
Modelling Dynamics in Semantic Web Knowledge Graphs
with Formal Concept Analysis

Larry González
Center for Advancing Electronics Dresden (cfaed)

TU Dresden, Germany
larry.gonzalez@tu-dresden.de

Aidan Hogan
Center for Semantic Web Research

DCC, Universidad de Chile
ahogan@dcc.uchile.cl

ABSTRACT

In this paper, we propose a novel data-driven schema for large-
scale heterogeneous knowledge graphs inspired by Formal Concept
Analysis (FCA). We first extract the sets of properties associated
with individual entities; these property sets (aka. characteristic sets)
are annotatedwith cardinalities and used to induce a lattice based on
set-containment relations, forming a natural hierarchical structure
describing the knowledge graph. We then propose an algebra over
such schema lattices, which allows to compute diffs between lattices
(for example, to summarise the changes from one version of a
knowledge graph to another), to add diffs to lattices (for example, to
project future changes), and so forth.While we argue that this lattice
structure (and associated algebra) may have various applications,
we currently focus on the use-case of modelling and predicting the
dynamic behaviour of knowledge graphs. Along those lines, we
instantiate and evaluate our methods for analysing how versions
of the Wikidata knowledge graph have changed over a period of 11
weeks. We propose algorithms for constructing the lattice-based
schema from Wikidata, and evaluate their efficiency and scalability.
We then evaluate use of the resulting schema(ta) for predicting how
the knowledge graph will evolve in future versions.

CCS CONCEPTS

• Information systems → Semantic web languages; Graph-
based database models;

KEYWORDS

Semantic Web, Schema, Knowledge Graph, Dynamics, FCA
ACM Reference Format:

Larry González and Aidan Hogan. 2018. Modelling Dynamics in Semantic
Web Knowledge Graphs with Formal Concept Analysis. InWWW 2018: The
2018 Web Conference, April 23–27, 2018, Lyon, France. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3178876.3186016

1 INTRODUCTION

Graph-based data models [5] have become increasingly common
in data management scenarios that require flexibility beyond what
is offered by traditional relational databases. Such flexibility is
particularly important in Web scenarios, where potentially many
users may be involved (either directly or indirectly) in the creation,

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186016

management and curation of data, where data may be incomplete,
properties may have multiple values, and the data schema may be
subject to frequent change. This need for flexibility has given rise
to the adoption of graph-based models for various applications,
including Facebooks’s Open Graph Protocol, Google’s Knowledge
Graph, schema.org, and so forth. In other applications, users may
further have control over the schema, allowing not only to edit
nodes and edges in the graph, but also to define new types of nodes
and edges; an example of such a scenario is theWikidata knowledge
graph [39] – hosted by the Wikimedia Foundation and seen as a
source of data to complement Wikipedia – where users can add
new properties and types that can be used to define further data.

While graphs enable increased levels of flexibility in terms of
how a given data collection is managed and curated, on the flip-side,
this flexibility comes with the inevitable cost of higher levels of het-
erogeneity, where involved entities may be defined in diverse ways,
data may have various levels of (in)completeness, etc. Conceptually
understanding the current state of a knowledge graph – in terms of
what data it contains, what it is missing, how it can be effectively
queried, what has changed recently, etc. – is thus a major challenge:
it is unclear how to distil an adequate, high-level description that
captures an actionable overview of knowledge graphs.

We thus need well-founded methodologies to make sense of
knowledge graphs, where an obvious approach is to define some
notion(s) of schema for such graphs. The traditional approach in
the Semantic Web has been what Pham and Boncz [31] call the
schema first approach: define the schema that the data should follow.
The most established language for specifying semantic schemata is
RDF Schema (RDFS) [9], which allows for defining the semantics
of terms used in the RDF [37] graph-based model; however, such
an approach does not help to understand the data that an RDF
graph contains since defined terms need not be used and further
undefined terms may be used in such data. More recently, validating
schemata – such as the Shapes Constraint Language (SHACL) [27] –
have been proposed that allow for defining various constraints that
compliant RDF graphs must follow; however, the purpose of such
schemata is to constrain and validate graphs rather than to gain an
understanding of the legacy data contained in a given graph.

An alternative to the schema first approach is the schema last
approach [31], which foregoes an upfront schema and rather lets
the data evolve naturally; thereafter, the goal is to understand what
the legacy graph data contain by extracting high-level summaries
that characterise the graph, resulting in a data-driven schema. Due
to a growing realisation that traditional notions of schema are
not enough, various works have emerged on this topic, trying to
extract implicit structure from – and ultimately make sense of –
diverse RDF graphs [1, 2, 10–14, 19, 20, 25, 31, 32, 36]. Such works

https://doi.org/10.1145/3178876.3186016
https://doi.org/10.1145/3178876.3186016

consider various applications, be it to help users write queries, to
build browsing interfaces, to optimise query processing, to identify
abstract topics covered, to model topological changes, etc.

In this paper, we propose yet another approach to compute a
data-driven schema from such graphs; more specifically, our ap-
proach is inspired by formal concept analysis (FCA) and produces
a lattice of “concepts” based on the properties (outgoing edge la-
bels) for all entities in the graph (also known as characteristic sets).
A key novelty of our approach is to propose an FCA-style frame-
work that can be applied to very large, diverse, graph-structured
knowledge-bases. To validate the utility of the FCA-based schema
extracted by this framework, as our use-case, we study the problem
of summarising the dynamics of a dataset and of predicting future
high-level changes. To address this use-case, we propose a novel
abstract algebra over FCA-style lattices that allows for computing
diffs between two such schemas (through a subtraction operator)
and adding such diffs to given schemata in order to project future
schema-level changes (through an additional operator).

We apply this framework to compute lattices for 11 versions
of the Wikidata knowledge graph, evaluating their suitability for
the use-case of predicting future, high-level changes. We select
Wikidata as: (1) it provides a history of weekly versions that we
can use for evaluating predictions, (2) it is edited by thousands of
users, meaning that significant changes are observed week-to-week,
(3) the scale and diversity of the dataset offer (to the best of our
knowledge) an unprecedented challenge for FCA-style techniques,
requiring novel methods. Our results show that the proposed frame-
work can scale to datasets like Wikidata and that it can provide
better predictions than a baseline method using a linear model.

Contributions: Our main contributions are as follows: (1) We pro-
pose a notion of formal context and concepts for applying FCA-style
techniques to RDF graphs. (2) To improve scalability, we propose
using an intermediary lattice that does not materialise the full lat-
tice but rather allows for the concepts to be lazily computed (as
needed). (3) We propose an algebra for (a) computing a high-level
diff between two versions of an RDF graph based on our lattice
structures, and (b) adding lattices to predict future changes. (4) We
evaluate our methods by extracting the lattices for 11 weekly ver-
sions of the Wikidata knowledge graph, presenting performance
and scalability results, and assessing the quality of predictions.

Paper outline: Section 2 presents related work in the areas of
data-driven schemata, FCA techniques and SemanticWeb dynamics.
Section 3 presents preliminaries relating to RDF and FCA. Section 4
presents our framework for extracting lattices from RDF graphs, for
which Section 5 discusses concrete algorithms. Section 6 describes
an algebra for computing diffs and predicting future changes in lat-
tices. Section 7 presents our evaluation before Section 8 concludes.

2 RELATEDWORKS

We now provide an overview of the most pertinent related works
in the areas of data-driven schemata for RDF, FCA on the Semantic
Web, and modelling dynamics in knowledge graphs.

Data-driven RDF schemata: A variety of works have proposed
methods to summarise, profile and/or compute schemata from RDF
graphs (as opposed to defining an upfront schema for RDF graphs,

per the RDFS [9] and SHACL [27] standards). A common approach
is to compute a graph summary based on various notions of quotient
graphs [12], which first define an equivalence relation on nodes in
the input graph, where each node partition induced by the relation
is then considered a node in the quotient graph; such equivalence
relations can be defined in terms of, e.g., bisimulations [10, 14, 32,
36], node types [11, 19, 20, 25], isomorphism [12], and so forth. An
interesting property of such quotient graphs is that they can (often)
preserve some notion of the connectivity of the original graph.

