
Formale Systeme

21. Vorlesung: WHILE und LOOP

Markus Krötzsch

Professur für Wissensbasierte Systeme

TU Dresden, 12. Januar 2026

https://iccl.inf.tu-dresden.de/web/FS2025
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch


Was bisher geschah . . .

Grundbegriffe, die wir verstehen und erklären können:
DTM, NTM, Entscheider, Aufzähler, berechenbar/entscheidbar, semi-entscheidbar,
unentscheidbar, Church-Turing-These

Das Unentscheidbare:

• „An algorithm is a finite answer to an infinite number of questions.“
(Stephen Kleene)

• Aber: Es gibt mehr Möglichkeiten, unendlich viele Fragen zu beantworten, als es
Algorithmen geben kann (Georg Cantor)

Weitere wichtige Ergebnisse:

• DTM und NTM haben die gleiche Ausdrucksstärke

• Zusammenhang Aufzähler↔ Semi-Entscheidbarkeit

• Busy Beaver ist unentscheidbar:
„Was eine TM schaffen kann, das kann keine TM vorherberechnen.“

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 2 von 32



LOOP

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 3 von 32



Von TMs zu Programmiersprachen

Turingmaschinen als Berechnungsmodell

• Pro: Einfache, kurze Beschreibung (eine Folie)
{ Beweise oft ebenfalls einfach und kurz

• Kontra: Umständliche Programmierung
{ einfache Algorithmen erfordern tausende Einzelschritte

Programmiersprachen als Berechnungsmodell

• Pro: Einfache, bequeme Programmierung
{ Großer Befehlssatz + Bibliotheken für Standardaufgaben

• Kontra: Umständliche Beschreibung
(z.B. Beschreibung von C++ [ISO/IEC 14882] hat 776 Seiten)
{ Eigenschaften oft unklar; Beweise sehr umständlich

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 4 von 32



Von TMs zu Programmiersprachen

Turingmaschinen als Berechnungsmodell

• Pro: Einfache, kurze Beschreibung (eine Folie)
{ Beweise oft ebenfalls einfach und kurz

• Kontra: Umständliche Programmierung
{ einfache Algorithmen erfordern tausende Einzelschritte

Programmiersprachen als Berechnungsmodell

• Pro: Einfache, bequeme Programmierung
{ Großer Befehlssatz + Bibliotheken für Standardaufgaben

• Kontra: Umständliche Beschreibung
(z.B. Beschreibung von C++ [ISO/IEC 14882] hat 776 Seiten)
{ Eigenschaften oft unklar; Beweise sehr umständlich

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 4 von 32



LOOP-Programme

Idee: Definiere eine imperative Programmiersprache, die dennoch sehr einfach ist.

Features:

• Variablen x0, x1, x2, . . . oder auch x, y, variablenName, . . .
alle vom Typ “natürliche Zahl”

• Wertezuweisungen der Form

x := y + 42 und x := y - 23

für beliebige natürliche Zahlen und Variablennamen

• “For-Schleifen”: LOOP x DO . . . END

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 5 von 32



LOOP-Programme: Syntax

Definition: Die Programmiersprache LOOP basiert auf einer unendlichen Menge V
von Variablen und der Menge N der natürlichen Zahlen. LOOP-Programme sind induk-
tiv definiert:

• Die Ausdrücke

x := y + n und x := y - n (Wertzuweisung)

sind LOOP-Programme für alle x, y ∈ V und n ∈ N.

• Wenn P1 und P2 LOOP-Programme sind, dann ist

P1; P2 (Hintereinanderausführung)

ein LOOP-Programm.

• Wenn P ein LOOP-Programm ist, dann ist

LOOP x DO P END (Schleife)

ein LOOP-Programm, für jede Variable x ∈ V.

Vereinfachung: Wir erlauben ; in Programmen durch Zeilenumbrüche zu ersetzen
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 6 von 32



Beispiel

Das folgende LOOP-Programm addiert zum Wert von y genau x-mal die Zahl 2:

LOOP x DO
y := y + 2

END

Dies entspricht also der Zuweisung y := y + (2 * x), die wir in LOOP nicht direkt
schreiben können.

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 7 von 32



Beispiel

Das folgende LOOP-Programm addiert zum Wert von y genau x-mal die Zahl 2:

LOOP x DO
y := y + 2

END

Dies entspricht also der Zuweisung y := y + (2 * x), die wir in LOOP nicht direkt
schreiben können.

