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Abstract If logic programs are interpreted over a three-valued logic,
then often Kleene’s strong three-valued logic with complete equivalence
and Fitting’s associated immediate consequence operator is used. How-
ever, in such a logic the least fixed point of the Fitting operator is not
necessarily a model for the program under consideration. Moreover, the
model intersection property does not hold. In this paper, we consider
the three-valued  Lukasiewicz semantics and show that fixed points of
the Fitting operator are also models for the program under considera-
tion and that the model intersection property holds. Moreover, we review
a slightly different immediate consequence operator first introduced by
Stenning and van Lambalgen and relate it to the Fitting operator un-
der  Lukasiewicz semantics. Some examples are discussed to support the
claim that  Lukasiewicz semantics and the Stenning and van Lambalgen
operator is better suited to model common sense and human reasoning.

1 Introduction

When interpreting logic programs (with negation) under a three-valued seman-
tics, then it appears that with some exceptions (see e.g. [9]) mainly the semantics
defined by Fitting in [7] is considered (see e.g. [1]) in the logic programming liter-
ature up to now. This semantics combines Kleene’s strong three-valued logic for
negation, conjunction, disjunction and implication with complete equivalence,
which was also introduced by Kleene (see [11]). Complete equivalence was used
by Fitting to ensure that a formula of the form F ↔ F is mapped to true under
an interpretation, which maps F to neither true nor false (see [7], p.300). Under
the Fitting semantics, the law of equivalence (F ↔ G is semantically equivalent
to (F ← G) ∧ (G ← F )) does not hold anymore. This is somewhat surprising
as Fitting suggests a completion-based approach ([5]), where the if-halves of the
definitions in a logic program are completed by adding their corresponding only-
if-halves. Under the Fitting semantics, a completed definition p ↔ q may be
mapped to true under an interpretation, which maps neither p ← q nor q ← p
to true.

The Fitting semantics was also considered in a recent book by Stenning
and van Lambalgen [15], where they argue in favor of a completion-based logic-
programming approach to model human reasoning. Stenning and van Lambalgen
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introduce an immediate consequence operator, which is slightly different from
the one defined by Fitting in [7], and claim that for a given propositional logic
program the least fixed point of this operator is the minimal model of the pro-
gram (Lemma 4(1.) in [15]). Looking into this result we found that the least fixed
point may not even be a model for the program (see [10]) and that this stems
from the fact that the Fitting semantics does not admit the law of equivalence.

From these observations two questions arose: Why did Fitting combine
Kleene’s strong three-valued logic with complete equivalence? Is there an al-
ternative semantics under which the results proven in [7] hold and which admits
also the law of equivalence?

We can answer the former question only partially: questions of computability1

and, in particular, termination2 may have been the driving force. As for the
latter, we believe that the  Lukasiewicz semantics [13] may be a good candidate.

After reviewing three-valued logics in Section 2 and stating some prelimi-
naries in Section 3 we investigate Fitting’s immediate consequence operator in
Section 4. In particular, we show that under the  Lukasiewicz semantics, a fixed
point of the Fitting operator is not only a model for the completion of a given
program, but for the program itself. Moreover, we show that the model inter-
section property holds for logic programs (with negation) under the  Lukasiewicz
semantics.

In Section 5 we review Stenning and van Lambalgen’s immediate consequence
operator under  Lukasiewicz semantics. The main difference between the Fitting
and the Stenning and van Lambalgen operator is the observation that whereas
Fitting assumes all undefinded predicates to be false within the completion pro-
cess, Stenning and van Lambalgen allow the user to control which otherwise
undefined predicates shall be mapped to false. In order to do so, they intro-
duce so-called negative facts and modify the notion of completion accordingly.
In Section 6 we present two examples from commonsense and human reasoning
to support the claim that the Stenning and van Lambalgen operator may be
better suited for these reasoning tasks than the Fitting operator. In the final
Section 7 we summarize our findings and point to some future and related work.

2 Three-Valued Logics

In 1920, the Polish philosopher  Lukasiewicz the first three-valued logic [13]. The
truth values are not only true or false, but there exists a third, intermediate
value. A formula is allowed to be neither true nor false. We can interpret the
intermediate truth value as possibility: The truth value is not decided yet but
possibly decided at some later time. In this paper, we symbolize truth- and
falsehood by > and ⊥, respectively. We call the third truth value undecided and
use the symbol u to denote it.

 Lukasiewicz used the following principles and definitions to assign values to
formulas, where ≡ denotes semantic equivalence:
1 Personal communication with Melvin Fitting.
2 Personal communication with Pascal Hitzler.
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F G ¬F F ∧G F ∨G F ←K G F ↔K G F ↔C G F ← L G F ↔ L G

> > ⊥ > > > > > > >
> ⊥ ⊥ ⊥ > > ⊥ ⊥ > ⊥
> u ⊥ u > > u ⊥ > u
⊥ > > ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ > ⊥ ⊥ > > > > >
⊥ u > ⊥ u u u ⊥ u u
u > u u > u u ⊥ u u
u ⊥ u ⊥ u > u ⊥ > u
u u u u u u u > > >

Table1. A truth table for three-valued logics. The indices K and  L refer to Kleene’s
and  Lukasiewicz’s logic, respectively. ↔C denotes the complete equivalence used by
Fitting.