Further approaches rather consider extracting a meta-data sum-
mary – such as a VoID description [4] – from the graph [8, 23, 29, 34];
however, such approaches tend to extract statistical descriptions
rather than inherent structures from the data (though VoID’s dataset
partitions [4] do capture some notion of structure).

Other approaches for computing inherent structures from an
RDF dataset are based on clustering [1], latent topic analysis [7],
association rule mining [2], n-ary relations [31], prototypes [13],
formal concept analysis [6, 16, 22], and more besides. The approach
we propose falls into the latter category, applying formal concept
analysis to RDF graphs; we now discuss such works in more detail.

FCA on the Semantic Web: Our proposal is inspired by methods
proposed in the Formal Concept Analysis (FCA) community [33, 40].
In fact, we are far from the first authors to consider applying FCA
techniques to a Semantic Web context, where amongst such works
we can mention the proposal by Rouane-Hacene et al. [35] for Rela-
tional Concept Analysis (RCA), where FCA is applied individually
to entities of different types to create a concept lattice for each
type; the work by Alam et al. [3] on applying FCA to help explore
and assess the completeness of Linked Datasets; the evaluation of
Kirchberg et al. [26] for the performance of FCA algorithms applied
to Linked Datasets; as well as works by Formica [21] and d’Aquin
and Motta [15] for facilitating search and question answering appli-
cations over Semantic Web datasets. However, while some of these
papers do deal with datasets similar to our own (e.g., DBpedia),
all of the papers we have observed apply FCA over closed subsets
of datasets, typically including a subset of entities of a particular
type. For example, in the performance-focussed paper of Kirchberg
et al. [26], the largest datasets considered contain in the order of
35,000 entities, whereas we consider an FCA-style analysis over full
(truthy) Wikidata, which describes tens of millions of entities.

Broadening the search to more general FCA methods at large
scale, we could find works by Xu et al. [41] and Krajca and Vy-
chodil [28] that (like us) propose to use the distributed MapReduce
framework to enhance the scalability of the FCA process; however,
the largest dataset considered by Xu et al. [41] contains in the or-
der of 100,000 entities, while the largest considered by Krajca and
Vychodil [28] contains in the order of 33,000 entities—still orders of
magnitude below our target scale. Hence, at least to the best of our
knowledge, no work has considered applying FCA over a dataset
as diverse and large as Wikidata; in fact, as we will discuss later,
typical FCA methods require adaptations to scale to such levels.

Modelling Dynamics on the Semantic Web: Our main use-case for
applying FCA over Wikidata is to model the dynamic behaviour
of the dataset and predict future changes. Thus within our related
works, we can consider works relating to the modelling of changes

in Semantic Web knowledge graphs. Within this area, we can con-
sider, for example, the work by Umbrich et al. [38], who define
various types of entity- and document-level changes in Linked
Data, looking to see if such changes follow a Poisson distribution.
Later work by Käfer et al. [24] proposed the Dynamic Linked Data
Observatory to collect weekly snapshots of Linked Data crawled
from theWeb; analysing various aspects of the dynamics of datasets,
they classify websites by the types of changes observed, be they bulk
changes, continuous changes, or simply static datasets. The data
collected by Käfer et al.’s observatory was later used in follow-up
work by, e.g., Dividino et al. [18] for improving cache maintenance.
To the best of our knowledge, however, no work has attempted to
predict high-level changes in such datasets; rather the focus of such
work has been on modelling and analysing historical dynamics.

3 PRELIMINARIES

In order to present a formal framework for the paper, we focus on
the RDF data model. However, the techniques and results developed
herein generalise to other graph-structured data models [5].

RDF terms and graphs: RDF is a graph-structured model based
on three disjoint sets of terms: IRIs (I), literals (L) and blank nodes
(B). Claims involving these terms can be organised into RDF triples
(s,p,o) ∈ IB× I× IBL,1 where s is called subject, p is called predicate,
and o is called object. An RDF graph G is then a finite set of RDF
triples, where a triple (s,p,o) ∈ G can be viewed as an edge of the
form s

p
−→ o in a directed edge-labelled graph. The terms used in

the predicate position are referred to as properties. We use the term
entity to refer to the real-world objects referred to by the subjects
of the graph. Given an RDF graphG , for • ∈ {s, p,o}, we denote by
π•(G) the projection of the set of terms appearing in a particular
triple position in G; e.g., πs(G) := {s | ∃p,o : (s,p,o) ∈ G}.

Formal contexts and concepts: Formal concept analysis (FCA) is a
methodology for extracting a concept hierarchy from sets of entities
and their properties [40]. More specifically, the methodology is
based on extracting formal concepts from formal contexts. A formal
context is a triple X = (E,A, I), where E is a set of entities,2 A is a
set of attributes, and I ⊆ E ×A is the incidence: a set of pairs such
that (e,a) ∈ I if and only if the attribute a is defined for entity e .

Towards defining formal concepts, we give some initial defini-
tions. Given a formal context X = (E,A, I), for a subset of entities
F ⊆ E, let ⟦F⟧X := {a ∈ A | ∀f ∈ F : (f ,a) ∈ I }; conversely, for a
subset of attributes B ⊆ A, let ⟦B⟧X := {e ∈ E | ∀b ∈ B : (e,b) ∈ I }.
Thus, for a set of entities, ⟦·⟧ takes the set of attributes they all
share in common, while for a set of attributes, ⟦·⟧ takes the set of
entities they all share in common. A formal concept is then a pair
(F ,B) where: (1) F ⊆ E, (2) B ⊆ A, (3) ⟦F⟧X = B, and (4) F = ⟦B⟧X .
In the formal concept (F ,B), the set F is called the extent of the
concept while the set B is called the intent of the concept.

In terms of inducing a concept hierarchy, let (F1,B1) and (F2,B2)
be two formal concepts for the formal context X = (E,A, I). We
define the partial order ≤ based on set containment of intent such
that (F1,B1) ≤ (F2,B2) iff B1 ⊆ B2. Letting C denote the set of all

1We use, e.g., IB as a shortcut for I ∪ B.
2In the FCA literature, it is more typical to refer to a set of objects; we avoid this
nomenclature since it clashes with the notion of an object in an RDF triple.

formal concepts in X , then (E, ⟦E⟧X) serves as the bottom context
denoting the attributes that all entities share, while (⟦A⟧X ,A) serves
as the top concept (⊤) denoting the entities using all attributes;
since for any c ∈ C it holds that ⊥ ≤ c ≤ ⊤, we can say that (C, ≤)
forms a complete lattice, known as the concept lattice. We remark
that ⟦E⟧X and ⟦A⟧X can be the empty set in practice, and that
⟦A⟧X , in particular, will very often be empty. Also we note that
the same characteristics could be achieved by considering a dual
partial order based on set containment of the entities in the extent;
however, herein wewill be concernedwith the attribute-based order.
Furthermore, it will be useful to consider a non-transitive version
of the ≤ order wrt. C , which we denote by ≼, such that c ≺ c ′′ iff
c < c ′′ and there does not exist c ′ ∈ C such that c < c ′ < c ′′.

Characteristic sets: In the section that follows, we will outline
a (rather natural) notion of formal context for RDF graphs based
on characteristic sets, which were first proposed by Neumann and
Moerkotte [30] in the context of query optimisation (more specifi-
cally, for cardinality estimation). The characteristic set of an RDF
term s ∈ IBL in an RDF graph G is defined as the set of properties
associated with that subject s in G; more formally, cs(G, s) := {p |
∃o : (s,p,o) ∈ G}. The characteristic sets of the graph G are then
defined as the set of characteristic sets for all subjects in G; more
formally, overloading notation, cs(G) := {cs(G, s) | s ∈ πs(G)}.