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 7 von 32



LOOP-Programme: Semantik (1)

Funktionsweise eines LOOP-Programms P:

• Eingabe: Eine Liste von k natürlichen Zahlen
(Anmerkung: k wird nicht durch das Programm festgelegt)

• Ausgabe: Eine natürliche Zahl

P berechnet also eine totale Funktion Nk → N, für beliebige k

Initialisierung für Eingabe n1, . . . , nk:

• LOOP speichert für jede Variable eine natürliche Zahl als Wert

• Den Variablen x1, . . . , xk werden anfangs die Werte n1, . . . , nk zugewiesen

• Allen anderen Variablen wird der Anfangswert 0 zugewiesen

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 8 von 32



LOOP-Programme: Semantik (1)

Funktionsweise eines LOOP-Programms P:

• Eingabe: Eine Liste von k natürlichen Zahlen
(Anmerkung: k wird nicht durch das Programm festgelegt)

• Ausgabe: Eine natürliche Zahl

P berechnet also eine totale Funktion Nk → N, für beliebige k

Initialisierung für Eingabe n1, . . . , nk:

• LOOP speichert für jede Variable eine natürliche Zahl als Wert

• Den Variablen x1, . . . , xk werden anfangs die Werte n1, . . . , nk zugewiesen

• Allen anderen Variablen wird der Anfangswert 0 zugewiesen

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 8 von 32



LOOP-Programme: Semantik (2)

Nach der Initialisierung wird das LOOP-Programm abgearbeitet:

• x := y + n:
der Variable x wird als neuer Wert die Summe des (alten) Wertes für y und der
Zahl n zugewiesen

• x := y - n:
der Variable x wird als neuer Wert die Differenz des (alten) Wertes für y und der
Zahl n zugewiesen, falls diese größer 0 ist; ansonsten wird x der Wert 0
zugewiesen

• P1; P2:
erst wird P1 abgearbeitet, dann P2

• LOOP x DO P END:
P wird genau n-mal ausgeführt, für den Zahlenwert n, der x anfangs zugewiesen ist
(n ändert sich also nicht, wenn P den Wert von x ändert)

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 9 von 32



LOOP-Programme: Semantik (3)

Ausgabe eines LOOP-Programms:

• Das Ergebnis der Abarbeitung ist der Wert der Variable x0 nach dem Beenden der
Berechnung

Satz: LOOP-Programme terminieren immer nach endlich vielen Schritten.

Beweis: Die Behauptung gilt sicherlich für Wertzuweisungen.

Weitere Fälle:

• P1; P2:
wenn P1 und P2 nach endlich vielen Schritten terminieren, dann auch P1; P2

• LOOP x DO P END:
für jede mögliche Zuweisung von x wird P endlich oft wiederholt; wenn P in endlich
vielen Schritten terminiert, dann also auch die Schleife □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 10 von 32



LOOP-Programme: Semantik (3)

Ausgabe eines LOOP-Programms:

• Das Ergebnis der Abarbeitung ist der Wert der Variable x0 nach dem Beenden der
Berechnung

Satz: LOOP-Programme terminieren immer nach endlich vielen Schritten.

Beweis: Die Behauptung gilt sicherlich für Wertzuweisungen.

Weitere Fälle:

• P1; P2:
wenn P1 und P2 nach endlich vielen Schritten terminieren, dann auch P1; P2

• LOOP x DO P END:
für jede mögliche Zuweisung von x wird P endlich oft wiederholt; wenn P in endlich
vielen Schritten terminiert, dann also auch die Schleife □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 10 von 32



LOOP-Programme: Semantik (3)

Ausgabe eines LOOP-Programms:

• Das Ergebnis der Abarbeitung ist der Wert der Variable x0 nach dem Beenden der
Berechnung

Satz: LOOP-Programme terminieren immer nach endlich vielen Schritten.

Beweis: Die Behauptung gilt sicherlich für Wertzuweisungen.

Weitere Fälle:

• P1; P2:
wenn P1 und P2 nach endlich vielen Schritten terminieren, dann auch P1; P2

• LOOP x DO P END:
für jede mögliche Zuweisung von x wird P endlich oft wiederholt; wenn P in endlich
vielen Schritten terminiert, dann also auch die Schleife □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 10 von 32



Anmerkung: Strukturelle Induktion

Der vorangegangene einfache Beweis verwendet Induktion, um eine Aussage für
unendlich viele Programme zu zeigen:

• Induktionsanfang: Die Behauptung gilt für Wertzuweisungen (die einfachsten
LOOP-Programme)

• Induktionsannahme: Die Behauptung gilt bereits für Programme P, P1, P2

• Induktionsschritte:
(1) Die Behauptung gilt dann auch für P1; P2.
(2) Die Behauptung gilt dann auch für LOOP x DO P END.

Merke: Induktion kann man nicht nur auf natürliche Zahlen anwenden, sondern auf al-
le (unendlichen) Mengen, die man induktiv mit endlich vielen Operationen aus Grund-
fällen erzeugen kann.

