COMPLEXITY THEORY

Lecture 10: Polynomial Space

Markus Krötzsch
Knowledge-Based Systems

TU Dresden, 21th Nov 2017
Review
The Class PSpace

We defined PSpace as:

\[\text{PSpace} = \bigcup_{d \geq 1} \text{DSpace}(n^d) \]

and we observed that

\[P \subseteq NP \subseteq \text{PSpace} = \text{NPSpace} \subseteq \text{ExpTime} \]

We can also define a corresponding notion of PSpace-hardness:

Definition 10.1:

- A language \(H \) is **PSpace-hard**, if \(L \leq_p H \) for every language \(L \in \text{PSpace} \).
- A language \(C \) is **PSpace-complete**, if \(C \) is PSpace-hard and \(C \in \text{PSpace} \).
Quantified Boolean Formulae (QBF)

A QBF is a formula of the following form:

$$\mathcal{Q}_1 X_1. \mathcal{Q}_2 X_2. \cdots \mathcal{Q}_\ell X_\ell. \varphi[X_1, \ldots, X_\ell]$$

where $\mathcal{Q}_i \in \{\exists, \forall\}$ are quantifiers, X_i are propositional logic variables, and φ is a propositional logic formula with variables X_1, \ldots, X_ℓ and constants \top (true) and \bot (false).

Semantics:

- Propositional formulae without variables (only constants \top and \bot) are evaluated as usual.
- $\exists X. \varphi[X]$ is true if either $\varphi[X/\top]$ or $\varphi[X/\bot]$ are true.
- $\forall X. \varphi[X]$ is true if both $\varphi[X/\top]$ and $\varphi[X/\bot]$ are true.

(Where $\varphi[X/\top]$ is “φ with X replaced by \top, and similar for \bot.”)
Deciding QBF Validity

True QBF

Input: A quantified Boolean formula \(\varphi \).

Problem: Is \(\varphi \) true (valid)?

Observation: We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)
Deciding QBF Validity

True QBF

Input: A quantified Boolean formula \(\varphi \).

Problem: Is \(\varphi \) true (valid)?

Observation: We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)

Consider a propositional logic formula \(\varphi \) with variables \(X_1, \ldots, X_\ell \):

Example 10.2: The QBF \(\exists X_1 \cdot \ldots \cdot \exists X_\ell. \varphi \) is true if and only if \(\varphi \) is satisfiable.

Example 10.3: The QBF \(\forall X_1 \cdot \ldots \cdot \forall X_\ell. \varphi \) is true if and only if \(\varphi \) is a tautology.
The Power of QBF

Theorem 10.4: True QBF is PSpace-complete.

Proof:

(1) True QBF ∈ PSpace:
 Give an algorithm that runs in polynomial space.

(2) True QBF is PSpace-hard:
 Proof by reduction from the word problem for polynomially space-bounded TMs.
Solving \textbf{True QBF} in PSpace

\begin{verbatim}
01 TrueQBF(\varphi) {
02 if \varphi has no quantifiers:
03 return "evaluation of \varphi"
04 else if \varphi = \exists X. \psi :
05 return (TrueQBF(\psi[X/\top]) \text{ OR } TrueQBF(\psi[X/\bot]))
06 else if \varphi = \forall X. \psi :
07 return (TrueQBF(\psi[X/\top]) \text{ AND } TrueQBF(\psi[X/\bot]))
08 }
\end{verbatim}

- Evaluation in line 03 can be done in polynomial space
- Recursions in lines 05 and 07 can be executed one after the other, reusing space
- Maximum depth of recursion = number of variables (linear)
- Store one variable assignment per recursive call

\sim polynomial space algorithm
PSpace-Hardness of True QBF

Express TM computation in logic, similar to Cook-Levin

Given:
- a polynomial p
- a p-space bounded 1-tape NTM $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

Intended reduction
Define a QBF $\varphi_{p,\mathcal{M},w}$ such that $\varphi_{p,\mathcal{M},w}$ is true if and only if \mathcal{M} accepts w in space $p(|w|)$.