4 FCA FOR RDF GRAPHS

We now discuss a general method by which FCA can be used to
extract a data-driven schema – in the form of a formal concept hier-
archy – from an RDF graph. We begin with a general definition that
instantiates a formal context in a natural way from an RDF graph.
However, the concept lattice resulting from such a definition is not
practical to compute at scale and hence we propose increasingly
minimal structures that should be more feasible to compute.

4.1 RDF FC-Lattice

An intuitive instantiation of FCA for RDF is given by constructing
a formal context X = (E,A, I) from an RDF graph G considering
the subject terms inG to be the entities (E := πs(G)), the properties
inG to be the attributes (A := πp(G)), and the incidence to be given
by the use of that property as a predicate on the given subject
(I := {(s,p) | ∃o : (s,p,o) ∈ G}). The notion of a formal concept in
such a setting then follows naturally from the definition of X .

Example 4.1. Consider the following example RDF graphG (in
Turtle syntax) containing five subjects and four properties.

ex:UT ex:name "U Thurman"; ex:star ex:Gattaca .
ex:GO ex:name "G Orwell"; ex:writer ex:1984 .
ex:AK ex:name "A Kurosawa"; ex:director ex:Ikiru, ex:Ran .
ex:PD ex:name "PK Dick"; ex:writer ex:Ubik, ex:Valis .
ex:CE ex:name "C Eastwood"; ex:director ex:Sully;

ex:star ex:Unforgiven, ex:Tightrope .

We can consider the formal context X = (E,A, I) of this RDF
graph as the following matrix (often known as a cross table in the
FCA literature) with the row leader denoting A, the column header
denoting E , and the matrix ticks denoting I :

ex:AK ex:CE ex:GO ex:PD ex:UT
ex:director X X

ex:name X X X X X
ex:star X X

ex:writer X X

Let d, n, s and w denote properties by their initial and A, C, G, P
and U denote subjects likewise by their initial. Within this matrix,
the maximal projections of incidence sub-matrices filled with X are
then considered to be formal concepts. For example, ({A}, {d, n})
is not considered a formal concept since it can be extended by
the C column maintaining a dense sub-matrix; on the other hand
({A, C}, {d, n}) is a formal concept since it cannot be extended by
any row or column while keeping the projected sub-matrix full.
Likewise ({G, P}, {w}) is not considered a formal concept since it can
be extended by row n to create the formal concept ({G, P}, {n, w}).

Along these lines, one can verify that the formal context repre-
sentingG has six formal conceptsC . We can draw the corresponding
lattice (C, ≤) as the following Hasse diagram, where lines denote
only direct inclusions (i.e., (C, ≼)) and the top concept ⊤ is drawn
at the top of the diagram with lesser concepts then descending:

(∅, {d, n, s, w})

({C}, {d, n, s})

({A, C}, {d, n}) ({C, U}, {n, s}) ({G, P}, {n, w})

({A, C, G, P, U}, {n})

Here we maintain attribute subsets with the same cardinality on
the same “level” where direct inclusions may skip levels as shown
for the inclusion between {n, w} and {d, n, s, w}.

Intuitively, the idea is that this lattice represents a concept hi-
erarchy distinguishing sets of entities based on the properties by
which they are defined; for example, we can see concepts in the
lattice relating to directors, actors, writers, and director–actors. We
call this the formal concept lattice or FC lattice for short. �

While the previously defined notion of a formal context and
formal concepts for RDF are quite intuitive, there are a variety of
potential practical problems to address with the FC lattice.

To start with, for a formal context X = (E,A, I), the upper bound
on the number of formal concepts is min(2 |E | , 2 |A |), bounded by
the cardinality of the powerset of entities and attributes (whichever
is smaller since the same subset of attributes or entities cannot
appear twice). The bound is tight considering, for example, a context
where E = A = {1, ...,n} and where I = {(e,a) | e , a}; now
each pair (F ,B) such that F ∩ B = ∅, F ∪ B = {1, ...,n} is a formal
concept, generating the 2n powerset of concepts (both in extent and
intent). However, under the hypothesis that many combinations of
properties – such as ex:capital and ex:director – are unlikely
to ever occur on a single subject in practice, we can speculate that
such exponentiality is unlikely to be encountered in real RDF graphs
(though this will require empirical support).

More problematically in practice, the size of individual formal
concepts can be prohibitively large, especially with respect to the
inclusion of subjects in each such concept: in most RDF graphs the

number of unique subjects will far surpass the number of unique
properties. In theWikidata knowledge graph, for example, there are
millions of subjects, with each concept being potentially of length
|πs(G)| + |πp(G)| (e.g, measured in bits) and where each subject s
in the graph G can be contained in potentially 2 |cs(G,s) | concepts.

For such reasons, given a large-scale dataset as input, from even
an initial inspection, it may not be practical to materialise the FC
concept lattice. A number of approaches have been developed to
deal with this issue by reducing the dimensionality of the concept
lattice (creating what is sometimes called an iceberg lattice) by
pruning attributes or entities that are rare, or grouping attributes or
entities that frequently coincide, and so forth (we refer to Section
5.5 of the survey by Poelmans et al. [33] for further details). We
take a rather simpler strategy as described in the following section.

4.2 RDF CS-Lattice

To avoid materialising the entire FC lattice, we rather propose
to materialise an intermediary structure from which the concept
lattice, or parts there of, can be lazily materialised, as needed. The
core intuition is to represent a non-transitive version of the FC
lattice such that, for each concept, the intent corresponds precisely
to the extent. We call this the characteristic set (CS) lattice since
each concept refers to a characteristic set and its extension.

More specifically, given a formal context X = (E,A, I), let I (e) :=
{a ∈ A | (e,a) ∈ I } denote the attributes of entity e ∈ E. We say that
(F ,B) is a CS concept of X if (1) F ⊆ E, (2) B ⊆ A, (3) for all e ∈ F ,
it holds that I (e) = B, and (4) for all e ∈ E \ F , it holds that I (e) , B.
Equivalently, (F ,B) is a CS concept of G iff B is a characteristic set
of G and F is the set of all subjects in G with characteristic set B.

However, letting C denote the set of all CS concepts of X and
considering the intent-based ordering ≤ as before, we must be
careful: namely the partially ordered set (C, ≤) is no longer a lattice
since the previous top formal concept may not be a CS concept (if
no subject uses all properties) while the bottom formal concept will
never be a CS concept (since no subject has no properties). Hence
to return to a complete lattice, we can create new top and bottom
CS concepts to return to a complete CS lattice.

Example 4.2. Let us return to the FC lattice depicted in Exam-
ple 4.1. The corresponding CS lattice is then:

(∅, {d, n, s, w})

({C}, {d, n, s})

({A}, {d, n}) ({U}, {n, s}) ({G, P}, {n, w})

(∅, ∅)

We draw with a dashed line the virtual top and bottom CS concepts
introduced to ensure the result is a lattice. Note that now, for ex-
ample, the extent of {n, s} no longer contains C even though that
entity is incident with both attributes: instead, each extent refers to
the set of entities with precisely that intent. The CS lattice is thus,
intuitively speaking, a “non-transitive” version of the FC lattice. �

The CS lattice has a number of practical benefits when compared
with the previously defined FC lattice.

First, in many use-cases, it may be useful to group subjects by
the exact set of properties that they are incident with. To give an
intuition of such a case, we will later use these lattices to compute
probabilistic predictions of how a particular subject will evolve in
a future version of the RDF graph in terms of what properties are
most likely to be added/deleted for that subject; here we need to
analyse the evolution of other subjects with precisely that set of
properties in observable historical data. For this, the CS lattice will
be a better alternative than the corresponding FC lattice.

Second, the size of this CS lattice is now bounded by the number
of subjects |πs(G)| + 2 since only one extent can contain a particu-
lar subject (with 2 referring to the top and bottom concepts). This
bound is tight if each subject is associated with a different charac-
teristic set and no subject contains all properties. Intuitively, the CS
lattice no longer contains “intermediary” concepts; for instance, in
the previous example, while there was a formal concept associated
with the intent {n}, there is no “strict” CS concept with that intent
since no subject has precisely the set of properties {n}; if it were not
needed as the bottom concept of the CS lattice, such a concept (and
other such intermediary concepts) would not be included. Taking
perhaps a better example, if we consider again the formal context
E = A = {1, ...,n}, and I = {(e,a) | e , a}, the CS lattice will
contain n + 2 concepts encoding precisely I and the required top
(∅,A) and bottom (∅, ∅) concepts. Likewise, given that each subject
appears in one extent, the average length of the CS concepts is
greatly reduced (though the upper bound is not).