1. The principles of identity and non-identity:
(⊥ ↔ ⊥) ≡ (> ↔ >) ≡ >, (> ↔ ⊥) ≡ (⊥ ↔ >) ≡ ⊥,
(⊥ ↔ u) ≡ (u↔ ⊥) ≡ (> ↔ u) ≡ (u↔ >) ≡ u, (u↔ u) ≡ >.

2. The principles of implication:
(⊥ ← ⊥) ≡ (> ← ⊥) ≡ (> ← >) ≡ >, (⊥ ← >) ≡ ⊥,
(u← ⊥) ≡ (> ← u) ≡ (u← u) ≡ >, (⊥ ← u) ≡ (u← ⊥) ≡ u.

3. The definitions of negation, disjunction and conjunction:
¬A ≡ (⊥ ← A), A ∨B ≡ (B ← (B ← A)), A ∧B ≡ ¬(¬A ∨ ¬B).

Later, in 1952, Kleene proposed an alternative three-valued logic with the
truth values true, false, and undefined. He distinguishes between weak and strong
three-valued logics. For our paper only the latter is of interest. It is similar to the
 Lukasiewicz logic, but differs in the semantics of implication and equivalence. In
particular, Kleene’s strong three-valued logic is based on the following principles
and definitions, where we have highlighted the differences to  Lukasiewicz logic:

1. The principles of identity and non-identity:
(⊥ ↔ ⊥) ≡ (> ↔ >) ≡ >, (> ↔ ⊥) ≡ (⊥ ↔ >) ≡ ⊥,
(⊥ ↔ u) ≡ (u↔ ⊥) ≡ (> ↔ u) ≡ (u↔ >) ≡ (u↔ u) ≡ u

2. The principles of implication:
(⊥ ← ⊥) ≡ (> ← ⊥) ≡ (> ← >) ≡ >, (⊥ ← >) ≡ ⊥,
(u← ⊥) ≡ (> ← u) ≡ >, (⊥ ← u) ≡ (u← >) ≡ (u← u) ≡ u

3. The definitions of negation, disjunction and conjunction:
¬A ≡ (⊥ ← A), A ∨B ≡ (B ← (B ← A)), A ∧B ≡ ¬(¬A ∨ ¬B).

Kleene also introduced a complete equivalence where (F ↔ G) ≡ > if and only
if both F and G have the same logical value, else (F ↔ G) ≡ ⊥.

The semantics of the connectives is summarized in Table 1. In the  Lukasiewicz
logic [13] the set of connectives is {¬, ∧, ∨, ← L, ↔ L}, in Kleene’s strong three-
valued logic [11] the set of connectives is {¬, ∧, ∨, ←K , ↔K}, and in the
Fitting logic [7] the set of connectives is {¬, ∧, ∨, ←K , ↔C}. Table 2 gives an
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Laws  Lukasiewicz Kleene Fitting

Idempotency F ∧ F ≡ F Yes Yes Yes
F ∨ F ≡ F

Commutativity F ∧G ≡ G ∧ F Yes Yes Yes
F ∨G ≡ G ∨ F

Associativity (F ∧G) ∧H ≡ F ∧ (G ∧H) Yes Yes Yes
(F ∨G) ∨H ≡ F ∨ (G ∨H)

Absorption (F ∧G) ∨ F ≡ F Yes Yes Yes
(F ∨G) ∧ F ≡ F

Distributivity F ∧ (G ∨H) Yes Yes Yes
≡ (F ∧G) ∨ (F ∧H)
F ∨ (G ∧H)
≡ (F ∨G) ∧ (F ∨H)

Double Negation ¬¬F ≡ F Yes Yes Yes
de Morgan ¬(F ∧G) ≡ (¬F ∨ ¬G) Yes Yes Yes

¬(F ∨G) ≡ (¬F ∧ ¬G)
Equivalence F ↔ G ≡ (F → G) ∧ (G→ F ) Yes Yes No
Implication F → G ≡ ¬F ∨G No Yes Yes
Contraposition F → G ≡ ¬G→ ¬F Yes Yes Yes
Syllogism (F → G) ∧ (G→ H) ≡ F → H No Yes Yes
Excluded Middle F ∨ ¬F ≡ > No No No
Contradiction F ∧ ¬F ≡ ⊥ No No No

Table2. Some common laws under  Lukasiewicz, Kleene and Fitting semantics.

overview over some common laws with respect to the  Lukasiewicz, Kleene and
Fitting logics considered in this paper.

3 Preliminaries

In this section we recall some notations and terminology based on [12] which we
will use in this paper.

3.1 First-Order Language

We consider an alphabet consisting of (finite or countably infinite) disjoint sets of
variables, constants, function symbols, predicate symbols, connectives {¬, ∨, ∧,
←, ↔}, quantifiers {∀, ∃}, and punctuation symbols {“(“, “, “, “)“}. In this
paper we will use upper case letters to denote variables and lower case letters to
denote constants, function- and predicate symbols. Terms, atoms, literals and
formulas are defined as usual. To avoid having formulas cluttered with brackets,
we adopt the following precedence hierarchy to order the connectives: ¬ >
{∨, ∧} > ← > ↔. The language given by an alphabet consists of the set of all
formulas constructed from the symbols occurring in the alphabet. A sentence is
a formula without free variables. Finally, we extend our language by the symbols
> and ⊥ denoting a valid and an unsatisfiable formula, respectively.
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3.2 Logic Programs

A (program) clause is an expression of the form A ← B1 ∧ · · · ∧ Bn, where A
is an atom and each Bi, 1 ≤ i ≤ n, is either a literal (i.e., atom or negated
atom) or >. > is a valid formula. A is called the head and B1 ∧ · · · ∧ Bn body
of the clause. One should observe that the body of a clause must not be empty.
A clause of the form A← > is called a positive fact.