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 11 von 32



Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung einer beliebigen konstanter Zahl: “x := n”:

x := 0

x := x + n

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 12 von 32

https://tools.iccl.inf.tu-dresden.de/while/


Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung einer beliebigen konstanter Zahl: “x := n”:

x := 0

x := x + n

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 12 von 32

https://tools.iccl.inf.tu-dresden.de/while/


Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung einer beliebigen konstanter Zahl: “x := n”:

x := 0

x := x + n

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 12 von 32

https://tools.iccl.inf.tu-dresden.de/while/


Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung einer beliebigen konstanter Zahl: “x := n”:

x := 0

x := x + n

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 12 von 32

https://tools.iccl.inf.tu-dresden.de/while/


Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung einer beliebigen konstanter Zahl: “x := n”:

x := 0

x := x + n

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 12 von 32

https://tools.iccl.inf.tu-dresden.de/while/


Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung einer beliebigen konstanter Zahl: “x := n”:

x := 0

x := x + n

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 12 von 32

https://tools.iccl.inf.tu-dresden.de/while/


Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung: “x := y + z”:

x := y

LOOP z DO
x := x + 1

END

Fallunterscheidung: “IF x!= 0 THEN P END”:

LOOP x DO y := 1 END
LOOP y DO P END

Dabei ist y eine frische Variable, die bisher nirgends sonst verwendet wird.

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 13 von 32

https://tools.iccl.inf.tu-dresden.de/while/


Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung: “x := y + z”:

x := y

LOOP z DO
x := x + 1

END

Fallunterscheidung: “IF x!= 0 THEN P END”:

LOOP x DO y := 1 END
LOOP y DO P END

Dabei ist y eine frische Variable, die bisher nirgends sonst verwendet wird.

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 13 von 32

https://tools.iccl.inf.tu-dresden.de/while/


Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung: “x := y + z”:

x := y

LOOP z DO
x := x + 1

END

Fallunterscheidung: “IF x!= 0 THEN P END”:

LOOP x DO y := 1 END
LOOP y DO P END

Dabei ist y eine frische Variable, die bisher nirgends sonst verwendet wird.

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 13 von 32

https://tools.iccl.inf.tu-dresden.de/while/


Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung: “x := y + z”:

x := y

LOOP z DO
x := x + 1

END

Fallunterscheidung: “IF x!= 0 THEN P END”:

LOOP x DO y := 1 END
LOOP y DO P END

Dabei ist y eine frische Variable, die bisher nirgends sonst verwendet wird.

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 13 von 32

https://tools.iccl.inf.tu-dresden.de/while/


LOOP-Berechenbare Funktionen

Definition: Eine Funktion Nk → N heißt LOOP-berechenbar, wenn es ein LOOP-
Programm gibt, das die Funktion berechnet.

Beispiel: Die folgenden Funktionen sind LOOP-berechenbar:

• Addition: ⟨x, y⟩ 7→ x + y (gerade gezeigt)

• Multiplikation: ⟨x, y⟩ 7→ x · y (siehe Übung)

• Potenz: ⟨x, y⟩ 7→ xy (entsteht aus · wie · aus +)

• und viele andere . . . (max, min, div, mod, usw.)

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 14 von 32



LOOP-Berechenbare Funktionen

Definition: Eine Funktion Nk → N heißt LOOP-berechenbar, wenn es ein LOOP-
Programm gibt, das die Funktion berechnet.

Beispiel: Die folgenden Funktionen sind LOOP-berechenbar:

• Addition: ⟨x, y⟩ 7→ x + y (gerade gezeigt)

• Multiplikation: ⟨x, y⟩ 7→ x · y (siehe Übung)

• Potenz: ⟨x, y⟩ 7→ xy (entsteht aus · wie · aus +)

• und viele andere . . . (max, min, div, mod, usw.)

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 14 von 32



LOOP jenseits von N

LOOP kann auch das x-te Bit der Binärkodierung von y berechnen. Dadurch kann man
in LOOP (auf umständliche Weise) auch Daten verarbeiten, die keine Zahlen sind:

(1) Kodiere beliebigen Input binär

(2) Evaluiere die Binärkodierung als natürliche Zahl und verwende diese als Eingabe

(3) Dekodiere den Input im LOOP-Programm

In diesem Sinne sind viele weitere Funktionen LOOP-berechenbar.