Note
We show the reduction for NTMs, which is more than needed, but makes little difference in logic and allows us to reuse our previous formulae from Cook-Levin
Review: Encoding Configurations

Use propositional variables for describing configurations:

\(Q_q \) for each \(q \in Q \) means “\(M \) is in state \(q \in Q \)”

\(P_i \) for each \(0 \leq i < p(n) \) means “the head is at Position \(i \)”

\(S_{a,i} \) for each \(a \in \Gamma \) and \(0 \leq i < p(n) \) means “tape cell \(i \) contains Symbol \(a \)”

Represent configuration \((q, p, a_0 \ldots a_{p(n)})\)

by assigning truth values to variables from the set

\[
\overline{C} := \{Q_q, P_i, S_{a,i} \mid q \in Q, \ a \in \Gamma, \ 0 \leq i < p(n)\}
\]

using the truth assignment \(\beta \) defined as

\[
\beta(Q_s) := \begin{cases}
1 & s = q \\
0 & s \neq q
\end{cases} \quad \beta(P_i) := \begin{cases}
1 & i = p \\
0 & i \neq p
\end{cases} \quad \beta(S_{a,i}) := \begin{cases}
1 & a = a_i \\
0 & a \neq a_i
\end{cases}
\]
We define a formula $\text{Conf}(\overline{C})$ for a set of configuration variables $\overline{C} = \{Q_q, P_i, S_{a,i} \mid q \in Q, \ a \in \Gamma, \ 0 \leq i < p(n)\}$ as follows:

\[
\text{Conf}(\overline{C}) := \text{"the assignment is a valid configuration"}:
\]

\[
\bigvee_{q \in Q} (Q_q \land \bigwedge_{q' \neq q} \neg Q_{q'})
\]

\[
\land \bigvee_{p < p(n)} (P_p \land \bigwedge_{p' \neq p} \neg P_{p'})
\]

\[
\land \bigwedge_{0 \leq i < p(n)} \bigvee_{a \in \Gamma} (S_{a,i} \land \bigwedge_{b \neq a \in \Gamma} \neg S_{b,i})
\]

- "TM in exactly one state $q \in Q$"
- "head in exactly one position $p < p(n)$"
- "exactly one $a \in \Gamma$ in each cell"
Review: Validating Configurations

For an assignment β defined on variables in \overline{C} define

$$
\text{conf}(\overline{C}, \beta) := \left\{ (q, p, w_0 \ldots w_{p(n)}) \mid \begin{array}{l}
\beta(Q_q) = 1, \\
\beta(P_p) = 1, \\
\beta(S_{w_i, i}) = 1 \text{ for all } 0 \leq i < p(n)
\end{array} \right\}
$$

Note: β may be defined on other variables besides those in \overline{C}.

Lemma 10.5: If β satisfies $\text{Conf}(\overline{C})$ then $|\text{conf}(\overline{C}, \beta)| = 1$.

We can therefore write $\text{conf}(\overline{C}, \beta) = (q, p, w)$ to simplify notation.

Observations:

- $\text{conf}(\overline{C}, \beta)$ is a potential configuration of M, but it may not be reachable from the start configuration of M on input w.
- Conversely, every configuration $(q, p, w_1 \ldots w_{p(n)})$ induces a satisfying assignment β or which $\text{conf}(\overline{C}, \beta) = (q, p, w_1 \ldots w_{p(n)})$.
Consider the following formula $\text{Next}(\overline{C}, \overline{C}')$ defined as

$$\text{Conf}(\overline{C}) \land \text{Conf}(\overline{C}') \land \text{NoChange}(\overline{C}, \overline{C}') \land \text{Change}(\overline{C}, \overline{C}').$$

$$\text{NoChange} := \bigvee_{0 \leq p < p(n)} \left(P_p \land \bigwedge_{i \neq p, a \in \Gamma} (S_{a,i} \rightarrow S'_{a,i}) \right)$$

$$\text{Change} := \bigvee_{0 \leq p < p(n)} \left(P_p \land \bigvee_{q \in Q} \left(Q_q \land S_{a,p} \land \bigvee_{(q', b, D) \in \delta(q, a)} (Q'_{q'} \land S'_{b,p} \land P'_{D(p)}) \right) \right)$$

where $D(p)$ is the position reached by moving in direction D from p.