A (logic) program is a finite set of clauses. ground(P) denotes the set of all
ground instances of the program P. In many cases, ground(P) is infinite, but
for propositional or datalog programs ground(P) is finite. In the sequel we will
consider ground(P) as a substitute for P, thus ignoring unification issues.

We assume that each non-propositional program contains at least one con-
stant symbol. Moreover, the language L underlying a program P shall contain
precisely the relation, function and constant symbols occurring in P, and no
others.

3.3 Interpretations and Models

The declarative semantics of a logic program is given by a model-theoretic se-
mantics of formulas in the underlying language. We represent interpretations by
pairs

〈
I>, I⊥

〉
, where the set I> contains all atoms which are mapped to >, the

set I⊥ contains all atoms which are mapped to ⊥, and I> ∩ I⊥ = ∅. All atoms
which occur neither in I> nor I⊥ are mapped to u. The logical value of formulas
can be derived from Table 1 as usual. We use I L, IK and IF to denote that an
interpretation I uses the  Lukasiewicz, Kleene or Fitting semantics, respectively.
Furthermore, let I denote the set of all interpretations. One should observe that
(I,⊆) is a complete semilattice (see [7]).

Let I be an interpretation of a language L and let F be a sentence of L. I
is a model for F if F is true with respect to I (i.e., I(F ) = >). Let S be a set
of sentences of a language L and let I be an interpretation of L. We say I is
a model for S if I is a model for each sentence of S. Two sentences F and G
are said to be semantically equivalent if and only if both have same truth value
under all interpretations.

3.4 Program Completion

Let ground(P) be a logic program. Consider the following transformation:

1. All clauses with the same head (ground atom) A← Body1, A← Body2, . . .
are replaced by the single expression A← Body1 ∨ Body2 ∨ . . ..

2. If a ground atom A is not the head of any clause in ground(P) then add
A← ⊥, where ⊥ denotes an unsatisfiable formula.

3. All occurrences of ← are replaced by ↔.

The resulting set of formulas is called completion of ground(P) and is denoted
by comp(ground(P)). One should observe that in step 1 there may be infinitely
many clauses with the same head resulting in a countable disjunction. However,
its semantic behavior is unproblematic.
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4 The Fitting Operator

In this section we will discuss Fitting’s immediate consequence operator [7] under
the  Lukasiewicz semantics. We will show that replacing the Fitting semantics
with the  Lukasiewicz semantics does not change the behaviors of the Fitting
operator. But in addition each model of the completion of a program coincides
with a model of the program itself.

Let I be an interpretation and P a program. Fitting’s immediate consequence
operator is defined as follows: ΦF,P(I) =

〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = >} and
J⊥ = {A | for all A← Body ∈ ground(P) we find I(Body) = ⊥}.

Please recall that the body of the program is a conjunction of literals and, hence,
I L(Body) = IK(Body) = IF (Body) according to Table 1.

Fitting shows in [7] that ΦF,P is monotone on (I,⊆). Moreover, from [16]
and [14] follows that for finite ground(P) the operator ΦF,P is also continuous.
We call a program P F-acceptable if ΦF,P is continuous.

Given a program P. An interpretation I is said to be fixed point of ΦF,P iff
ΦF,P(I) = I. If ΦF,P is continuous, then it admits a least fixed point denoted
by lfp(ΦF,P), which can be computed by iterating ΦF,P starting with the empty
interpretation as follows:

ΦF,P ↑0 = 〈∅, ∅〉 ,
ΦF,P ↑(α+1) = ΦF,P(ΦF,P ↑α),
ΦF,P ↑ω =

⋃
{ΦF,P ↑α| α < ω},

where ω is an arbitrary limit ordinal.
As examples consider the programs P1 = ground(P1) = {p ← q} and

P2 = ground(P2) = {p← q, q ← p}. Their completions are comp(ground(P1)) =
{p ↔ q, q ↔ ⊥} and comp(ground(P2)) = {p ↔ q, q ↔ p}. In both cases, the
Fitting operator is continuous and we obtain the least fixed points lfp(ΦF,P1) =
〈∅, {p, q}〉 and lfp(ΦF,P2) = 〈∅, ∅〉. It is easy to verify that the least fixed points
are models of the completions under the Fitting semantics, which is no coinci-
dence as formally proven in [7]. This property holds also under the  Lukasiewicz
semantics.

Proposition 1. Let P be a program.
1. I L is a fixed point of ΦF,P iff I L a model of comp(ground(P)).
2. If I L = lfp(ΦF,P) then I L is the least model of comp(ground(P)).

Proof. 1. To show the if-part, suppose I L =
〈
I>, I⊥

〉
is a fixed point of ΦF,P .

In this case we have to show that I L(comp(ground(P))) = >, i.e., for all
A ↔ F ∈ comp(ground(P)) we have to show that I L(A) = I L(F ). We
distinguish three cases:
(a) If I L(A) = >, then A ∈ I>. By the definition of ΦF,P , we find A ←

Bodyi ∈ ground(P ), i ≥ 1, such that I L(Bodyi) = >. Hence, F =
(Body1 ∨ Body2 ∨ . . .), I L(F ) = >, and the claim holds in this case.
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(b) If I L(A) = ⊥, then A ∈ I⊥. By the definition of ΦF,P we distinguish two
cases:
– If there is no clause A ← Body ∈ ground(P). Then, A ↔ ⊥ ∈

comp(P). Hence F = ⊥, I L(F ) = ⊥, and the claim holds in this
subcase.

