answer

substitution

σ′′′ = {N 7→ ((I \̇ C) ∪̇ E)↓, Aj 7→ aj , . . . , An 7→ an}.

Hence, there must exist the corresponding SLDENF-derivations from (5.153) to

← causes(((I \̇ C) ∪̇ E)↓, [An−1, . . . , A1],G−I) (5.154)

where variable N is replaced by ((I \̇ C) ∪̇ E)↓ in the process.

We can apply (I.H) to (5.154) because the length of plan [an−1, . . . , a1] is smaller than

j and the goal marking in (I.H) is the same as in (5.154). We learn that there is an

SLDENF-resolution proof of (5.154) with an answer substitution

{An−1 7→ an−1, . . . , A1 7→ a1}.

Combining the derivations from (5.146) to (5.154) and the derivations of (5.154), we can

Chapter 5. Advanced Planning ProblemsR 114

conclude that there is an SLDENF-resolution proof of (5.146) with an answer substitu-

tion {P 7→ [aj+1, . . . , a1]}. �

Lemma 5.30. If p is generated by an SLDENF-resolution proof of AFCRQ then p is

a solution for Q.

Proof. The lemma is an immediate consequence of the following claim

If there is an SLDENF-resolution proof of ← causes(I−I , P,G−I) generating

plan p, then p is a solution for Q.

The claim is proven on the length j of the SLDENF-resolution proof.

I.B To show: If there is an SLDENF-resolution proof of ← causes(I−I , P,G−I) with

length 1 generating plan p, then p is a solution for Q.

If the length of the SLDENF-resolution proof is 1, then the atom occurring in

← causes(I−I , P,G−I) (5.155)

and a variant

causes(S, [], S)

of (3.2) must be AC1-unifiable and only if I .
= G with an AC1-unifier of the form

{S 7→ I−I , P 7→ []}.

The successful SLDENF-derivation yields the empty clause. Hence, the SLDENF-

resolution proof of (5.155) generates an empty plan. Since I .
= G, there is no need

to apply any action. Therefore, [] is a solution for Q.

I.B If there is an SLDENF-resolution proof of ← causes(I−Ij , Pj ,G−I) with length j

generating plan pj , then pj is a solution for Qj = 〈Ij ,G,A,Areal〉.
I.C To show: If there is an SLDENF-resolution proof of ← causes(I−I , P,G−I) with

length j + 1 generating plan p, then p is a solution for Q.

I.S Suppose there is an SLDENF-resolution proof of

← causes(I−I , P,G−I) (5.156)

with length j + 1 generating plan [ak, . . . , a1], 1 ≤ k ≤ j. The first atom occurring in

(5.156) can only be AC1-unified with the head of a new variant

causes(I, [A | L], G)← applicable(I, A, S) ∧ append(T, P ′, L)

∧ reapplicable(S, T,N) ∧ causes(N,P ′, G)

Chapter 5. Advanced Planning ProblemsR 115

of (5.13) with an AC1-unifier of the form

{I 7→ I−I , G 7→ G−I , P 7→ [A | L]}.

The successful derivation of (5.156) yields

← applicable(I−I , A, S) ∧ append(T, P ′, L)

∧ reapplicable(S, T,N) ∧ causes(N,P ′,G−I)
(5.157)

The first atom occurring in (5.157) can only be AC1-unified with the head of a new

variant

applicable(C ◦ S′, A,E ◦ S′)← action(C,A,E) ∧ precon(P ′′, A)

∧ fulfil(C ◦ S′, P ′′) ∧ ¬hinder(C ◦ S′, A)

of (5.12) with an AC1-unifier of the form

{C 7→ c, S′ 7→ s, S 7→ E ◦ s}

where I−I = c ◦ s. The successful derivation of (5.157) yields

← action(c, A,E) ∧ precon(P ′′, A) ∧ fulfil(c ◦ s, P ′′)
∧ ¬hinder(c ◦ s,A) ∧ append(T, P ′, L)

∧ reapplicable(e ◦ s, T,N) ∧ causes(N,P ′,G−I)
(5.158)

there must exist a clause of the form

action(c, ak, e) (5.159)

which can be AC1-unified with the first atom occurring in (5.158). The successful

derivation of (5.158) yields

← precon(P ′′, ak) ∧ fulfil(c ◦ s, P ′′)
∧ ¬hinder(c ◦ s, ak) ∧ append(T, P ′, L)