Lemma 10.6: For any assignment β defined on $\overline{C} \cup \overline{C}'$:

β satisfies $\text{Next}(\overline{C}, \overline{C}')$ if and only if $\text{conf}(\overline{C}, \beta) \vdash_M \text{conf}(\overline{C}', \beta)$
Review: Start and End

Defined so far:

- $\text{Conf}(\overline{C})$: \overline{C} describes a potential configuration
- $\text{Next}(\overline{C}, \overline{C}')$: $\text{conf}(\overline{C}, \beta) \vdash_M \text{conf}(\overline{C}', \beta)$

Start configuration: Let $w = w_0 \cdots w_{n-1} \in \Sigma^*$ be the input word

$$\text{Start}_{M, w}(\overline{C}) := \text{Conf}(\overline{C}) \land Q_0 \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i, i} \land \bigwedge_{i=n}^{p(n)-1} S_{\square, i}$$

Then an assignment β satisfies $\text{Start}_{M, w}(\overline{C})$ if and only if \overline{C} represents the start configuration of M on input w.

Accepting stop configuration:

$$\text{Acc-Conf}(\overline{C}) := \text{Conf}(\overline{C}) \land Q_{\text{accept}}$$

Then an assignment β satisfies $\text{Acc-Conf}(\overline{C})$ if and only if \overline{C} represents an accepting configuration of M.
Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computing step:
polynomially time \sim polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps . . .
Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computing step: polynomially time \sim polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps . . .

What would Savitch do?
Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computing step: polynomially time \sim polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps . . .

What would Savitch do?

Define a formula $\text{CanYield}_i(\overline{C}_1, \overline{C}_2)$ to state that \overline{C}_2 is reachable from \overline{C}_1 in at most 2^i steps:

\[
\text{CanYield}_{0}(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \lor \text{Next}(\overline{C}_1, \overline{C}_2)
\]

\[
\text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) := \exists C. \text{Conf}(C) \land \text{CanYield}_i(\overline{C}_1, C) \land \text{CanYield}_i(C, \overline{C}_2)
\]
Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time \leadsto polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps . . .

What would Savitch do?

Define a formula $\text{CanYield}_i(\overline{C}_1, \overline{C}_2)$ to state that \overline{C}_2 is reachable from \overline{C}_1 in at most 2^i steps:

\[
\begin{align*}
\text{CanYield}_0(\overline{C}_1, \overline{C}_2) & := (\overline{C}_1 = \overline{C}_2) \lor \text{Next}(\overline{C}_1, \overline{C}_2) \\
\text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) & := \exists \text{Conf}(\overline{C}) \land \text{CanYield}_i(\overline{C}_1, \overline{C}) \land \text{CanYield}_i(\overline{C}, \overline{C}_2)
\end{align*}
\]

But what is $\overline{C}_1 = \overline{C}_2$ supposed to mean here?
Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computing step: polynomially time \sim polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps . . .

What would Savitch do?

Define a formula $\text{CanYield}_i(C_1, C_2)$ to state that C_2 is reachable from C_1 in at most 2^i steps:

$$\text{CanYield}_0(C_1, C_2) := (C_1 = C_2) \lor \text{Next}(C_1, C_2)$$

$$\text{CanYield}_{i+1}(C_1, C_2) := \exists C. \text{Conf}(C) \land \text{CanYield}_i(C_1, C) \land \text{CanYield}_i(C, C_2)$$

But what is $C_1 = C_2$ supposed to mean here? It is short for:

$$\bigwedge_{q \in Q} Q_q^1 \leftrightarrow Q_q^2 \land \bigwedge_{0 \leq i < p(n)} P_i^1 \leftrightarrow P_i^2 \land \bigwedge_{a \in \Gamma, 0 \leq i < p(n)} S_{a,i}^1 \leftrightarrow S_{a,i}^2$$
We define the formula $\varphi_{p,M,w}$ as follows:

$$\varphi_{p,M,w} := \exists C_1. \exists C_2. \text{Start}_{M,w}(C_1) \land \text{Acc-Conf}(C_2) \land \text{CanYield}_{dp(n)}(C_1, C_2)$$

where we select d to be the least number such that M has less than $2^{dp(n)}$ configurations in space $p(n)$.