– If for all clauses of the form A← Bodyi ∈ ground(P), i ≥ 1, we find
I L(Bodyi) = ⊥, then F = Body1 ∨ Body2 ∨ . . ., I L(F ) = ⊥, and the
claim holds in this subcase.

(c) If I L(A) = u, then A /∈ I> ∪ I⊥. By the definition of ΦF,P , for all
A ← Bodyi ∈ ground(P), i ≥ 1, we find I L(Bodyi) 6= > and there
exists A ← Bodyi ∈ ground(P), i ≥ 1, such that I L(Bodyi) 6= ⊥. Hence,
F = Body1 ∨ Body2 ∨ . . ., I L(F ) = u, and the claim holds in the final
case as well.

To show the only-if-part, suppose I L(comp(ground(P))) = >. In this case we
have to show that I L =

〈
I>, I⊥

〉
is a fixed point of ΦF,P , i.e., ΦF,P(I L) = I L.

Let ΦF,P(I L) = J =
〈
J>, J⊥

〉
. J = I if and only if J> = I> and J⊥ = I⊥.

We distinguish four cases:
(a) Suppose A ∈ I>, i.e., I L(A) = >. Because I L(comp(ground(P))) = > we

find A↔ Body1 ∨ Body2 ∨ . . . ∈ comp(ground(P)) such that I L(Body1 ∨
Body2 ∨ . . .) = >. Hence, there exists A ← Bodyi ∈ ground(P), i ≥ 1,
such that I L(Bodyi) = >. Therefore, A ∈ J>.

(b) Suppose A ∈ J>. By the definition of ΦF,P , we find A ← Bodyi ∈
ground(P), i ≥ 1, such that I L(Bodyi) = >. Hence, we find A↔ Body1∨
Body2∨. . . ∈ comp(ground(P)) and I L(Body1∨Body2∨. . .) = >. Because
I L(comp(ground(P))) = >, we find I L(A) = >. Hence, A ∈ I>.

(c) Suppose A ∈ I⊥, i.e., I L(A) = ⊥. Because I L(comp(ground(P))) = >
we find A ↔ F ∈ comp(ground(P)) such that I L(F ) = ⊥. In this case
either F = ⊥ or F = Body1 ∨ Body2 ∨ . . . and for all i ≥ 1 we find
I L(Bodyi) = ⊥. By definition of ΦF,P we find A ∈ J⊥ in either case.

(d) Suppose A ∈ J⊥. By the definition of ΦF,P we find for all A← Bodyi ∈
ground(P), i ≥ 1, that I L(Bodyi) = ⊥. Hence, with F = ⊥ ∨ Body1 ∨
Body2 ∨ . . . we find I L(F ) = ⊥. Because I L(comp(ground(P))) = > and
A ↔ F ∈ comp(ground(P)) we conclude I L(A) = ⊥. Consequently,
A ∈ I⊥.

2. Suppose I L = lfp(ΦF,P) and I L is not the least model of comp(ground(P)).
Then we find an interpretation J L such that J L(comp(ground(P))) = > and
J L ⊂ I L. By 1., J L will be a fixed point of ΦF,P , which contradicts the
assumption that I L is the least fixed point of ΦF,P . 2

A fixed point of the Fitting operator under the Fitting semantics is a model
of the completion of the program, but it is not necessarily a model of the program
itself. Reconsider P2 = {p ← q, q ← p}. lfpF,P2

= 〈∅, ∅〉 is not a model for P2.
This is because under Fitting semantics, if p and q are mapped to u, then both
implications are mapped to u as well. However, under the  Lukasiewicz semantics,
if p and q are mapped to u, then both implications are mapped to >. Hence,
lfpF,P2

= 〈∅, ∅〉 is a model for P2 under the  Lukasiewicz semantics.
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Proposition 2. Let P be a program.
If I L(comp(ground(P))) = >, then I L(ground(P)) = >.

Proof. If I L(comp(ground(P))) = >, then for all A↔ F ∈ comp(ground(P)) we
find I L(A↔ F ) = >. By the law of equivalence we conclude I L((A← F )∧(F ←
A)) = > and, consequently, I L(A ← F ) = >. If F = ⊥ then ground(P) does
not contain a clause with head A. Otherwise, F = Body1 ∨ Body2 ∨ . . . and we
distinguish three cases:

1. If I L(A) = >, then we find I L(A ← Bodyi) = > for all A ← Bodyi ∈
ground(P ).

2. If I L(A) = ⊥, then for all i ≥ 1 we find I L(Bodyi) = ⊥ and, consequently,
I L(A← Bodyi) = > for all A← Bodyi ∈ ground(P ).

3. If I L(A) = u then either I L(F ) = ⊥ or I L(F ) = u. The former possibility
being similar to case 2. we concentrate on the latter. If I L(F ) = u then
for all i ≥ 1 either I L(Bodyi) = u or I L(Bodyi) = ⊥. In any case, we find
I L(A← Bodyi) = > for all A← Body ∈ ground(P). 2

Corollary 1. Let P be a program.
If I L is a fixed point of ΦF,P then I L(ground(P)) = >.