∧ reapplicable(e ◦ s, T,N) ∧ causes(N,P ′,G−I)
(5.160)

with an AC1-unifier of the form

{A 7→ ak, E 7→ e}.

there must exist a clause of the form

precon(p, ak) (5.161)

Chapter 5. Advanced Planning ProblemsR 116

which can be AC1-unified with the first atom occurring in (5.160). The successful

derivation of (5.160) yields

← fulfil(c ◦ s, p) ∧ ¬hinder(c ◦ s, ak) ∧ append(T, P ′, L)

∧ reapplicable(e ◦ s, T,N) ∧ causes(N,P ′,G−I)
(5.162)

with an AC1-unifier of the form

{P ′′ 7→ p}.

There must exist an SLDENF-resolution proof of ← fulfil(c ◦ s, p) with an answer sub-

stitution ∅. Hence, we can find the corresponding derivations from (5.162) to

← ¬hinder(c ◦ s, ak) ∧ append(T, P ′, L)

∧ reapplicable(e ◦ s, T,N) ∧ causes(N,P ′,G−I)
(5.163)

There must exist a finitely failed SLDENF-tree of ← hinder(c ◦ s, ak). Hence, there is

an SLDENF-derivation from (5.163) to

← append(T, P ′, L) ∧ reapplicable(e ◦ s, T,N) ∧ causes(N,P ′, G) (5.164)

There must exist an SLDENF-resolution proof of ← append(T, P ′, L) with an answer

substitution

{T 7→ [Ak−1, . . . , An], P ′ 7→ [An−1, . . . , A1], L 7→ [Ak−1, . . . , A1]}

Hence, we can find the corresponding derivations from (5.164) to

← reapplicable(e ◦ s, [Ak−1, . . . , An], N) ∧ causes(N, [An−1, . . . , A1],G−I) (5.165)

where variable T and P ′ are replaced by [Ak−1, . . . , An] and [An−1, . . . , A1], respectively.

There must exist an SLDENF-resolution proof of← reapplicable(e◦s, [Ak−1, . . . , An], N)

with an answer substitution

σ = {N 7→ n,Ak−1 7→ ak−1, . . . , An 7→ an}.

Hence, we can find the corresponding derivations from (5.165) to

← causes(n, [An−1, . . . , A1],G−I) (5.166)

where variable N is replaced by ground fluent term n.

Chapter 5. Advanced Planning ProblemsR 117

From (5.159) and (5.161), we may conclude that there is a concrete action ak of the form

ak : cI
pI ,O
==⇒ eI .

The derivation from (5.158) to (5.160) shows that cI ⊆̇ I. We can apply Lemma 5.19

due to the existence of SLDENF-resolution proof of ← fulfil(c ◦ s, p). We learn that the

initial state I fulfils the preconditions pI of the concrete action ak. We can apply Lemma

5.15 due to the existence of the finitely failed SLDENF-tree of ← hinder(c ◦ s, ak). We

learn that there is not enough obstacle in the initial state I to hinder the action ak from

being taken. Hence, we can conclude that the concrete action ak is applicable in the

initial state I. The application of ak to I leads to eI ∪̇ sI , i.e.,

I ak−→ eI ∪̇ sI (5.167)

We can apply Lemma 5.22 due to the existence of the SLDENF-resolution of

← reapplicable(e 7→ s, [Ak−1, . . . , An], N) with the answer substitution σ. We learn that

a sequence [ak−1, . . . , an] of theory actions applied to eI ∪̇ sI transforms eI ∪̇ sI to a

closed state nI , i.e.,

eI ∪̇ sI
[ak−1,...,an]−−−−−−−→ nI (5.168)

We can apply (I.H) to (5.166) since the SLDENF-refutation has length j− ((k−n) + 1)

where (k − n) + 1 is the length of the SLDENF-resolution of

← reapplicable(e 7→ s, [Ak−1, . . . , An], N). We learn a plan [an−1, . . . , a1] applied to nI

to reach the goal state G, i.e.,

nI
[an−1,...,a1]−−−−−−−→ G (5.169)

Combining (5.167), (5.168) and (5.169), we obtain a plan [ak, . . . , a1] such that