Lemma 10.7: $\varphi_{p,M,w}$ is satisfiable if and only if M accepts w in space $p(|w|)$.

Markus Krötzsch, 21th Nov 2017 Complexity Theory slide 15 of 34
Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p,M,w}$:

\[
\text{CanYield}_0(C_1, C_2) := (C_1 = C_2) \lor \text{Next}(C_1, C_2)
\]

\[
\text{CanYield}_{i+1}(C_1, C_2) := \exists C. \text{Conf}(C) \land \text{CanYield}_i(C_1, C) \land \text{CanYield}_i(C, C_2)
\]

\[
\varphi_{p,M,w} := \exists C_1. \exists C_2. \text{Start}_{M,w}(C_1) \land \text{Acc-Conf}(C_2) \land \text{CanYield}_{dp(n)}(C_1, C_2)
\]

Now that’s quite interesting . . .

- With only (non-negated) \exists quantifiers, True QBF coincides with SAT
- SAT is in NP
- So we showed that the word problem for PSpace NTMs to be in NP
- So we found that $\mathsf{NP} = \mathsf{PSpace}$!

Strangely, most textbooks claim that this is not known to be true . . .

Are we up for the next Turing Award, or did we make a mistake?
Did we do it?

Note: we used only existential quantifiers when defining \(\varphi_{p,M,w} \):

\[
\begin{align*}
\text{CanYield}_0(\overline{C}_1, \overline{C}_2) &:= (\overline{C}_1 = \overline{C}_2) \lor \text{Next}(\overline{C}_1, \overline{C}_2) \\
\text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) &:= \exists C. \text{Conf}(C) \land \text{CanYield}_i(\overline{C}_1, \overline{C}) \land \text{CanYield}_i(\overline{C}, \overline{C}_2) \\
\varphi_{p,M,w} &:= \exists \overline{C}_1. \exists \overline{C}_2. \text{Start}_{M,w}(\overline{C}_1) \land \text{Acc-Conf}(\overline{C}_2) \land \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)
\end{align*}
\]

Now that's quite interesting ...
Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p, M, w}$:

$$\text{CanYield}_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \text{Next}(\overline{C}_1, \overline{C}_2)$$

$$\text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) := \exists C. \text{Conf}(C) \land \text{CanYield}_i(\overline{C}_1, C) \land \text{CanYield}_i(C, \overline{C}_2)$$

$$\varphi_{p, M, w} := \exists \overline{C}_1. \exists \overline{C}_2. \text{Start}_{M, w}(\overline{C}_1) \land \text{Acc-Conf}(\overline{C}_2) \land \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)$$

Now that’s quite interesting . . .

- With only (non-negated) \exists quantifiers, **TRUE QBF** coincides with **SAT**
Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p,M,w}$:

\[
\begin{align*}
\text{CanYield}_0(\overline{C}_1, \overline{C}_2) & := (\overline{C}_1 = \overline{C}_2) \lor \text{Next}(\overline{C}_1, \overline{C}_2) \\
\text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) & := \exists C. \text{Conf}(\overline{C}) \land \text{CanYield}_i(\overline{C}_1, \overline{C}) \land \text{CanYield}_i(\overline{C}, \overline{C}_2) \\
\varphi_{p,M,w} & := \exists \overline{C}_1. \exists \overline{C}_2. \text{Start}_{M,w}(\overline{C}_1) \land \text{Acc-Conf}(\overline{C}_2) \land \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)
\end{align*}
\]

Now that's quite interesting . . .