Proof. The corollary follows immediately from Propositions 1 and 2. 2

Although a fixed point of the Fitting operator is not always a model of the
given program under the Fitting semantics, the program itself may have models.
Returning to the example P2 = {p ← q, q ← p}, its minimal models under
the Fitting semantics are 〈∅, {p, q}〉 and 〈{p, q}, ∅〉. Their intersection 〈∅, ∅〉 is no
model of P2 under the Fitting semantics. In other words, the model intersection
property does not hold under the Fitting semantics. Under the  Lukasiewicz se-
mantics, however, 〈∅, ∅〉 is a model for P2 and, as we will show in the following,
the model intersection property does hold under the  Lukasiewicz semantics.

Proposition 3. Let P be a program. If I L =
〈
I>, I⊥

〉
is a model of ground(P),

then I ′ L =
〈
I>, ∅

〉
is also a model of ground(P).

Proof. Let P be a program. Suppose I L =
〈
I>, I⊥

〉
is a model of ground(P).

Let A ← Body be a clause in ground(P). In order to show I ′ L(A ← Body) = >
we distinguish three cases:

1. If A ∈ I>, then I ′ L(A← Body) = >.
2. If A ∈ I⊥, then I L(A) = ⊥ and I ′ L(A) = u. Because I L(A ← Body) = > we

conclude that I L(Body) = ⊥. Hence, Body must contain at least one literal
B with I L(B) = ⊥. For each literal B occurring in Body we find:
(a) if B is an atom and B ∈ I>, then I L(B) = > and I ′ L(B) = >,
(b) if B is an atom and B ∈ I⊥, then I L(B) = ⊥ and I ′ L(B) = u,
(c) if B is an atom and B 6∈ I> ∪ I⊥, then I ′ L(B) = I L(B) = u,
(d) if B is the negated literal ¬B′ and B′ ∈ I>, then I L(B) = ⊥ and

I ′ L(B) = ⊥, and
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(e) if B is the negated literal ¬B′ and B′ ∈ I⊥, then I L(B) = > and
I ′ L(B) = u.

(f) if B is a negated literal ¬B′ and B′ 6∈ I>∪ I⊥, then I ′ L(B) = I L(B) = u,
Consequently, I ′ L(Body) is either ⊥ or u. Because I ′ L(A) = u we conclude
that I ′ L(A← Body) = >.

3. If A /∈ I> ∪ I⊥, then I L(A) = I ′ L(A) = u. Because I L(A ← Body) = > we
distinguish two cases:
(a) If I L(Body) = ⊥, then we conclude as in case 2. that I ′ L(Body) is either
⊥ or u and, consequently, I ′ L(A← Body) = >.

(b) If I L(Body) = u, then Body must contain a literal B with I L(B) = u. In
this case, I ′ L(B) = u as well and, consequently, I ′ L(Body) is either ⊥ or
u. As in the previous subcase we conclude that I ′ L(A← Body) = >. 2

As an example consider the program P3 = {p ← q ∧ ¬r}. In the remainder
of this paragraph all models are considered under the  Lukasiewicz semantics.
〈{p, q}, {r}〉 is a model for P3, and so is 〈{p, q}, ∅〉. 〈{p, r}, {q}〉 is a model for
P3, and so is 〈{p, r}, ∅〉. 〈{r}, {q}〉 is a model for P3, and so is 〈{r}, ∅〉. 〈∅, ∅〉 is
the least model of P3.

Proposition 4. Let I L1 =
〈
I>1 , ∅

〉
and I L2 =

〈
I>2 , ∅

〉
be two models for a pro-

gram P. Then I L3 =
〈
I>1 ∩ I>2 , ∅

〉
is a model for P as well.

Proof. Suppose I L3 =
〈
I>3 , I

⊥
3

〉
=
〈
I>1 ∩ I>2 , ∅

〉
is not a model for P. Then we

find A← Body ∈ P such that I L3(A← Body) 6= >. According to Table 1 one of
the following cases must hold:

1. I L3(A) = ⊥ and I L3(Body) = >.
2. I L3(A) = ⊥ and I L3(Body) = u.
3. I L3(A) = u and I L3(Body) = >.

Because I⊥3 = ∅ we find I L3(A) 6= ⊥ and, consequently, cases 1. and 2. cannot
apply. Therefore, we turn our attention to case 3. If I L3(A) = u then there
must exist j ∈ {1, 2} such that I Lj(A) = u. Because I Lj is a model for P we
find I Lj(A ← Body) = > and, thus, I Lj(Body) is either u or ⊥. In this case,
Body 6= >. Let Body = B1 ∧ . . . ∧Bn with n ≥ 1.

Because I L3(Body) = > and I⊥3 = ∅ we find for all 1 ≤ i ≤ n that Bi
is an atom with I L3(Bi) = >. Hence, {B1, . . . , Bn} ⊆ I>3 and, consequently,
{B1, . . . , Bn} ⊆ I>j , which contradicts the assumption that I Lj(Body) is either u
or ⊥. 2

Proposition 4 does not hold for arbitrary models of P. For instance, suppose
P4 = {p← q1 ∧ r1, p← q2 ∧ r2}, I L1 = 〈∅, {p, q1, r2}〉 and I L2 = 〈∅, {p, q2, r1}〉.
We can easily show that I L1 and I L2 are models for P4. Their intersection 〈∅, {p}〉,
however, is not a model for P4.