I [ak,...,a1]−−−−−→ G

Because the plan [ak, . . . , a1] transforms the initial state into the goal state, the claim is

true. �

Chapter 6

Conclusion and Discussion

In this thesis, we have elaborated the relationship between Petri networks and the fluent

calculus including some of Petri networks and the fluent calculus extensions in solving

conjunctive planning problems and their variations. The simple fluent calculus is capa-

ble of solving simple conjunctive planning problems as presented in [5]. Furthermore,

we have shown that ordinary Petri nets are capable as well. Ordinary Petri nets and

the simple fluent calculus are proven to be equivalent. Whereas in simple fluent calcu-

lus, SLDE-resolution proofs are used to find solutions for simple conjunctive planning

problems, in Petri nets finding the correspondence firing sequences is the way to find

solutions.

Two modifications of conjunctive planning problems were introduced: advanced conjunc-

tive planning problems and advanced conjunctive planning problems with real values.

In advanced conjunctive planning problems, two new features for actions are given. Pre-

conditions are a set of fluents which are only tested when an action is executed but are

not consumed. Obstacles are a set of simple fluents preventing an action from being

executed even if its conditions are satisfied. We have shown that advanced conjunctive

planning problems can be represented and solved elegantly by advanced Petri nets and

the advanced fluent calculus. Advanced Petri nets are ordinary Petri nets equipped with

inhibitor arcs to represent obstacles and test arcs to represent preconditions. In the ad-

vanced fluent calculus several new rules are added to catch up with advanced conjunctive

planning problems. Furthermore, SLDENF-resolution proofs instead of SLDE-resolution

proofs have to be chosen caused by the introduction of negation in the body of the rules.

We have shown that these two extensions are equivalent in solving advanced conjunctive

planning problems.

The final modification of conjunctive plannning problems was carried out by adding real-

valued fluents into advanced conjunctive planning problems. Moreover, we introduced

119

Bibliography 120

two kinds of actions: concrete actions and theory actions. Concrete actions are actions

to deal with simple fluents with preconditions and obstacles attached, while theory

actions are actions to deal with real-valued fluents. Several new rules and predicates

are proposed to match with the new features in advanced conjunctive planning problem.

SLDENF-resolution proofs are still chosen due to negations occurring in the bodies of

the rules. Finally, we showed that the new fluent calculus is able to represent and solve

the advanced conjunctive planning problems with real-valued information.

In [3], it was shown that Petri nets can be combined with Bayesian networks via real-

valued information. Now, it is possible to replace Petri networks with fluent calculus to

be combined with Bayesian networks. However, several considerations must be observed.

First, the fact that there is no formal definition for Petri nets combining advanced Petri

nets and Petri nets calculating mathematical expressions makes it harder to justify the

equivalence between our fluent calculus and Barret’s Petri nets. The possible justification

is via examples given by Barret in his report. Secondly, Petri networks proposed in [3]

includes timed Petri nets. Hence, to match completely with this kind of Petri nets, a

time feature must be added to and thoroughly investigated in the fluent calculus.

In this work, SLDE- and SLDENF-resolution proofs are used to compute answer substi-

tutions in the fluent calculus. We would like to see the corresponding fixpoint character-

ization of the fluent calculus in the next investigation. With fixpoint characterization,

a combination between the human reasoning approach proposed by Hölldobler et al in

[24, 25] and reasoning about actions and causality in the fluent calculus can be built.

Bibliography

[1] Michael Thielscher. The concurrent, continuous fluent calculus. Studia Logica,

67(3):315–331, 2001.

[2] Steffen Hölldobler and Michael Thielscher. Computing change and specificity

with equational logic programs. Annals of Mathematics and Artificial Intelligence,

14(1):99–133, 1995.

[3] Leon Rubin Barrett. An architecture for structured, concurrent, real-time action.

PhD thesis, University of California, Berkeley, CA, USA, 2010.

[4] Gerd Große, Steffen Hölldobler, Josef Schneeberger, Ute Cornelia Sigmund, and

Michael Thielscher. Equational logic programming actions, and change. In Joint

International Conference and Symposium on Logic Programming, pages 177–191,

1992.

[5] Gerd Große, Steffen Hölldobler, and Josef Schneeberger. Linear deductive planning.

Journal of Logic and Computation, 6(2):233–262, 1996.

[6] Steffen Hölldobler and Josef Schneeberger. A new deductive approach to planning.