Beispiele für LOOP-berechenbare Funktionen:

• das Wortproblem regulärer, kontextfreier und kontextsensitiver Sprachen

• alle Probleme in NP, z.B. Erfüllbarkeit propositionaler Logik

• praktisch alle gängigen Algorithmen (Sortieren, Suchen, Optimieren, . . . )

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 15 von 32



LOOP jenseits von N

LOOP kann auch das x-te Bit der Binärkodierung von y berechnen. Dadurch kann man
in LOOP (auf umständliche Weise) auch Daten verarbeiten, die keine Zahlen sind:

(1) Kodiere beliebigen Input binär

(2) Evaluiere die Binärkodierung als natürliche Zahl und verwende diese als Eingabe

(3) Dekodiere den Input im LOOP-Programm

In diesem Sinne sind viele weitere Funktionen LOOP-berechenbar.

Beispiele für LOOP-berechenbare Funktionen:

• das Wortproblem regulärer, kontextfreier und kontextsensitiver Sprachen

• alle Probleme in NP, z.B. Erfüllbarkeit propositionaler Logik

• praktisch alle gängigen Algorithmen (Sortieren, Suchen, Optimieren, . . . )

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 15 von 32



LOOP jenseits von N

LOOP kann auch das x-te Bit der Binärkodierung von y berechnen. Dadurch kann man
in LOOP (auf umständliche Weise) auch Daten verarbeiten, die keine Zahlen sind:

(1) Kodiere beliebigen Input binär

(2) Evaluiere die Binärkodierung als natürliche Zahl und verwende diese als Eingabe

(3) Dekodiere den Input im LOOP-Programm

In diesem Sinne sind viele weitere Funktionen LOOP-berechenbar.

Beispiele für LOOP-berechenbare Funktionen:

• das Wortproblem regulärer, kontextfreier und kontextsensitiver Sprachen

• alle Probleme in NP, z.B. Erfüllbarkeit propositionaler Logik

• praktisch alle gängigen Algorithmen (Sortieren, Suchen, Optimieren, . . . )

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 15 von 32



Die Grenzen von LOOP

Satz: Es gibt berechenbare Funktionen, die nicht LOOP-berechenbar sind.

Das ist weniger überraschend, als es vielleicht klingt:

Beweis: Ein LOOP-Programm terminiert immer. Daher ist jede LOOP-berechenbare
Funktion total. Es gibt aber auch nicht-totale Funktionen, die berechenbar sind (z.B. die
“partiellste” Funktion, die nirgends definiert ist). □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 16 von 32



Die Grenzen von LOOP

Satz: Es gibt berechenbare Funktionen, die nicht LOOP-berechenbar sind.

Das ist weniger überraschend, als es vielleicht klingt:

Beweis: Ein LOOP-Programm terminiert immer. Daher ist jede LOOP-berechenbare
Funktion total. Es gibt aber auch nicht-totale Funktionen, die berechenbar sind (z.B. die
“partiellste” Funktion, die nirgends definiert ist). □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 16 von 32



LOOP-berechenbar , berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist überraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden können – quasi ein erster Versuch der Definition von Berechenbarkeit.
Hilbert definierte LOOP-Berechenbarkeit etwas anders, mithilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:

• Gabriel Sudan (1927)

• Wilhelm Ackermann (1928)

Jeder der beiden gab eine Funktion an (Sudan-Funktion und Ackermann-Funktion), die
nicht LOOP-berechenbar ist.

Unser Beweis verwendet eine etwas andere Idee . . .

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 17 von 32



LOOP-berechenbar , berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist überraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden können – quasi ein erster Versuch der Definition von Berechenbarkeit.
Hilbert definierte LOOP-Berechenbarkeit etwas anders, mithilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:

• Gabriel Sudan (1927)

• Wilhelm Ackermann (1928)

Jeder der beiden gab eine Funktion an (Sudan-Funktion und Ackermann-Funktion), die
nicht LOOP-berechenbar ist.

Unser Beweis verwendet eine etwas andere Idee . . .

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 17 von 32



LOOP-berechenbar , berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist überraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden können – quasi ein erster Versuch der Definition von Berechenbarkeit.
Hilbert definierte LOOP-Berechenbarkeit etwas anders, mithilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:

• Gabriel Sudan (1927)

• Wilhelm Ackermann (1928)

Jeder der beiden gab eine Funktion an (Sudan-Funktion und Ackermann-Funktion), die
nicht LOOP-berechenbar ist.

Unser Beweis verwendet eine etwas andere Idee . . .

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 17 von 32



LOOP-berechenbar , berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist überraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden können – quasi ein erster Versuch der Definition von Berechenbarkeit.
Hilbert definierte LOOP-Berechenbarkeit etwas anders, mithilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:

• Gabriel Sudan (1927)

• Wilhelm Ackermann (1928)

Jeder der beiden gab eine Funktion an (Sudan-Funktion und Ackermann-Funktion), die
nicht LOOP-berechenbar ist.