- With only (non-negated) \exists quantifiers, **True QBF** coincides with **SAT**
- **SAT** is in NP
Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p,M,w}$:

$$\text{CanYield}_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \lor \text{Next}(\overline{C}_1, \overline{C}_2)$$

$$\text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) := \exists C. \text{Conf}(C) \land \text{CanYield}_i(\overline{C}_1, C) \land \text{CanYield}_i(C, \overline{C}_2)$$

$$\varphi_{p,M,w} := \exists \overline{C}_1. \exists \overline{C}_2. \text{Start}_{M,w}(\overline{C}_1) \land \text{Acc-Conf}(\overline{C}_2) \land \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)$$

Now that’s quite interesting . . .

- With only (non-negated) \exists quantifiers, TRUE QBF coincides with SAT
- SAT is in NP
- So we showed that the word problem for PSpace NTMs to be in NP
Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p,M,w}$:

\[
\begin{align*}
\text{CanYield}_0(C_1, C_2) & := (C_1 = C_2) \lor \text{Next}(C_1, C_2) \\
\text{CanYield}_{i+1}(C_1, C_2) & := \exists C. \text{Conf}(C) \land \text{CanYield}_i(C_1, C) \land \text{CanYield}_i(C, C_2) \\
\varphi_{p,M,w} & := \exists C_1. \exists C_2. \text{Start}_{M,w}(C_1) \land \text{Acc-Conf}(C_2) \land \text{CanYield}_{dp(n)}(C_1, C_2)
\end{align*}
\]

Now that’s quite interesting . . .

- With only (non-negated) \exists quantifiers, True QBF coincides with Sat
- Sat is in NP
- So we showed that the word problem for PSpace NTMs to be in NP

So we found that $\text{NP} = \text{PSpace}$!
Did we do it?

Note: we used only existential quantifiers when defining \(\varphi_{p,M,w} \):

\[
\begin{align*}
\text{CanYield}_0(\overline{C_1}, \overline{C_2}) &:= (\overline{C_1} = \overline{C_2}) \lor \text{Next}(\overline{C_1}, \overline{C_2}) \\
\text{CanYield}_{i+1}(\overline{C_1}, \overline{C_2}) &:= \exists C. \text{Conf}(C) \land \text{CanYield}_i(\overline{C_1}, C) \land \text{CanYield}_i(C, \overline{C_2}) \\
\varphi_{p,M,w} &:= \exists \overline{C_1}. \exists \overline{C_2}. \text{Start}_{M,w}(\overline{C_1}) \land \text{Acc-Conf}(\overline{C_2}) \land \text{CanYield}_{dp(n)}(\overline{C_1}, \overline{C_2})
\end{align*}
\]

Now that’s quite interesting . . .

- With only (non-negated) \(\exists \) quantifiers, **True QBF** coincides with **Sat**
- **Sat** is in NP
- So we showed that the word problem for PSpace NTMs to be in NP

So we found that **NP = PSpace**!

Strangely, most textbooks claim that this is not known to be true . . .

Are we up for the next Turing Award, or did we make a mistake?
Size

How big is $\varphi_{p,M,w}$?

\[
\text{CanYield}_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \lor \text{Next}(\overline{C}_1, \overline{C}_2)
\]
\[
\text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) := \exists \overline{C}. \text{Conf}(\overline{C}) \land \text{CanYield}_i(\overline{C}_1, \overline{C}) \land \text{CanYield}_i(\overline{C}, \overline{C}_2)
\]
\[
\varphi_{p,M,w} := \exists \overline{C}_1. \exists \overline{C}_2. \text{Start}_{M,w}(\overline{C}_1) \land \text{Acc-Conf}(\overline{C}_2) \land \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)
\]
Size

How big is $\varphi_{p,M,w}$?