Proposition 5. Let M L be the set of all models of a program P under the
 Lukasiewicz semantics. Then,

⋂
M L is a model for P as well.
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Proof. The result follows immediately from Propositions 3 and 4. 2

The least model of P4 under the  Lukasiewicz semantics is 〈∅, ∅〉, whereas
the least model of P5 = {p ← >, q ← p, r ← q ∧ ¬s} under the  Lukasiewicz
semantics is 〈{p, q}, ∅〉. The last example also exhibits that the least fixed point of
the Fitting operator is not necessarily the least model of the underlying program
because lfp(ΦF,P4) = 〈{p, q, r}, {s}〉.

5 The Stenning and van Lambalgen Operator

In their quest for models of human reasoning Stenning and van Lambalgen [15]
have introduced an immediate consequence operator for propositional programs,
which differs slightly from the Fitting operator. Here, we extend the operator
to first-order programs. Let I be an interpretation and P be a program. Sten-
ning and van Lambalgen’s immediate consequence operator is defined as follows:
ΦSvL,P(I) =

〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = >} and
J⊥ = {A | there exists A← Body ∈ ground(P) and

for all A← Body ∈ ground(P) we find I(Body) = ⊥}

and the difference to the Fitting operator has been highlighted. Stenning and van
Lambalgen consider programs under the Fitting semantics. In addition, Stenning
and van Lambalgen allow so-called negative facts of the form A← ⊥ as program
clauses. An extended (logic) program is a finite set of clauses and negative facts.

Stenning and van Lambalgen show in [15] that ΦSvL,P is monotone on (I,⊆).
Moreover, from [16] and [14] follows that for finite ground(P) the operator ΦSvL,P
is also continuous. We call a program P SvL-acceptable if ΦSvL,P is continuous.

Before discussing further properties of the new operator we reconsider P1 =
ground(P1) = {p← q}. Its completion is comp(ground(P1)) = {p↔ q, q ↔ ⊥}.
ΦSvL,P admits a least fixed point for P1 and we obtain lfp(ΦSvL,P1) = 〈∅, ∅〉. One
should note that this result differs from lfp(ΦF,P1) = 〈∅, {p, q}〉. Now consider
P ′1 = ground(P ′1) = {p ← q, q ← ⊥}. Its completion is comp(ground(P ′1)) =
{p↔ q, q ↔ ⊥} = comp(ground(P1)) and lfp(ΦSvL,P′

1
) = lfp(ΦF,P1) = 〈∅, {p, q}〉.

Thus, by adding negative facts, Stenning and van Lambalgen’s operator can sim-
ulate Fitting’s operator. But it is more liberal in that if there is no clause with
head A in the extended program, then its meaning remains undefined.

Obviously, completion as defined in Section 3.4 is unsuitable for extended
programs P. If we omit step 2. in the completion transformation, then the re-
sulting set of formulas is called weak completion of ground(P) and is denoted by
wcomp(ground(P)). Returning to the examples, we find wcomp(ground(P1)) =
{p↔ q} and wcomp(ground(P ′1)) = {p↔ q, q ↔ ⊥}.

In the following we relate the Stenning and van Lambalgen operator and
weak completion under the  Lukasiewicz semantics.
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Proposition 6. Let P be an extended program.

1. I L is a fixed point of ΦSvL,P iff I L a model of wcomp(ground(P)).
2. If I L = lfp(ΦSvL,P) then I L is the least model of wcomp(ground(P)).

Proof. The proof is similar with the proof for Proposition 1.

1. To show the if-part, suppose I L =
〈
I>, I⊥

〉
is a fixed point of ΦSvL,P . In

this case we have to show that I L(wcomp(ground(P))) = >, i.e., for all
A ↔ F ∈ wcomp(ground(P)) we have to show that I L(A) = I L(F ). We
distinguish three cases:
(a) If A = >, then A ∈ I>. By the definition of ΦSvL,P , we find A← Bodyi ∈

ground(P), i ≥ 1, such that I L(Bodyi) = >. Hence, F = Body1∨Body2∨
. . ., I L(F ) = >, and the claim holds in this case.

(b) If A = ⊥, then A ∈ I⊥. By the definition of ΦSvL,P , we find A ←
Bodyi ∈ ground(P), i ≥ 1 and for all Bodyi, I L(Bodyi) = ⊥. Hence,
F = Body1 ∨ Body2 ∨ . . ., I L(F ) = ⊥, and the claim holds in this case.

(c) If A = u then A /∈ I> ∪ I⊥. By the definition of ΦSvL,P , for all A ←
Bodyi ∈ ground(P), i ≥ 1, we find I L(Bodyi) 6= > and there exists
A ← Bodyi ∈ ground(P), i ≥ 1, such that I L(Bodyi) 6= ⊥. Hence, F =
Body1 ∨ Body2 ∨ . . ., I L(F ) = u, and the claim holds in the final case as
well

To show the only-if-part, suppose I L(wcomp(ground(P))) = >. In this case
we have to show that I L =

〈
I>, I⊥

〉
is a fixed point of ΦSvL,P , i.e., ΦSvL,P(I L) =

I L. Let ΦSvL,P(I L) = J =
〈
J>, J⊥

〉
. J = I if and only if J> = I> and

J⊥ = I⊥. We distinguish four cases:
(a) Suppose A ∈ I>, i.e., I L(A) = >. Because I L(wcomp(ground(P))) =
> we find A ↔ Body1 ∨ Body2 ∨ . . . ∈ wcomp(ground(P)) such that
I L(Body1∨Body2∨. . .) = >. Hence, there exists A← Bodyi ∈ ground(P),
i ≥ 1, such that I L(Bodyi) = >. Therefore, A ∈ J>.