Unser Beweis verwendet eine etwas andere Idee . . .

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 17 von 32



Fleißige Biber für LOOP

Die Länge eines LOOP-Programms ist die Anzahl an Zeichen, aus denen es besteht.
Dazu nehmen wir an:

• Zahlen werden in ihrer Dezimalkodierung geschrieben

• Variablen sind mit lateinischen Buchstaben und Ziffern benannt (wir sehen x123 als
Schreibweise für x123 an)

• Wir betrachten ; als ein Zeichen (und Zeilenumbrüche ebenso)

Definition: Die Funktion ΣLOOP : N → N liefert für jede Zahl ℓ die größte Zahl
ΣLOOP(ℓ), die ein LOOP-Programm der Länge ≤ ℓ für eine leere Eingabe (alle Varia-
blen sind 0) ausgibt. Dabei sei ΣLOOP(ℓ) = 0 falls es kein Programm der Länge ≤ ℓ
gibt.

Beobachtung: ΣLOOP ist wohldefiniert:

• Die Zahl der LOOP-Programme mit maximaler Länge ℓ ist endlich

• Unter diesen Programmen gibt es eine maximale Ausgabe

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 18 von 32



Fleißige Biber für LOOP

Die Länge eines LOOP-Programms ist die Anzahl an Zeichen, aus denen es besteht.
Dazu nehmen wir an:

• Zahlen werden in ihrer Dezimalkodierung geschrieben

• Variablen sind mit lateinischen Buchstaben und Ziffern benannt (wir sehen x123 als
Schreibweise für x123 an)

• Wir betrachten ; als ein Zeichen (und Zeilenumbrüche ebenso)

Definition: Die Funktion ΣLOOP : N → N liefert für jede Zahl ℓ die größte Zahl
ΣLOOP(ℓ), die ein LOOP-Programm der Länge ≤ ℓ für eine leere Eingabe (alle Varia-
blen sind 0) ausgibt. Dabei sei ΣLOOP(ℓ) = 0 falls es kein Programm der Länge ≤ ℓ
gibt.

Beobachtung: ΣLOOP ist wohldefiniert:

• Die Zahl der LOOP-Programme mit maximaler Länge ℓ ist endlich

• Unter diesen Programmen gibt es eine maximale Ausgabe

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 18 von 32



Fleißige Biber für LOOP

Die Länge eines LOOP-Programms ist die Anzahl an Zeichen, aus denen es besteht.
Dazu nehmen wir an:

• Zahlen werden in ihrer Dezimalkodierung geschrieben

• Variablen sind mit lateinischen Buchstaben und Ziffern benannt (wir sehen x123 als
Schreibweise für x123 an)

• Wir betrachten ; als ein Zeichen (und Zeilenumbrüche ebenso)

Definition: Die Funktion ΣLOOP : N → N liefert für jede Zahl ℓ die größte Zahl
ΣLOOP(ℓ), die ein LOOP-Programm der Länge ≤ ℓ für eine leere Eingabe (alle Varia-
blen sind 0) ausgibt. Dabei sei ΣLOOP(ℓ) = 0 falls es kein Programm der Länge ≤ ℓ
gibt.

Beobachtung: ΣLOOP ist wohldefiniert:

• Die Zahl der LOOP-Programme mit maximaler Länge ℓ ist endlich

• Unter diesen Programmen gibt es eine maximale Ausgabe

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 18 von 32



Beispiele

Beispiel: Die LOOP-Anweisung x0:=y+9 liefert das fleißigste Programm für ℓ = 7, d.h.
ΣLOOP(7) = 9.

Für ℓ = 8 gilt dementsprechend bereits ΣLOOP(8) = 99.

Für ℓ < 7 gibt es keine Zuweisung, die x0 ändert, d.h., ΣLOOP(ℓ) = 0.

Bonusaufgabe: Gibt es eine Zahl ℓ, bei der ΣLOOP(ℓ) durch ein Programm berechnet
wird, welches die Zahl ΣLOOP(ℓ) nicht als Konstante im Quelltext enthält? Wie könnte
das entsprechende Programm aussehen?

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 19 von 32



Beispiele

Beispiel: Die LOOP-Anweisung x0:=y+9 liefert das fleißigste Programm für ℓ = 7, d.h.
ΣLOOP(7) = 9.

Für ℓ = 8 gilt dementsprechend bereits ΣLOOP(8) = 99.

Für ℓ < 7 gibt es keine Zuweisung, die x0 ändert, d.h., ΣLOOP(ℓ) = 0.

Bonusaufgabe: Gibt es eine Zahl ℓ, bei der ΣLOOP(ℓ) durch ein Programm berechnet
wird, welches die Zahl ΣLOOP(ℓ) nicht als Konstante im Quelltext enthält? Wie könnte
das entsprechende Programm aussehen?