We highlight that the CS lattice directly encodes the incidence
I of the formal context and (assuming all entities and attributes
appear in the incidence) thus contains sufficient information to
recompute the FC lattice, allowing to materialise formal concepts
in a lazy manner—hence why we referred to the CS lattice as an
“intermediary structure” at the outset of the section.

4.3 RDF #-Lattices

The number of subjects described by large-scale knowledge graphs
such as Wikidata or DBpedia is often in the order of millions, while
the number of properties rather tends to be in the order of thousands.
Hence we can greatly reduce the overall (e.g., in-memory) size
of the lattice by replacing the extents in each concept with their
cardinality. In other words, given a lattice (C, ≤), we define its #-
lattice as (C#, ≤) where C# := {(|F |,B) | (F ,B) ∈ C}. This may
be sufficient for a number of use-cases, such as for estimating the
cardinalities of conjunctive queries [30]. We refer to such lattices
as #-lattices, where the definition applies to either FC #-lattices or
CS #-lattices; in the following, we exemplify the latter.

Example 4.3. The CS #-lattice corresponding to Example 4.2 is
as follows (replacing the extent with its cardinality):

(0, {d, n, s, w})

(1, {d, n, s})

(1, {d, n}) (1, {n, s}) (2, {n, w})

(0, ∅)

The dashed concepts represent the top and bottom concepts in-
cluded to ensure the result is a complete lattice (other concepts
with count 0 are excluded). The hierarchy remains the same. �

We highlight that #-lattices contain the same number of concepts
as their full-extent versions; furthermore, the CS #-lattice contains
sufficient information to recreate the FC #-lattice as needed.

4.4 Alternatives

We remark that the previous notions of lattices form a natural
“base” for describing an RDF graph as part of a data-driven schema.
However, one can consider a number of variations on this theme:

(1) One could consider the properties on objects as forming a
separate “inverse” lattice based on labels for inward edges, or
potentially even combining both subject and object lattices
into one by considering virtual inverse properties.

(2) One could consider encoding the number of values that
a given subject takes for a given property into the lattice,
which would distinguish, for instance, ex:GO (with one value
for ex:writer) from ex:PD (with two values).

(3) One could consider including the values of certain (categori-
cal) properties into the lattice, such as to capture the type of
a particular entity, or its occupation, gender, etc.; this would
lead towards the notion of a many-valued context [33].

While such variations and extensions would be interesting to in-
vestigate, we consider them as part of future work, with a particular
challenge being to keep the size of the resulting lattice manageable.

5 COMPUTING LATTICES

Wenow present an overview of themethods we propose for comput-
ing the concept lattices previously described. Given a (potentially
very large) RDF graph G, our strategy is as follows: (1) We first
compute the CS concepts; given that here we must process the
entire graph, we propose an algorithm based on the MapReduce
framework to enable horizontal scaling. (2) We then compute the
hierarchy over these CS concepts to generate the CS lattice; more
precisely, we compute the direct containments and add the top and
bottom elements, giving us the CS lattice for the RDF graph. (3)
We do not directly materialise the FC lattices; rather these will be
materialised as needed for a particular use-case.

5.1 Computing the CS concepts

We compute the characteristic sets from the RDF graph using an
algorithm for the distributed MapReduce framework [17], which
consists of two main phases: a map phase where sets of key–value
pairs are assigned to machines based on their key, and a reduce
phase, where values with the same key are grouped, aggregated
and processed to produce an output on the local machine. Given
an input RDF graph as a set of triples, the algorithm for computing
CS concepts then consists of two high-level MapReduce tasks:

Task1 takes as input the set of triples from G and runs:
Map1 Each input triple (s,p,o) is mapped with key s and

value p, thus emitting pairs of the form (s,p).
Reduce1 For each key s , the pair (s, {p1, . . . ,pn }) is output

where {p1, . . . ,pn } is the set of all properties on s .
Task2 takes as input the set of pairs from Task1 and runs:

Map2 Each input pair (s, {p1, . . . ,pn }) is mapped with key
[p1, . . . ,pn] and value s . In practice, we apply a lexical
order on the properties in the key and concatenate them
to produce a canonical key for each such set.

Reduce2 For each key [p1, . . . ,pn], all subjects are collected
and the pair ({s1, . . . , sm }, [p1, . . . ,pn]) is output, corre-
sponding to a CS concept.

While conceptually straightforward, in practice we encountered
a litany of errors in trying to run these tasks over Wikidata on
rented clusters; in particular, we frequently encountered out-of-
disk errors, expensively slow runtimes, load issues, and so forth.
Hence we implemented and tested a number of improvements:

• Subjects and properties are compressed using numeric ids.
This greatly reduces space and improves performance by
allowing MapReduce to sort more data in memory, also pro-
ducing much more succinct keys for the second task.
• We tested a variety of combiners – local reducers that take
advantage of the commutativity of processing to reduce the
number of key–value pairs that need to be sent over the
network and processed on the reduce machines – for the
first task that also boosted performance.
• We also experimented with varying number of machines.

Some brief details on performance will be provided in Section 7.

5.2 Computing the CS partial order

The next challenge is to compute the CS lattice based on the subset
partial order of the set of CS concepts C computed in the previous
stage; more specifically, we compute direct containments within C .
We can then (trivially) add a top and bottom concept, as previously
described, to compute the final CS lattice. In this phase, we assume
that the intents (i.e., the characteristic sets themselves, not the lists
of subjects) fit in memory since the partial order underlying the
CS lattice only relies on the intents of the CS concepts. Indeed,
as described later in the experimental section, although over 2
million unique characteristics sets are computed for Wikidata, with
numeric compression, these fit in 16GB of memory without issue.

In order to compute the CS lattice from n characteristic sets,
the simplest algorithm we could consider is to perform

(n
2
)
pair-

wise subset comparisons, but clearly this would not be practical for
n >2,000,000, and likewise we would compute (C, ≤) (i.e., all transi-
tive containments) rather than (C, ≼) (the direct containments).

Instead we adopt the approach outlined in Algorithm 1. Here
we only consider the intents of the concepts: the characteristic
sets themselves, denoted B. We stratify these characteristic sets
into levels based on their cardinality, where level i is the set of all
characteristic sets with cardinality i (denoted B.i). Note that as per
Example 4.2, a direct containment may “skip” a level; hence wemust
check all pairs of levels. Starting with j = 2 and ending when j =m
(form the max number of levels), we compare all characteristic sets
on level j to all on levels j−1 to 1; in other words, we compare levels
in the order (B.2,B.1), (B.3,B.2), (B.3,B.1), . . . , (B.m,B.1), which
helps avoid returning indirect containments. For comparing two
levels i and j (for i < j); we have two algorithms to choose from:

(1) When i + 1 = j, we invoke removeOne, where from each
characteristic set in B.j, we remove a property and check if

Algorithm 1 Computing the CS partial order (C,≺)
1: function poset(C) ◃ C a set of CS concepts
2: B ← {B | ∃F : (F , B) ∈ C } ◃ we only need the CS intents (sets of props.)
3: initialise ≺○ ◃ will store the direct containments: ≺○ ⊆ B × B

4: let B.n := {B ∈ B : |B | = n } ◃ returns CSs on level n
5: m← max{ |B | : B ∈ B} ◃ the size of the largest characteristic set
6: for j = 2; j ≤ m; j++ do

7: for i = j − 1; i > 0; i−− do

8: if i = j − 1 then
9: ≺○← ≺○ ∪ removeOne(B.i, B.j)
10: else

11: ≺○← ≺○ ∪ rareJoin(B.i, B.j, ≺○)
12: let (F , B) ≺ (F ′, B′) if and only if (B, B′) ∈ ≺○
13: return (C, ≺)
14: function removeOne(Bi ,Bj) ◃ for Bj ∈ Bj , remove p ∈ Bj , see if set in Bi
15: initialise ≺○i, j
16: for Bj ∈ Bj do
17: for p ∈ Bj do
18: B′j ← Bj \ {p }
19: if B′j ∈ Bi then
20: ≺○i, j ← ≺○i, j ∪ {(Bi , Bj)}
21: return ≺○i, j

22: function rareJoin(Bi ,Bj ,≺○) ◃ check ⊂ only for sets sharing rare property
23: initialise ≺○i, j
24: for Bi ∈ Bi do
25: for Bj ∈ Bj : Bi [0] ∈ Bj do ◃ for all Bj containing rarest prop. of Bi
26: if Bi ⊂ Bj ∧ (Bi , Bj) < ≺○+

then◃ if subset and not reachable in ≺○
27: ≺○i, j ← ≺○i, j ∪ {(Bi , Bj)}
28: return ≺○i, j

the result is in B.i . We use an index to check membership in
B.i where we then require |B.j | × j lookups on that index.