(b) Suppose A ∈ J>. By the definition of ΦSvL,P , we find A ← Bodyi ∈
ground(P), i ≥ 1, such that I L(Bodyi) = >. Hence, we find A↔ Body1∨
Body2 ∨ . . . ∈ wcomp(ground(P)) and I L(Body1 ∨ Body2 ∨ . . .) = >.
Because I L(wcomp(ground(P))) = >, we find I L(A) = >. Hence, A ∈ I>.

(c) Suppose A ∈ I⊥, i.e., I L(A) = ⊥. Because I L(wcomp(ground(P))) = >
we find A↔ F ∈ wcomp(ground(P)) such that I L(F ) = ⊥. Hence for all
i ≥ 1 we find I L(Bodyi) = ⊥. By definition of ΦSvL,P we find A ∈ J⊥.

(d) Suppose A ∈ J⊥. By the definition of ΦSvL,P we find A ← Bodyi ∈
ground(P), i ≥ 1, and for all Bodyi, I L(Bodyi) = ⊥. Hence, with F =
Body1∨Body2∨. . . we find I L(F ) = ⊥. Because I L(wcomp(ground(P))) =
> and A ↔ F ∈ wcomp(ground(P)) we conclude I L(A) = ⊥. Conse-
quently, A ∈ I⊥.

2. Suppose I L = lfp(ΦSvL,P) and I L is not the least model of wcomp(ground(P)).
Then we find an interpretation J L such that J L(wcomp(ground(P))) = > and
J L ⊂ I L. By 1., J L will be a fixed point of ΦSvL,P , which contradicts the
assumption that I L is the least fixed point of ΦSvL,P . 2
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One should observe, that Proposition 6(1.) does not hold if we consider
comp(ground(P)) instead of wcomp(ground(P)) and the Fitting semantics in-
stead of the  Lukasiewicz semantics. As an example consider again P1 = {p← q}
and let I = 〈∅, {p, q}〉. IF is a model for comp(P1), but ΦSvL,P1(I) = 〈∅, ∅〉 6= I.
This is counter example for Lemma 4(3) in [15].

Proposition 7. Let P be an extended program.
If I L(wcomp(ground(P))) = >, then I L(ground(P)) = >.

Proof. If I L(wcomp(ground(P))) = >, then for all A↔ F ∈ wcomp(ground(P))
we find I L(A ↔ F ) = >. By the law of equivalence we conclude I L((A ← F ) ∧
(F ← A)) = > and, consequently, I L(A← F ) = >. Let F = Body1∨Body2∨ . . ..
We distinguish three cases:

1. If I L(A) = >, then we find I L(A ← Bodyi) = > for all A ← Bodyi ∈
ground(P ).

2. If I L(A) = ⊥, then for all i ≥ 1 we find I L(Bodyi) = ⊥ and, consequently,
I L(A← Bodyi) = > for all A← Bodyi ∈ ground(P ).

3. If I L(A) = u then either I L(F ) = ⊥ or I L(F ) = u. The former possibility
being similar to case 2. we concentrate on the latter. If I L(F ) = u then
for all i ≥ 1 either I L(Bodyi) = u or I L(Bodyi) = ⊥. In any case, we find
I L(A← Bodyi) = > for all A← Body ∈ ground(P). 2

From Proposition 6 and Proposition 7 we can derive Corollary 2 for Stenning
and Lambalgen’s operator.

Corollary 2. Let P be an extended program.
If I L is a fixed point of ΦSvL,P then I L(ground(P)) = >.

Proof. The corollary follows immediately from Propositions 6 and 7. 2

One should observe that contrary to Lemma 4 (1.) of [15] this corollary
does not hold under the Fitting semantics. Reconsider P1 = {p ← q}, then
lfp(ΦSvL,P1) = 〈∅, ∅〉 and, thus, both p and q are mapped to u. Under this
interpretation P1 is mapped to u as well. One should also note that the least
fixed point of the Stenning and van Lambalgen operator for a given program P
is not necessarily the least model of P. Reconsidering P ′1 = {p← q, q ← ⊥} we
find lfp(ΦSvL,P′

1
) = 〈∅, {p, q}〉 whereas the least model of under the  Lukasiewicz

semantics is P ′1 = 〈∅, ∅〉.

6 Two Examples

In this section we present two examples to illustrate the difference between the
Fitting and the Stenning and van Lambalgen operator. Suppose we want to
model an agent driving a car. One rule would be that he may cross an intersection
if the traffic light shows green and there is no unusual situation:

cross ← green,¬unusual situation.
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An unusual situation occurs if an ambulance wants to cross the intersection from
a different direction:

unusual situation ← ambulance crossing .

In addition, suppose that the green light is indeed on:

green← >.

Let P6 be the set of these clauses. It is easy to see that

lfp(ΦF,P6) = 〈{green, cross}, {unusual situation, ambulance crossing}〉 .