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 19 von 32



Beispiele

Beispiel: Die LOOP-Anweisung x0:=y+9 liefert das fleißigste Programm für ℓ = 7, d.h.
ΣLOOP(7) = 9.

Für ℓ = 8 gilt dementsprechend bereits ΣLOOP(8) = 99.

Für ℓ < 7 gibt es keine Zuweisung, die x0 ändert, d.h., ΣLOOP(ℓ) = 0.

Bonusaufgabe: Gibt es eine Zahl ℓ, bei der ΣLOOP(ℓ) durch ein Programm berechnet
wird, welches die Zahl ΣLOOP(ℓ) nicht als Konstante im Quelltext enthält? Wie könnte
das entsprechende Programm aussehen?

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 19 von 32



Beweis (1)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (1) ist leicht zu zeigen:

• Es gibt endlich viele LOOP-Programme der Länge ≤ ℓ

• Man kann alle davon durchlaufen und auf einem Computer simulieren

• Die Simulation liefert immer nach endlich vielen Schritten ein Ergebnis

• Das Maximum aller Ergebnisse ist der Wert von ΣLOOP(ℓ)

(Anmerkung: Wir verwenden hier einen intuitiven Berechnungsbegriff und Church-Turing.)

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 20 von 32



Beweis (1)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (1) ist leicht zu zeigen:

• Es gibt endlich viele LOOP-Programme der Länge ≤ ℓ

• Man kann alle davon durchlaufen und auf einem Computer simulieren

• Die Simulation liefert immer nach endlich vielen Schritten ein Ergebnis

• Das Maximum aller Ergebnisse ist der Wert von ΣLOOP(ℓ)

(Anmerkung: Wir verwenden hier einen intuitiven Berechnungsbegriff und Church-Turing.)

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 20 von 32



Beweis (1)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (1) ist leicht zu zeigen:

• Es gibt endlich viele LOOP-Programme der Länge ≤ ℓ

• Man kann alle davon durchlaufen und auf einem Computer simulieren

• Die Simulation liefert immer nach endlich vielen Schritten ein Ergebnis

• Das Maximum aller Ergebnisse ist der Wert von ΣLOOP(ℓ)

(Anmerkung: Wir verwenden hier einen intuitiven Berechnungsbegriff und Church-Turing.)

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 20 von 32



Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ. Sei k die Länge
von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10 m (immer möglich)

• Sei Pm das Programm x1:=x1+m (Länge: 7 + ⌈log10 m⌉)

• Sei P++ das Programm x0:=x0+1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist k + 17 + ⌈log10 m⌉ und damit ≤ m.
Aber P gibt die Zahl ΣLOOP(m) + 1 aus. Widerspruch. □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 21 von 32



Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ. Sei k die Länge
von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10 m (immer möglich)

• Sei Pm das Programm x1:=x1+m (Länge: 7 + ⌈log10 m⌉)

• Sei P++ das Programm x0:=x0+1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist k + 17 + ⌈log10 m⌉ und damit ≤ m.
Aber P gibt die Zahl ΣLOOP(m) + 1 aus. Widerspruch. □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 21 von 32



Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ. Sei k die Länge
von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10 m (immer möglich)

• Sei Pm das Programm x1:=x1+m (Länge: 7 + ⌈log10 m⌉)

• Sei P++ das Programm x0:=x0+1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist k + 17 + ⌈log10 m⌉ und damit ≤ m.
Aber P gibt die Zahl ΣLOOP(m) + 1 aus. Widerspruch. □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 21 von 32



Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ. Sei k die Länge
von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10 m (immer möglich)

• Sei Pm das Programm x1:=x1+m (Länge: 7 + ⌈log10 m⌉)

• Sei P++ das Programm x0:=x0+1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist k + 17 + ⌈log10 m⌉ und damit ≤ m.
Aber P gibt die Zahl ΣLOOP(m) + 1 aus. Widerspruch. □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 21 von 32



Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ. Sei k die Länge
von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10 m (immer möglich)

• Sei Pm das Programm x1:=x1+m (Länge: 7 + ⌈log10 m⌉)

• Sei P++ das Programm x0:=x0+1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist k + 17 + ⌈log10 m⌉ und damit ≤ m.
Aber P gibt die Zahl ΣLOOP(m) + 1 aus. Widerspruch. □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 21 von 32



Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ. Sei k die Länge
von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10 m (immer möglich)

• Sei Pm das Programm x1:=x1+m (Länge: 7 + ⌈log10 m⌉)

• Sei P++ das Programm x0:=x0+1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist k + 17 + ⌈log10 m⌉ und damit ≤ m.
Aber P gibt die Zahl ΣLOOP(m) + 1 aus. Widerspruch. □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 21 von 32



Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ. Sei k die Länge
von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10 m (immer möglich)

• Sei Pm das Programm x1:=x1+m (Länge: 7 + ⌈log10 m⌉)

• Sei P++ das Programm x0:=x0+1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.