(2) Otherwise we apply rareJoin where, for each characteristic
set Bi ∈ B.i , we find the rarest property p ∈ Bi in terms of
appearing in the fewest sets of B (choosing arbitrarily based
on lexical order if tied), retrieve each Bj ∈ B.j that also con-
tains p, and then check if Bi ⊂ Bj and (Bi ,Bj) is not already
reachable in the current partial order; if so, we add the pair
(Bi ,Bj) to the partial order. Note that in a preprocessing step,
all properties in each input characteristic set are ordered by
rarest first, and we create an inverted index from properties
to characteristic sets by level; hence finding all Bj match-
ing the condition on Line 25 requires one lookup on the
inverted index. While the upper-bound remains |B.i | × |B.j |
set-containment checks, in practice, comparing only pairs
of sets that share their rarest property should greatly reduce
the number of comparisons from a brute-force method.

In terms of the condition for choosing one algorithm or the
other, note that if we considered a generalised method removeN
for n = j − i ≤ N , we would end up having to perform

(j
n
)
lookups

on theB.i index, which would be problematic forn ≈ j
2 . Empirically

we found that removeOne was the only case faster than rareJoin.

5.3 Computing the lattices

Once we have the partially ordered set returned by Algorithm 1, to
derive the final CS lattice, we need to compute the extent and the
top and bottom concepts. Given that the extent (computed by the
MapReduce framework) does not fit in-memory, we simply leave it
indexed on-disk. To complete the CS lattice, we add the top concept
(⟦A⟧X ,A) forA the set of all properties and ⟦A⟧X the set of subjects
with all properties; and the bottom concept (∅, ∅).

6 LATTICE DIFF-ALGEBRA

We could intuitively consider the FC/CS lattice as encoding the
possible paths of evolution of entities in a knowledge graph: in a
monotonic knowledge graph where properties are continuously
added to entities (often the case for incomplete knowledge-graphs
where new information is constantly being added), we could con-
sider new entities as beginning at the bottom of the lattice and
evolving towards the top of the lattice. Referring back to Exam-
ple 4.2, for instance, we could consider new entities as first having
ex:name defined, where they can then take a path towards being a
director, an actor, or a writer; if already an actor or director, they
may become an actor–director, and so forth. The cardinality of
the extent likewise encodes information about the popularity of
certain paths along which entities evolve. Of course, if the knowl-
edge graph is not monotonic, entities may also descend the lattice
as properties are removed. In any case, we can see the lattice as
somehow encoding possible evolutions of an entity.

Taking this one step further, if we have the lattices for two
different versions of a knowledge graph, we can apply a diff to see
high-level changes between both versions of the data. Furthermore,
given such a diff between two versions, we could further consider
adding that diff to the most recent version to try predict future
changes. We now capture precisely these intuitions with an algebra
for computing diffs between lattices and adding diffs to lattices.

6.1 Defining CS-lattice diffs

Let Xi = (Ei ,Ai , Ii) and X j = (Ej ,Aj , Ij) be formal contexts for
two versions of an RDF graph (i being some version before j), and
let Li := (Ci , ≤) and Lj := (Cj , ≤) be the two corresponding CS
lattices, where we remark that ≤ is defined forCi ∪Cj (being based
on a general notion of set containment). Further let E := Ei ∪ Ej
and A := Ai ∪Aj . We can define a lattice diff ∆j,i ⊆ 2A × E × 2A as
a set of triples denoting for each entity in E its intent in Cj and in
Ci . More specifically, we say that ∆j,i = Lj − Li iff

∆j,i = { (Bj , e,Bi) | (e ∈ Ei ∩ Ej and Ii (e) = Bi and Ij (e) = Bj)

or (e ∈ Ei \ Ej and Ii (e) = Bi and Bj = ∅)
or (e ∈ Ej \ Ei and Bi = ∅ and Ij (e) = Bj) }

Note that if e is a new entity (e ∈ Ej \ Ei), we mark it as coming
from the bottom CS concept (∅, ∅) of ∆j,i , whereas if e is removed
(e ∈ Ei \ Ej), we mark it as going to the bottom CS concept.

Example 6.1. At the top of Figure 1, we provide an example of
the diff computed between two lattices, where L1 is the CS lattice
previously introduced in Example 4.2 andL2 is taken as an example
of how the lattice evolves in the next version of the dataset. The
diff is then a directed edge-labelled graph where the nodes are the
sets of characteristic sets and the edges are labelled according to
the entities that move between the sets from version 1 to 2. �

As before, we can also consider a cardinality version of a diff
∆#
j,i ⊆ 2A × N × 2A where instead of computing the entities that

move between characteristic sets, we simply count the number of en-
tities that move. Thus given ∆j,i , let ∆j,i (Bj ,Bi) := {e : (Bj , e,Bi) ∈
∆j,i }; now we can define ∆#

j,i := {(Bj ,n,Bi) : n = |∆j,i (Bj ,Bi)|}.

6.2 Predicting future #-lattices

Given two CS lattices L1 and L2 referring to two versions of an
RDF graph, we could consider using the diff ∆2,1 = L2 − L1 to
predict a future version of the dataset through an operation such
as L[3] = L2 + ∆2,1. However, such an operation would not make
much sense since specific entities in ∆2,1 have already reached their
destination. Instead we can consider predicting the CS #-latticeL#

[3]
by defining the following algebraic operation: L#

[3] = L
#
2 + ∆#

2,1
(or in other words, L#

[3] = L
#
2 + (L

#
2 − L

#
1)). More generally, given

∆#
j,i = L

#
j − L

#
i , let L

#
k be derived from a third version of the

graph; we now wish to “add” the changes between the ith and jth

versions to the kth version to predict the (k + j − i)th version.3 We
will thus define the operation L#

k + ∆#
j,i as producing a #-lattice

L#
k, j,i := (C

#
k, j,i , ≤) predicting L

#
[k+j−i]; we are left to defineC

#
k, j,i .

A natural idea is to sum the incoming entities and subtract the
outgoing entities for each characteristic set between versions i and j
and add that total to version k ; for example, let us say that n entities
move from some characteristic set {p,q} in version i to {p,q, r }
in version j; then starting with C#

k , we could add n to the number
of entities for {p,q, r } and remove n from {p,q} when computing
C#
k, j,i . But what if C

#
k does not have n entities in the source charac-

teristic set {p,q} to “move” to {p,q, r }? Furthermore, what if more
entities should move from {p,q} to another set {p,q, s}?