$$\text{CanYield}_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \lor \text{Next}(\overline{C}_1, \overline{C}_2)$$

$$\text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) := \exists \overline{C}.\text{Conf}(\overline{C}) \land \text{CanYield}_i(\overline{C}_1, \overline{C}) \land \text{CanYield}_i(\overline{C}, \overline{C}_2)$$

$$\varphi_{p,M,w} := \exists \overline{C}_1.\exists \overline{C}_2.\text{Start}_{M,w}(\overline{C}_1) \land \text{Acc-Conf}(\overline{C}_2) \land \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)$$

Size of CanYield_{i+1} is more than twice the size of CanYield_i

\leadsto Size of $\varphi_{p,M,w}$ is in $2^{O(p(n))}$. Oops.
Size

How big is $\varphi_{p,M,w}$?

$$\text{CanYield}_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \lor \text{Next}(\overline{C}_1, \overline{C}_2)$$

$$\text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) := \exists \overline{C}. \text{Conf}(\overline{C}) \land \text{CanYield}_i(\overline{C}_1, \overline{C}_2) \land \text{CanYield}_i(\overline{C}, \overline{C}_2)$$

$$\varphi_{p,M,w} := \exists \overline{C}_1. \exists \overline{C}_2. \text{Start}_{M,w}(\overline{C}_1) \land \text{Acc-Conf}(\overline{C}_2) \land \text{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2)$$

Size of CanYield_{i+1} is more than twice the size of CanYield_i

\leadsto Size of $\varphi_{p,M,w}$ is in $2^{O(p(n))}$. Oops.

A correct reduction: We redefine CanYield by setting

$$\text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) :=$$

$$\exists \overline{C}. \text{Conf}(\overline{C}) \land$$

$$\forall \overline{Z}_1. \forall \overline{Z}_2. (((\overline{Z}_1 = \overline{C}_1 \land \overline{Z}_2 = \overline{C}_2) \lor (\overline{Z}_1 = \overline{C} \land \overline{Z}_2 = \overline{C}_2)) \rightarrow \text{CanYield}_i(\overline{Z}_1, \overline{Z}_2))$$
Size

Let's analyse the size more carefully this time:

\[
\text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) := \\
\exists \overline{C}. \text{Conf}(\overline{C}) \land \\
\forall \overline{Z}_1. \forall \overline{Z}_2. (((\overline{Z}_1 = \overline{C}_1 \land \overline{Z}_2 = \overline{C}) \lor (\overline{Z}_1 = \overline{C} \land \overline{Z}_2 = \overline{C}_2)) \rightarrow \text{CanYield}_i(\overline{Z}_1, \overline{Z}_2))
\]

- \text{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) extends \text{CanYield}_i(\overline{C}_1, \overline{C}_2) by parts that are linear in the size of configurations \(\sim \) growth in \(O(p(n)) \)
- Maximum index \(i \) used in \(\varphi_{p,M,w} \) is \(dp(n) \), that is in \(O(p(n)) \)
- Therefore: \(\varphi_{p,M,w} \) has size \(O(p^2(n)) \) – and thus can be computed in polynomial time

Exercise:

Why can we just use \(dp(n) \) in the reduction? Don’t we have to compute it somehow? Maybe even in polynomial time?
Theorem 10.4: True QBF is PSpace-complete.

Proof:

(1) True QBF ∈ PSpace:
 Give an algorithm that runs in polynomial space.

(2) True QBF is PSpace-hard:
 Proof by reduction from the word problem for polynomially space-bounded TMs.
A More Common Logical Problem in PSpace

Recall standard first-order logic:

- Instead of propositional variables, we have atoms (predicates with constants and variables)
- Instead of propositional evaluations we have first-order structures (or interpretations)
- First-order quantifiers can be used on variables
- Sentences are formulae where all variables are quantified
- A sentence can be satisfied or not by a given first-order structure
Recall standard first-order logic:

- Instead of propositional variables, we have atoms (predicates with constants and variables)
- Instead of propositional evaluations we have first-order structures (or interpretations)
- First-order quantifiers can be used on variables
- Sentences are formulae where all variables are quantified
- A sentence can be satisfied or not by a given first-order structure

FOL Model Checking

Input: A first-order sentence φ and a finite first-order structure \mathcal{I}.