Die Länge von P ist k + 17 + ⌈log10 m⌉ und damit ≤ m.
Aber P gibt die Zahl ΣLOOP(m) + 1 aus. Widerspruch. □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 21 von 32



Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ. Sei k die Länge
von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10 m (immer möglich)

• Sei Pm das Programm x1:=x1+m (Länge: 7 + ⌈log10 m⌉)

• Sei P++ das Programm x0:=x0+1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist k + 17 + ⌈log10 m⌉ und damit ≤ m.

Aber P gibt die Zahl ΣLOOP(m) + 1 aus. Widerspruch. □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 21 von 32



Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ. Sei k die Länge
von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10 m (immer möglich)

• Sei Pm das Programm x1:=x1+m (Länge: 7 + ⌈log10 m⌉)

• Sei P++ das Programm x0:=x0+1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist k + 17 + ⌈log10 m⌉ und damit ≤ m.
Aber P gibt die Zahl ΣLOOP(m) + 1 aus. Widerspruch. □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 21 von 32



WHILE

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 22 von 32



Was fehlt?

Frage: Wieso ist LOOP zu schwach?

Intuitive Antwort: LOOP-Programme terminieren immer (zu vorhersehbar)

{Wir brauchen ein weniger vorhersehbares Programmkonstrukt

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 23 von 32



Was fehlt?

Frage: Wieso ist LOOP zu schwach?

Intuitive Antwort: LOOP-Programme terminieren immer (zu vorhersehbar)

{Wir brauchen ein weniger vorhersehbares Programmkonstrukt

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 23 von 32



WHILE-Programme: Syntax und Semantik

Definition: Die Programmiersprache WHILE basiert wie LOOP auf Variablen V und
natürlichen Zahlen N.
WHILE-Programme sind induktiv definiert:

• Jedes LOOP-Programm ist ein WHILE-Programm

• Wenn P ein WHILE-Programm ist, dann ist

WHILE x!= 0 DO P END

ein WHILE-Programm, für jede Variable x ∈ V.

Semantik von WHILE x!= 0 DO P END:
P wird ausgeführt solange der aktuelle Wert von x ungleich 0 ist.
(dies hängt davon ab, wie P den Wert von x ändert)

Ansonsten werden WHILE-Programme wie LOOP-Programme ausgewertet.

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 24 von 32



WHILE-Programme: Syntax und Semantik

Definition: Die Programmiersprache WHILE basiert wie LOOP auf Variablen V und
natürlichen Zahlen N.
WHILE-Programme sind induktiv definiert:

• Jedes LOOP-Programm ist ein WHILE-Programm

• Wenn P ein WHILE-Programm ist, dann ist

WHILE x!= 0 DO P END

ein WHILE-Programm, für jede Variable x ∈ V.

Semantik von WHILE x!= 0 DO P END:
P wird ausgeführt solange der aktuelle Wert von x ungleich 0 ist.
(dies hängt davon ab, wie P den Wert von x ändert)

Ansonsten werden WHILE-Programme wie LOOP-Programme ausgewertet.

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 24 von 32



WHILE: Beobachtungen1

Es ist möglich, dass ein WHILE-Programm nicht terminiert, z.B.

x := 1

WHILE x!= 0 DO
y := y + 2

END

Wir können LOOP x DO P END ersetzen durch:

z := x

WHILE z!= 0 DO
P

z := z - 1

END

(für ein frisches z)

Also sind LOOP-Schleifen eigentlich nicht mehr nötig.

1Unser Online-Tool funktioniert auch als WHILE-Simulator [Link].
Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 25 von 32

https://tools.iccl.inf.tu-dresden.de/while/


WHILE: Beobachtungen1

Es ist möglich, dass ein WHILE-Programm nicht terminiert, z.B.

x := 1

WHILE x!= 0 DO
y := y + 2

END

Wir können LOOP x DO P END ersetzen durch:

z := x

WHILE z!= 0 DO
P

z := z - 1

END

(für ein frisches z)

Also sind LOOP-Schleifen eigentlich nicht mehr nötig.
1Unser Online-Tool funktioniert auch als WHILE-Simulator [Link].