To resolve such issues, rather than apply transitions in terms of
absolute numbers of entities, we apply them in terms of the ratio
of entities that move from the source characteristic set. Formally,
first let Bi , Bj , Bk denote the characteristic sets in C#

i , C
#
j , C

#
k , let

C#(B) denotem such that (m,B) ∈ C# (or 0 if no such value form
exists), and let ∆#

j,i (Bj ,Bi) denote n such that (Bj ,n,Bi) ∈ ∆#
j,i (or

0 if no such value for n exists). Next we define the ratio of entities

of Bi moving to Bj as ρ j,i (Bj ,Bi) :=
∆#
j,i (Bj ,Bi)
C#
i (Bi)

if C#
i (Bi) , 0; for

convenience, we also define the ratio for characteristic sets not inBi
to indicate no change where, in such a case (i.e, where C#

i (Bi) = 0),
if Bi = Bj then ρ j,i (Bj ,Bi) := 1, otherwise ρ j,i (Bj ,Bi) := 0. Finally,
we define C∗k, j,i := {(σ (B),B) | B ∈ Bj ∪ Bk ,B , ∅ and σ (B) > 0},
where σ (B), in turn, is defined as:4

σ (B) := round ©«
∑

B′∈Bk \{∅}

ρ j,i (B,B
′) ×C#

k (B
′)
ª®¬ + ∆#

j,i (B, ∅) .

The summand ∆#
j,i (B, ∅) adds the absolute number of fresh enti-

ties (nowhere in version i) added to B in version j. Finally, we add
top and bottom concepts to C∗k, j,i to generate a lattice L#

k, j,i =

(C#
k, j,i , ≤): let B

∗
k, j,i denote all characteristic sets in C∗k, j,i and

A∗k, j,i their union; if A
∗
k, j,i ∈ B

∗
k, j,i , we add only the bottom con-

cept (0, ∅); otherwise we add (0, ∅) and the top concept (0,A∗k, j,i).

Example 6.2. At the bottom of Figure 1, we provide an example
of adding a #-diff to a #-lattice to predict the next #-lattice (with L#

2

3In practice, this assumes versions with regular periodicity, e.g., weekly versions; often
k = j with both referring to the latest version from which predictions are made.
4round(·) denotes rounding towards positive infinity (applying ceiling for 2n+1

2).

(∅, {d, n, s, w})

({U}, {d, n, s}) ({P}, {n, s, w})

({C}, {d, n}) ({B, G, K, Z}, {n, w})

(∅, ∅)

(∅, {d, n, s, w})

({C}, {d, n, s})

({A}, {d, n}) ({U}, {n, s}) ({G, P}, {n, w})

(∅, ∅)

{d, n, s} {n, s, w}

{d, n}

C

{n, s}

U

{n, w}

P
G

∅

A B, K, Z

L2 − L1 = ∆2,1
(0, {d, n, s, w})

(1, {d, n, s}) (1, {n, s, w})

(1, {d, n}) (4, {n, w})

(0, ∅)

{d, n, s} {n, s, w}

{d, n}

1

{n, s}

1

{n, w}

1
1

∅

1 3

(0, {d, n, s, w})

(3, {n, s, w})

(1, {d, n}) (5, {n, w})

(0, ∅)

L#
2 + ∆#

2,1 = L#
2,2,1

Figure 1: Computing a diff between two CS lattices and adding it to the most recent CS #-lattice to predict the next CS #-lattice

and ∆#
2,1 based on the top of the figure). Take the case of {n, w}: in

L#
2 this characteristic set has 4 entities, of which, ∆

#
2,1 states that

half (2) should stay in {n, w} while half (2) should go to {n, s, w};
furthermore, 3 fresh entities are defined for {n, w}; hence the pre-
dicted value for {n, w} is 5. Consider on the other hand {n, s, w}:
in ∆#

2,1 it has no outgoing edges since it was not present in L1,
hence the one entity in L#

2 remains and 2 are added from {n, w} as
aforementioned; thus the predicted value is 3. Finally, we highlight
that {d, n, s} is predicted empty: though ∆#

2,1 suggests that entities
should be added from {n, s}, no such entities are available in L#

2 ,
and the entity previously in {d, n, s} moves to {d, n} (while the
previous entity in {d, n} is deleted, leaving one entity in {d, n}). �

These algebraic operations then allow to predict future high-
level changes in the RDF graph where, in particular, the #-diff
encodes a prediction on how entities will evolve and move between
characteristic sets. This has various concrete use-cases: e.g., given
a particular subject in G2 – the second version of the dataset – we
may wish to know the probability that it will change characteristic
sets – either adding or removing unique incident properties – in the
next versionG3, which we can compute based on ∆2,1 as described.

A natural generalisation of this idea is to consider the “transitive
counts” of the ancestors of a characteristic set, where rather than
considering a fixed subject, we consider the evolution of all subjects
with (at least) a given characteristic set (in line with the original FC
lattice). This is useful, for example, to predict how the results for
a query on those properties might change in the next version. To
compute such a prediction, we can simply take the predicted L#

lattice and sum the non-overlapping counts of its ancestors.
Finally, note that where n > 2 past versions of the dataset are

available, we may consider computing a mean #-diff by simply
computing the n − 1 #-diffs possible and then taking the average
of their transition values; the intuition here is to take the “mean”
transition of entities across several pairs of versions, which may
smooth the effect of bulk edits between a given pair of versions.

7 EVALUATION

The prior discussion raises a number of questions that can only be
validated empirically; in particular, we are interested in address-
ing the following primary questions: (1) Can we compute the CS
concepts at scale? (2) Can we efficiently compute the CS lattice? (3)
How large is the CS lattice produced? (4) How accurately can our
#-diffs predict future changes? Along these lines, we now present
the results of experiments for the Wikidata knowledge graph.

Data. We consider the “truthy” RDF dumps of Wikidata – with-
out qualifier information – spanning 11 weeks from 2017-04-18 to
2017-06-27. The first version has 1,102,242,331 triples, 54,236,592
unique subjects and 3,276 unique properties, while the final version
has 1,293,099,057 triples (+17%), 57,197,406 unique subjects (+5%)
and 3,492 unique properties (+6%). Hence we see that the dataset
is growing, particularly in the volume of triples (with new triples
often using existing properties on existing subjects).

Computing CS concepts. We use a Hadoop cluster with a single
namenode and a varying number of datanodes. All machines had a
2.20GHz Xeon E5-2650 v4 CPU, 8GB of RAM and a 500G SSD. We
used JDK 1.8.0_121, Apache Hadoop 2.7.3 and Apache Jena 3.2.0 for
parsing. We ran a variety of experiments testing different combiner
strategies, compression techniques, varying number of reducers,
and so forth. For reasons of space, we do not present the full details
of these experiments except to note that the fastest configuration
involved processing data with numeric ID compression (more than
halving the processing time including compression time on a single
machine) and with a concatenation-based combiner, we save an
additional 12.5% of computational time. In experiments with 4, 8,
16 and 32 machines, we found that after 8 machines, little gain in
wall-clock computation time was observed, perhaps due to skew in
the characteristic set distribution. For the largest dataset, numeric
compression took 01:21:05 (HH:MM:SS), while Task1 took 01:06:38
and Task2 took 00:07:15; the total (wall-clock) time for computing
the CS concepts was thus 02:34:58.

The total number of characteristic sets varied from 2,004,910–
2,118,109 between the earliest and latest versions of Wikidata con-
sidered. The smallest characteristic sets contained one property,
with the largest containing 148–154 properties across the versions;
the median number of properties was 18 for all versions.

Computing CS lattices. We use a single machine for computing
the CS lattice with a 2.5GHz Intel Core i7-6500U CPU, 16GB RAM
and a 256 GB SSD. Using the strategy outlined in Algorithm 1, the
runtimes for computing the lattice varied from 06:57:59–07:51:07 for
the least-to-most recent version, with the number of edges varying
from 78,046,423–86,848,506. This corresponds to a mean indegree
(or equivalently outdegree) of ∼39–41 edges in the CS lattice.