Hence, not knowing anything about an ambulance, our agent will assume that
no ambulance is present, hit the accelerator, and speed into the intersection.
One should observe that not knowing anything about an ambulance may be
caused by the fact that the agent’s camera is blurred or the agent’s microphone
is damaged. His assumption that no ambulance is present is made by default.
On the other hand,

lfp(ΦSvL,P6) = 〈{green}, ∅}〉 .
In this case, the agent doesn’t know whether he may cross the intersection.
Inspecting his rules he may find that in order to satisfy the conditions for the
first rule, he must verify that no ambulance is crossing. In doing so, he may
extend P6 to P ′6 = P6 ∪ {ambulance crossing ← ⊥} yielding

lfp(ΦSvL,P6′ ) = 〈{green, cross}, {unusual situation, ambulance crossing}〉 .

Now, the agent can safely cross the intersection.

The second example is taken from [4]. Byrne has confronted individuals with
sentences like If Marian has an essay to write, she will study late in the library.
She does not have an essay to write. If she has textbooks to read, she will study
late in the library. The individuals are then asked to draw conclusions. In this
example, only 4% of the individuals conclude that Marian will not study late in
the library. Although Byrne uses these and similar examples to conclude that
(classical) logic is inadequate for human reasoning, Stenning and van Lambalgen
have argued in [15] that the use of three-valued logic programs under completion
semantics is indeed adequate for human reasoning. They represent the scenario
by

P7 = {l← e ∧ ¬ab1, e← ⊥, ab1 ← ⊥, l← t ∧ ¬ab2, ab2 ← ⊥},
where l denotes that Marian will study late in the library, e denotes that she
has an essay to write, t denotes that she has a textbook to read, and ab denotes
abnormality. In this case, we find lfp(ΦSvL,P7) = 〈∅, {ab1, ab2, e}〉, from which
we conclude that it is unknown whether Marian will study late in the library.
On the other hand, lfp(ΦF,P7) = 〈∅, {ab1, ab2, e, t, l}〉. Using the Fitting operator
one would conclude that Marian will not study late in the library. Thus, this
operator leads to a wrong answer with respect to the discussed scenario from
human reasoning, whereas the Stenning and van Lambalgen operator does not.
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Property Fitting  Lukasiewicz

Model Intersection No Yes

Fixed points of ΦF,P are models of comp(ground(P)) Yes† Yes

Fixed points of ΦF,P are models of P No Yes

Fixed points of ΦSvL,P are models of wcomp(ground(P)) Yes∗ Yes

Fixed points of ΦSvL,P are models of P No Yes

Table3. A comparison between the Fitting and the  Lukasiewicz semantics for logic
programs. We have highlighted the results which were obtained by formal proofs or by
counter examples in this paper. The result marked by † was formally proven in [7]. The
result marked by ∗ was not proven formally in [15] nor in this paper, but we conjecture
that it holds.

7 Conclusion

Table 3 compares the Fitting and  Lukasiewicz semantics for logic programs as
discussed in this paper. In [15] many more examples are given to support the
claim that human reasoning can be adequately modelled using completion-based
propositional logic programs and the Stenning and van Lambalgen operator.
Here, we have extended this approach to first-order programs and have given
rigorous proofs of some of the properties of the operator under  Lukasiewicz
semantics.

In [15] and [10] connectionist implementations of the Stenning and van Lam-
balgen operator are given. The latter is based on the core method (connectio-
nis model generation using recurrent networks with feed-forward core, see e.g.
[2]), which has been applied to propositional, first-order, multi-valued as well as
modal logic programs (see e.g. [3,6]).

The role of negative facts in extended logic programs needs to be discussed.
The name negative fact is considered only with respect to the (weak) completion
of a program as, otherwise, a negative fact like A ← ⊥ is also mapped to true
by interpretations which map A to u or >. If in addition a program contains
a clause with head A, then negative facts can be eliminated without changing
the semantics of the program. This is hardly the intention of a negative fact in
human reasoning, where an individual may gather some support for a fact as
well as its negation. An alternative idea would be to add ⊥ ← A to a program
and treat this as a constraint, but this needs to be investigated in the future.

We would like to find a syntactic characterization of SvL-acceptability and
relate it to corresponding characterizations of F-acceptability. Likewise, we would
like to find conditions under which the Stenning and van Lambalgen operator is
a contraction and relate it to corresponding findings with respect to the Fitting
operator (see [8]).

Last but not least it remains to be seen which semantics is better suited for
logic programming, common sense as well as human reasoning. It appears that
the  Lukasiewicz semantics has nicer theoretical properties, but we still have to
investigate how this semantics relates to questions concerning computability and
termination. It also appears that the  Lukasiewicz semantics gives more flexibilty
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than the Fitting semantics concerning common sense reasoning problems. As far
as human reasoning is concerned we would like to find out how individuals treat
implications where the premise as well as the conclusion are undefined as this is
the distinctive feature between the  Lukasiewicz and the Fitting semantics.
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13. J.  Lukasiewicz. O logice trójwartościowej. Ruch Filozoficzny, 5:169–171, 1920.

English translation: On Three-Valued Logic. In: Jan  Lukasiewicz Selected Works.
(L. Borkowski, ed.), North Holland, 87-88, 1990.

14. A. Mycroft. Logic programs and many-valued logic. In Proceedings of the Sympo-
sium of Theoretical Aspects of Computer Sciecne (STACS), pages 274–286, 1984.

15. K. Stenning and M. van Lambalgen. Human Reasoning and Cognitive Science.
MIT Press, 2008.

16. J. E. Stoy. Denotational Semantics. MIT Press, Cambridge, 1977.