New Generation Computing, 8(3):225–244, 1990.

[7] Michael Thielscher. Introduction to the fluent calculus. Electronic Transactions on

Artificial Intelligence (http://www. etaij. org), 3, 1998.

[8] CA Petri. Kommunikation mit automaten. schriften des iim 2, institut für instru-

mentelle mathematik, bonn, 1962. Technical report, English translation: Technical

Report RADCTR-65-377, 1966.

[9] Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc., 1985.

[10] Luca Bernardinello and Fiorella De Cindio. A survey of basic net models and

modular net classes. In Advances in Petri Nets 1992, pages 304–351. Springer,

1992.

[11] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–580, 1989.

121

Bibliography 122

[12] Jörg Desel and Wolfgang Reisig. Place/transition Petri nets. In Lectures on Petri

Nets I: Basic Models, pages 122–173. Springer, 1998.

[13] John C. Shepherdson. SLDNF-resolution with equality. Journal of Automated

Reasoning, 8(2):297–306, 1992.

[14] Steffen Hölldobler. Equational logic programming. In Symposium on Logic Pro-

gramming, pages 335–346, 1987.

[15] Steffen Hölldobler, Josef Schneeberger, and Michael Thielscher. AC1-

unification/matching in linear logic programming. In Proceedings of Sixth Inter-

national Workshop on Unification Schloss Dagstuhl, Germany, page 49, 1992.

[16] Steffen Hölldobler. Foundations of equational logic programming, volume 353.

Springer-Verlag Berlin-Heidelberg-New York, 1989.

[17] Keith L Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and

data bases, pages 293–322. Springer, 1978.

[18] Jean H Gallier and Stan Raatz. SLD-resolution methods for Horn clauses with

equality based on e-unification. In Symposium on Logic Programming, volume 86,

pages 168–179, 1986.

[19] Gordon Plotkin. Building-in equational theories. Machine intelligence, 7(73-

90):433, 1972.

[20] Michael Thielscher. On the completeness of SLDENF-resolution. Journal of Auto-

mated Reasoning, 17(2):199–214, 1996.

[21] J.W. Lloyd. Foundations of logic programming. Springer-Verlag New York Inc.,

New York, NY, 1987.

[22] Hans-Peter Störr and Michael Thielscher. A new equational foundation for the

fluent calculus. In J. Lloyd, editor, International Conference on Computational

Logic, pages 733–746. Springer, 2000.

[23] René David and Hassane Alla. On hybrid Petri nets. Discrete Event Dynamic

Systems, 11(1-2):9–40, 2001.

[24] Emmanuelle-Anna Dietz, Steffen Hölldobler, and Marco Ragni. A computational

logic approach to the suppression task. In D. Peebles N. Miyake and Eds. Austin

R. P. Cooper, editors, Proceedings of the 34th annual conference of the cognitive

science society, pages 1500–1505. Cognitive Science Society, 2012.

Bibliography 123

[25] Emmanuelle-Anna Dietz, Steffen Hölldobler, and Marco Ragni. A computa-

tional logic approach to the abstract and the social case of the selection task.

In Proceedings of the 11th International Symposium on Logical Formalizations

of Commonsense Reasoning, COMMONSENSE, 2013. http://www.wv.inf.tu-

dresden.de/Publications/2013/report-13-03.pdf.

	Declaration of Authorship
	Acknowledgements
	Abstract
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Thesis Structure

	2 Preliminaries
	2.1 Multisets
	2.2 Petri Nets
	2.3 First Order Theories
	2.4 Fluent Calculus
	2.5 Append Function

	3 Planning Problems
	3.1 CPP in Petri Nets
	3.2 CPP in Fluent Calculus
	3.3 An Instance of Conjunctive Planning Problems
	3.4 A Correspondence Between Fluent Calculus and Petri Nets

	4 Advanced Planning Problems
	4.1 Advanced Petri Nets
	4.2 ACPP in Advanced Fluent Calculus
	4.3 An Instance of ACPP
	4.4 A Correspondence Between AFC and APN

	5 Advanced Planning ProblemsR
	5.1 ACPPR in the Real-valued Fluent Calculus
	5.2 An Instance of ACPPR
	5.3 Sound and Completeness of the Real-valued Fluent Calculus

	6 Conclusion and Discussion