Quality of predicted #-lattices. Finally, we turn to testing the qual-
ity of the future #-lattices we predict. For this, we run experiments
where we train on w previous weekly versions of the dataset to
predict the next version of the #-lattice. Given that we have 11 ver-
sions, we train on 1 ≤ w ≤ 6 versions to ensure at least 5 (11 −w)
predicted lattices for each experiment. To measure the quality of the
prediction, we compute the Root Mean Square Error (RMSE) and
the Mean Absolute Error (MAE) between the predicted #-lattice and
the real lattice. Note that RMSE = MAE indicates that prediction
errors have consistent magnitude (e.g., each prediction is out by
a constant factor ±n), while RMSE ≫ MAE indicates that some
errors have much larger magnitude than the average case (which
we would expect given that some characteristic sets have much
higher cardinality and much more dynamic behaviour than others).

In each case, we consider two algorithms: (1) a baseline algorithm
that, independently for each CS in the (union of) thew previous #-
lattices, applies a linear model (LM) – more specifically, using linear
regression with least squares fitting – over the previous counts for
that CS to predict the count in the subsequent version; and (2) using
our diff algebra (∆) averaged over thew previous diffs and added
to the latest version to derive the prediction.

We then apply two experiments. The first experiment considers
the counts of subjects with an exact characteristic set, evaluating the
quality of prediction given an exact CS, for example, to predict how
a particular subject might change. The results are shown in Table 1,
where we see that our diff algebra (∆) outperforms the baseline
method (LM) in all cases, with smaller error by a considerable
margin. We attribute this to the fact that ∆ considers where entities
come from, whereas LM does not: for example, if we consider two
weeks of training data where a bulk edit is made between the
two weeks adding a property p to each entity with CS {q, r}, LM
will predict the same increase again in {p, q, r} for the next week
whereas ∆ will recognise that there are no “source” entities left
in {q, r} and will not predict such an increase again. We also see
that considering more weeks improves the quality of prediction
for ∆: considering further training data allows to smooth out the
effect of certain bursty (e.g., bot) edits between recent versions. In
both cases, RMSE≫ MAE, indicating that most predictions of CS
cardinalities are accurate, but a few predictions have large errors.

The second experiment we run considers the counts of subjects
with at least a given characteristic set (but that may have further
properties); a concrete use-case would be to predict how the results
for a query with those properties may change. First, we note that
the overall error rises considerably, which is to be expected as

Table 1: Quality of predicted #-lattice for exact intent

w LM (rmse) LM (mae) ∆ (rmse) ∆ (mae)

2 167.2 0.5697 25.26 0.1286
3 173.9 0.5595 19.15 0.1134
4 186.6 0.6051 17.71 0.1078
5 196.0 0.6624 17.31 0.1020
6 202.9 0.6842 15.62 0.0941

Table 2: Quality of predicted #-lattice for transitive intent

w LM (rmse) LM (mae) ∆ (rmse) ∆ (mae)

2 1477.8 177.0 264.2 6.19
3 1458.9 162.4 209.1 5.09
4 1535.6 178.8 185.7 4.50
5 1398.8 123.4 176.7 4.15
6 1357.8 59.6 145.8 3.67

the absolute (transitive) counts likewise increase considerably. As
before, we see that the∆-based predictions considerably outperform
the LM baseline, and that the errors decrease for ∆ as further weeks
of training data are considered for the prediction.

Evaluation material: Source code and other evaluation materials
are available at: https://github.com/larryjgonzalez/rdf_dynamics.

8 CONCLUSION

In this paper, we have presented a framework for computing a
data-driven schema from large-scale knowledge graphs based on
Formal Concept Analysis. Given that FCA is challenging to apply
at scale, we proposed more lightweight structures that similarly
provide a concept hierarchy based on a lattice of characteristic sets.
We then discussed algorithms for extracting these characteristic
sets and building the resulting lattices in a scalable and efficient
manner. As a concrete use-case, we presented an algebraic method
by which these lattices can be used to predict high-level changes
in the dataset. Our evaluation over 11 weeks of Wikidata versions
– each with more than 1 billion triples, 50 million subjects and 3
thousand properties – demonstrates the feasibility of our approach.
Furthermore, we validated the quality of predictions made by our
algebraic approach against a linear-model baseline.

There are a number of future directions for follow-up work.
Aside from Wikidata, it would be interesting to conduct further
experiments on other knowledge graphs with different scales and
different types of dynamic behaviour. We also wish to investigate
other applications for our proposed schema, including query pro-
cessing, user interfaces, etc. Other variations of schema could also
be explored, including, for example, concepts that encode type
values or multiplicity, or quotient graphs based on characteristic
sets. In general, we foresee much potential in the area of deriving
data-driven schema from emergent knowledge graphs.

Acknowledgements: We thank Pablo Barceló and Pablo Muñoz for discussions that
inspired this topic. We also thank Romana Pernischova and the anonymous reviewers
for their comments. This work was supported by the Millennium Nucleus Center for
Semantic Web Research, Grant No. NC120004; by Fondecyt Grant No. 1181896; by the
German Research Foundation (DFG) within the Collaborative Research Center SFB
912 (HAEC); and by Emmy Noether grant KR 4381/1-1 (DIAMOND).

https://github.com/larryjgonzalez/rdf_dynamics

REFERENCES

[1] Ziawasch Abedjan, Toni Grütze, Anja Jentzsch, and Felix Naumann. 2014. Profil-
ing and mining RDF data with ProLOD++. In International Conference on Data
Engineering (ICDE). IEEE Computer Society, 1198–1201.

[2] Ziawasch Abedjan and Felix Naumann. 2013. Improving RDF Data Through
Association Rule Mining. Datenbank-Spektrum 13, 2 (2013), 111–120.

[3] Mehwish Alam, Aleksey Buzmakov, Víctor Codocedo, and Amedeo Napoli. 2015.
Mining Definitions from RDF Annotations Using Formal Concept Analysis. In
International Joint Conference on Artificial Intelligence (IJCAI). AAAI Press, 823–
829.

[4] Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. 2009.
Describing Linked Datasets. In Workshop on Linked Data on the Web (LDOW).
CEUR-WS.org.

[5] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and
Domagoc Vrgoč. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Computing Surveys 50, 5 (2017). https://doi.org/10.1145/3104031

[6] Franz Baader, Bernhard Ganter, Baris Sertkaya, and Ulrike Sattler. 2007. Com-
pleting Description Logic Knowledge Bases Using Formal Concept Analysis. In
International Joint Conference on Artificial Intelligence (IJCAI). 230–235.

[7] Christoph Böhm, Gjergji Kasneci, and Felix Naumann. 2012. Latent topics in
graph-structured data. InACM International Conference on Information and Knowl-
edge Management (CIKM). ACM, 2663–2666.

[8] Christoph Böhm, Johannes Lorey, and Felix Naumann. 2011. Creating voiD
descriptions for Web-scale data. J. Web Sem. 9, 3 (2011), 339–345.

[9] Dan Brickley, R.V. Guha, and Brian McBride. 2014. RDF Schema 1.1. W3C
Recommendation. (25 Feb. 2014). http://www.w3.org/TR/rdf-schema/.

[10] Peter Buneman and Slawek Staworko. 2016. RDF Graph Alignment with Bisimu-
lation. PVLDB 9, 12 (2016), 1149–1160.

[11] Stéphane Campinas, Thomas Perry, Diego Ceccarelli, Renaud Delbru, and Gio-
vanni Tummarello. 2012. Introducing RDF Graph Summary with Application
to Assisted SPARQL Formulation. In Database and Expert Systems Applications
Workshop (DEXA). IEEE Computer Society, 261–266.

[12] Šejla Čebirić, François Goasdoué, and Ioana Manolescu. 2015. Query-Oriented
Summarization of RDF Graphs. PVLDB 8, 12 (2015), 2012–2015. http://www.vldb.
org/pvldb/vol8/p2012-cebiric.pdf

[13] Michael Cochez, Stefan Decker, and Eric Prud’hommeaux. 2016. Knowledge
Representation on the Web Revisited: The Case for Prototypes. In International
Semantic Web Conference (ISWC) (Lecture Notes in Computer Science). Springer,
151–166.