Problem: Is φ satisfied by \mathcal{I}?
Theorem 10.8: FOL Model Checking is PSpace-complete.

Proof:

1. **FOL Model Checking** ∈ PSpace:
 Give algorithm that runs in polynomial space.

2. **FOL Model Checking** is PSpace-hard:
 Proof by reduction \text{True QBF} \leq_p \text{FOL Model Checking}.
Checking FOL Models in Polynomial Space (Sketch)

```plaintext
01 Eval(φ, I) {  
02 switch (φ) :  
03 case p(c₁, ..., cₙ) : return ⟨c₁, ..., cₙ⟩ ∈ p^I  
04 case ¬ψ : return NOT Eval(ψ, I)  
05 case ψ₁ ∧ ψ₂ : return Eval(ψ₁, I) AND Eval(ψ₂, I)  
06 case ∃x.ψ :  
07 for c ∈ Δ^I :  
08 if Eval(ψ[x ↦→ c], I) : return TRUE  
09 // eventually, if no success:  
10 return FALSE  
11 }
```

- We can assume φ only uses ¬, ∧ and ∃ (easy to get)
- We use Δ^I to denote the (finite!) domain of I
- We allow domain elements to be used like constants in the formula
Hardness of FOL Model Checking

Given: a QBF $\varphi = Q_1 X_1 \cdots Q_\ell X_\ell . \psi$

FOL Model Checking Problem:
- Interpretation domain $\Delta^I := \{0, 1\}$
- Single predicate symbol $true$ with interpretation $true^I = \{1\}$
- FOL formula φ' is obtained by replacing variables in input QBF with corresponding first-order expressions:

$$Q_1 x_1 \cdots Q_\ell x_\ell . \psi [X_1 \mapsto true(x_1), \ldots, X_\ell \mapsto true(x_\ell)]$$

Lemma 10.9: $\langle I, \varphi' \rangle \in \text{FOL Model Checking}$ if and only if $\varphi \in \text{TRUE QBF}$.

Markus Krötzsch, 21th Nov 2017 Complexity Theory slide 23 of 34
Theorem 10.8: FOL Model Checking is PSpace-complete.

Proof:

(1) FOL Model Checking ∈ PSpace:
 Give algorithm that runs in polynomial space.

(2) FOL Model Checking is PSpace-hard:
 Proof by reduction True QBF ≤ₚ FOL Model Checking.
FOL Model Checking: Practical Significance

Why is FOL Model Checking a relevant problem?

Correspondence with database query answering:
- Finite first-order interpretation = database
- First-order logic formula = database query
- Satisfying assignments (for non-sentences) = query results

Known correspondence:
As a query language, FOL has the same expressive power as (basic) SQL (relational algebra).

Corollary 10.10:
Answering SQL queries over a given database is PSpace-complete.
FOL Model Checking: Practical Significance

Why is FOL Model Checking a relevant problem?

Correspondence with database query answering:

- Finite first-order interpretation = database
- First-order logic formula = database query
- Satisfying assignments (for non-sentences) = query results

Known correspondence:
As a query language, FOL has the same expressive power as (basic) SQL (relational algebra).

Corollary 10.10: Answering SQL queries over a given database is PSpace-complete.
Games
Games as Computational Problems

Many single-player games relate to NP-complete problems:
- Sudoku
- Minesweeper
- Tetris
- ...

Decision problem: Is there a solution?
(For Tetris: is it possible to clear all blocks?)

What about two-player games?
Games as Computational Problems

Many single-player games relate to NP-complete problems:

- Sudoku
- Minesweeper
- Tetris
- ...

Decision problem: Is there a solution?
(For Tetris: is it possible to clear all blocks?)

What about two-player games?