[14] Mariano P. Consens, Valeria Fionda, Shahan Khatchadourian, and Giuseppe Pirrò.
2015. S+EPPs: Construct and Explore Bisimulation Summaries, plus Optimize
Navigational Queries; all on Existing SPARQL Systems. PVLDB 8, 12 (2015),
2028–2031. http://www.vldb.org/pvldb/vol8/p2028-consens.pdf

[15] Mathieu d’Aquin and Enrico Motta. 2011. Extracting relevant questions to an RDF
dataset using formal concept analysis. In International Conference on Knowledge
Capture (K-CAP). ACM, 121–128.

[16] Frithjof Dau and Baris Sertkaya. 2011. Formal Concept Analysis for Qualita-
tive Data Analysis over Triple Stores. In Advances in Conceptual Modeling (ER).
Springer, 45–54.

[17] Jeffrey Dean and Sanjay Ghemawat. 2010. MapReduce: a flexible data processing
tool. Commun. ACM 53, 1 (2010), 72–77.

[18] Renata Queiroz Dividino, Thomas Gottron, and Ansgar Scherp. 2015. Strate-
gies for Efficiently Keeping Local Linked Open Data Caches Up-To-Date. In
International Semantic Web Conference (ISWC). Springer, 356–373.

[19] Marek Dudás, Vojtech Svátek, and Jindrich Mynarz. 2015. Dataset Summary
Visualization with LODSight. In Extended Semantic Web Conference (ESWC) –
Demo. Springer, 36–40.

[20] Fernando Florenzano, Denis Parra, Juan L. Reutter, and Freddie Venegas. 2016.
A Visual Aide for Understanding Endpoint Data. In International Workshop on
Visualization and Interaction for Ontologies and Linked Data (VOILA@ISWC).
CEUR-WS.org, 102–113.

[21] Anna Formica. 2012. Semantic Web search based on rough sets and Fuzzy Formal
Concept Analysis. Knowl.-Based Syst. 26 (2012), 40–47. https://doi.org/10.1016/j.

knosys.2011.06.018
[22] Mohamed Rouane Hacene, Marianne Huchard, Amedeo Napoli, and Petko

Valtchev. 2007. A Proposal for Combining Formal Concept Analysis and Descrip-
tion Logics for Mining Relational Data. In International Conference on Formal
Concept Analysis (ICFCA). Springer, 51–65.

[23] Ali Hasnain, Qaiser Mehmood, Syeda Sana e Zainab, and Aidan Hogan. 2016.
SPORTAL: Profiling the Content of Public SPARQL Endpoints. Int. J. Semantic
Web Inf. Syst. 12, 3 (2016), 134–163.

[24] Tobias Käfer, Ahmed Abdelrahman, Jürgen Umbrich, Patrick O’Byrne, and Aidan
Hogan. 2013. Observing Linked Data Dynamics. In Extended Semantic Web
Conference (ESWC). Springer, 213–227.

[25] Sheila Kinsella, Uldis Bojars, Andreas Harth, John G. Breslin, and Stefan Decker.
2008. An Interactive Map of Semantic Web Ontology Usage. In International
Conference on Information Visualisation. 179–184.

[26] Markus Kirchberg, Erwin Leonardi, Yu Shyang Tan, Sebastian Link, Ryan K. L.
Ko, and Bu-Sung Lee. 2012. Formal Concept Discovery in Semantic Web Data. In
International Conference on Formal Concept Analysis (ICFCA). Springer, 164–179.

[27] Holger Knublauch and Dimitris Kontokostas. 2014. Shapes Constraint Language
(SHACL). W3C Working Group Note. (24 June 2014). http://www.w3.org/TR/
rdf11-primer/.

[28] Petr Krajca and Vilém Vychodil. 2009. Distributed Algorithm for Computing
Formal Concepts Using Map-Reduce Framework. In International Symposium on
Intelligent Data Analysis (IDA). Springer, 333–344.

[29] Nandana Mihindukulasooriya, María Poveda-Villalón, Raúl García-Castro, and
Asunción Gómez-Pérez. 2015. Loupe – An Online Tool for Inspecting Datasets in
the Linked Data Cloud. In International Semantic Web Conference (ISWC) Posters
& Demos. CEUR-WS.org.

[30] Thomas Neumann and GuidoMoerkotte. 2011. Characteristic sets: Accurate cardi-
nality estimation for RDF queries with multiple joins. In International Conference
on Data Engineering (ICDE). IEEE Computer Society, 984–994.

[31] Minh-Duc Pham and Peter A. Boncz. 2016. Exploiting Emergent Schemas to
Make RDF Systems More Efficient. In International Semantic Web Conference
(ISWC) (Lecture Notes in Computer Science). Springer, 463–479.

[32] François Picalausa, George H. L. Fletcher, Jan Hidders, and Stijn Vansummeren.
2014. Principles of Guarded Structural Indexing. In International Conference on
Database Theory (ICDT). OpenProceedings.org, 245–256.

[33] Jonas Poelmans, Sergei O. Kuznetsov, Dmitry I. Ignatov, and Guido Dedene. 2013.
Formal Concept Analysis in knowledge processing: A survey on models and
techniques. Expert Syst. Appl. 40, 16 (2013), 6601–6623.

[34] Laurens Rietveld, Wouter Beek, Rinke Hoekstra, and Stefan Schlobach. 2017.
Meta-data for a lot of LOD. Semantic Web 8, 6 (2017), 1067–1080.

[35] Mohamed Rouane-Hacene, Marianne Huchard, Amedeo Napoli, and Petko
Valtchev. 2013. Relational Concept Analysis: mining concept lattices from
multi-relational data. Ann. Math. Artif. Intell. 67, 1 (2013), 81–108. https:
//doi.org/10.1007/s10472-012-9329-3

[36] Alexander Schätzle, Antony Neu, Georg Lausen, and Martin Przyjaciel-Zablocki.
2013. Large-scale bisimulation of RDF graphs. In Semantic Web Information
Management (SWIM) Workshop.

[37] Guus Schreiber and Yves Raimond. 2014. RDF 1.1 Primer. W3C Working Group
Note. (24 June 2014). http://www.w3.org/TR/rdf11-primer/.

[38] Jürgen Umbrich, Michael Hausenblas, Aidan Hogan, Axel Polleres, and Stefan
Decker. 2010. Towards Dataset Dynamics: Change Frequency of Linked Open
Data Sources. In Workshop on Linked Data on the Web (LDOW). CEUR-WS.org.

[39] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85. https://doi.org/10.1145/
2629489

[40] Rudolf Wille. 2009. Restructuring Lattice Theory: An Approach Based on Hi-
erarchies of Concepts. In International Conference on Formal Concept Analysis
(ICFCA) (Lecture Notes in Computer Science). Springer, 314–339. (Reprint).

[41] Biao Xu, Ruairí de Fréin, Eric Robson, and Mícheál Ó Foghlú. 2012. Distributed
Formal Concept Analysis Algorithms Based on an Iterative MapReduce Frame-
work. In International Conference on Formal Concept Analysis (ICFCA) (Lecture
Notes in Computer Science). Springer, 292–308.

https://doi.org/10.1145/3104031
http://www.w3.org/TR/rdf-schema/
http://www.vldb.org/pvldb/vol8/p2012-cebiric.pdf
http://www.vldb.org/pvldb/vol8/p2012-cebiric.pdf
http://www.vldb.org/pvldb/vol8/p2028-consens.pdf
https://doi.org/10.1016/j.knosys.2011.06.018
https://doi.org/10.1016/j.knosys.2011.06.018
http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/rdf11-primer/
https://doi.org/10.1007/s10472-012-9329-3
https://doi.org/10.1007/s10472-012-9329-3
http://www.w3.org/TR/rdf11-primer/
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 FCA for RDF Graphs
	4.1 RDF FC-Lattice
	4.2 RDF CS-Lattice
	4.3 RDF #-Lattices
	4.4 Alternatives

	5 Computing Lattices
	5.1 Computing the CS concepts
	5.2 Computing the CS partial order
	5.3 Computing the lattices

	6 Lattice Diff-Algebra
	6.1 Defining CS-lattice diffs
	6.2 Predicting future #-lattices

	7 Evaluation
	8 Conclusion
	References