- Two players take moves in turns
- The players have different goals
- The game ends if a player wins

Decision problem: Does Player 1 have a winning strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?
Example: The Formula Game

A contrived game, to illustrate the idea:

- Given: a propositional logic formula φ with consecutively numbered variables $X_1, \ldots X_\ell$.
- Two players take turns in selecting values for the next variable:
 - Player 1 sets X_1 to true or false
 - Player 2 sets X_2 to true or false
 - Player 1 sets X_3 to true or false
 - ... until all variables are set.
- Player 1 wins if the assignment makes φ true. Otherwise, Player 2 wins.
Deciding the Formula Game

Formula Game

Input: A formula φ.

Problem: Does Player 1 have a winning strategy on φ?

Theorem 10.11: Formula Game is PSpace-complete.
Deciding the Formula Game

Formula Game

Input: A formula φ.

Problem: Does Player 1 have a winning strategy on φ?

Theorem 10.11: **Formula Game** is PSpace-complete.

Proof sketch: **Formula Game** is essentially the same as **True QBF**.

Having a winning strategy means: there is a truth value for X_1, such that, for all truth values of X_2, there is a truth value of X_3, ... such that φ becomes true.

If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and variables that do not change the semantics to get the same alternating form as for the Formula Game. □
Example: The Geography Game

A children’s game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.
Example: The Geography Game

A children’s game:
- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians’ game:
- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.
Example: The Geography Game

A children’s game:
- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians’ game:
- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Decision problem (Generalised) Geography:
given a graph and start node, does Player 1 have a winning strategy?
Theorem 10.12: Generalised Geography is PSpace-complete.

Proof:

(1) Geography ∈ PSpace:
 Give algorithm that runs in polynomial space.
 It is not difficult to provide a recursive algorithm similar to the one for True QBF or
 FOL Model Checking.

(2) Geography is PSpace-hard:
 Proof by reduction FORMULA GAME ≤ₚ Geography.

□
Geography is PSpace-hard

Let φ with variables X_1, \ldots, X_ℓ be an instance of Formula Game. Without loss of generality, we assume:

- ℓ is odd (Player 1 gets the first and last turn)
- φ is in CNF

We now build a graph that encodes Formula Game in terms of Geography

- The left-hand side of the graph is a chain of diamond structures that represent the choices that players have when assigning truth values
- The right-hand side of the graph encodes the structure of φ: Player 2 may choose a clause (trying to find one that is not true under the assignment); Player 1 may choose a literal (trying to find one that is true under the assignment).

(see board or [Sipser, Theorem 8.14])
GEOGRAPHY is PSpace-hard: Example

We consider the formula \(\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y) \)

[Diagram shown with nodes and edges illustrating the logical relationships between variables X, Y, and Z.]

Markus Krötzsch, 21th Nov 2017

Complexity Theory
Geography is PSpace-hard: Example

We consider the formula $\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y)$
GEOGRAPHY is PSpace-hard: Example

We consider the formula \(\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y) \)
GEOGRAPHY is PSpace-hard: Example

We consider the formula $\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y)$
We consider the formula $\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y)$.
Geography is PSpace-hard: Example

We consider the formula $\exists X. \forall Y. \exists Z. (X \lor Y \lor Z) \land (\neg Y \lor Z) \land (\neg Z \lor Y)$
Geography is PSpace-hard: Example

We consider the formula $\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y)$

![Diagram showing the game tree for Geography](image-url)
GEOGRAPHY is PSpace-hard: Example

We consider the formula $\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y)$
GEOGRAPHY is PSpace-hard: Example

We consider the formula $\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y)$
Geography is PSpace-hard: Example

We consider the formula $\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y)$
Geography is PSpace-hard: Example

We consider the formula $\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y)$
We consider the formula $\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y)$.
GEOGRAPHY is PSpace-hard: Example

We consider the formula $\exists X. \forall Y. \exists Z. (X \lor Z \lor Y) \land (\neg Y \lor Z) \land (\neg Z \lor Y)$
Summary and Outlook

True QBF is PSpace-complete

FOL Model Checking and the related problem of SQL query answering are PSpace-complete

Some games are PSpace-complete

What’s next?
- Some more remarks on games
- Logarithmic space
- Complements of space classes