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 25 von 32

https://tools.iccl.inf.tu-dresden.de/while/


WHILE-Berechenbare Funktionen

Definition: Eine partielle Funktion f : Nk → N heißt WHILE-berechenbar, wenn es ein
WHILE-Programm P gibt, so dass gilt:

• Falls f (n1, . . . , nk) definiert ist, dann terminiert P bei Eingabe n1, . . . , nk mit der
Ausgabe f (n1, . . . , nk)

• Falls f (n1, . . . , nk) nicht definiert ist, dann terminiert P bei Eingabe n1, . . . , nk nicht

Das wichtigste Ergebnis zu WHILE ist nun das folgende:

Satz: Eine partielle Funktion ist genau dann WHILE-berechenbar, wenn sie Turing-
berechenbar ist.

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 26 von 32



WHILE-Berechenbare Funktionen

Definition: Eine partielle Funktion f : Nk → N heißt WHILE-berechenbar, wenn es ein
WHILE-Programm P gibt, so dass gilt:

• Falls f (n1, . . . , nk) definiert ist, dann terminiert P bei Eingabe n1, . . . , nk mit der
Ausgabe f (n1, . . . , nk)

• Falls f (n1, . . . , nk) nicht definiert ist, dann terminiert P bei Eingabe n1, . . . , nk nicht

Das wichtigste Ergebnis zu WHILE ist nun das folgende:

Satz: Eine partielle Funktion ist genau dann WHILE-berechenbar, wenn sie Turing-
berechenbar ist.

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 26 von 32



WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen
{ daraus kann man schon DTMs für x := y + n erzeugen

• Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren)

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängung“ von TMs)

• While-Schleifen sind durch Zyklen im Zustandsgraph darstellbar, wobei am Anfang
jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu können

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 27 von 32



WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen
{ daraus kann man schon DTMs für x := y + n erzeugen

• Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren)

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängung“ von TMs)

• While-Schleifen sind durch Zyklen im Zustandsgraph darstellbar, wobei am Anfang
jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu können

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 27 von 32



WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen
{ daraus kann man schon DTMs für x := y + n erzeugen

• Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren)

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängung“ von TMs)

• While-Schleifen sind durch Zyklen im Zustandsgraph darstellbar, wobei am Anfang
jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu können

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 27 von 32



WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen
{ daraus kann man schon DTMs für x := y + n erzeugen

• Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren)

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängung“ von TMs)

• While-Schleifen sind durch Zyklen im Zustandsgraph darstellbar, wobei am Anfang
jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu können

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 27 von 32



WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen
{ daraus kann man schon DTMs für x := y + n erzeugen

• Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren)

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängung“ von TMs)

• While-Schleifen sind durch Zyklen im Zustandsgraph darstellbar, wobei am Anfang
jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu können

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 27 von 32



WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen
{ daraus kann man schon DTMs für x := y + n erzeugen

• Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren)

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängung“ von TMs)

• While-Schleifen sind durch Zyklen im Zustandsgraph darstellbar, wobei am Anfang
jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu können

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 27 von 32



WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen
{ daraus kann man schon DTMs für x := y + n erzeugen

• Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren)

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängung“ von TMs)

• While-Schleifen sind durch Zyklen im Zustandsgraph darstellbar, wobei am Anfang
jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu können

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 27 von 32



TM→WHILE (1)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wir nehmen zur Vereinfachung an, dass das TM-Arbeitsalphabet
Γ = {0, 1} ist, und dass die Zustände natürliche Zahlen sind

• Eine TM-Konfiguration a1a2 · · · ap q ap+1ap+2 · · · aℓ wird dargestellt durch drei
Variablen:

– left hat den Wert, der durch a1a2 · · · ap binär kodiert wird (least significant bit
ist dabei ap)

– state hat den Wert q
– thgir hat den Wert, der durch aℓ · · · ap+2ap+1 binär kodiert wird (least

significant bit ist also ap+1)

• Diese Kodierung kann leicht auf größere Arbeitsalphabete erweitert werden (n-äre
statt binäre Kodierung)

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 28 von 32



TM→WHILE (1)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wir nehmen zur Vereinfachung an, dass das TM-Arbeitsalphabet
Γ = {0, 1} ist, und dass die Zustände natürliche Zahlen sind

• Eine TM-Konfiguration a1a2 · · · ap q ap+1ap+2 · · · aℓ wird dargestellt durch drei
Variablen:

– left hat den Wert, der durch a1a2 · · · ap binär kodiert wird (least significant bit
ist dabei ap)

– state hat den Wert q
– thgir hat den Wert, der durch aℓ · · · ap+2ap+1 binär kodiert wird (least

significant bit ist also ap+1)

• Diese Kodierung kann leicht auf größere Arbeitsalphabete erweitert werden (n-äre
statt binäre Kodierung)

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 28 von 32



TM→WHILE (2)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wie gesagt:
left hat den Wert, der durch a1a2 · · · ap binär kodiert wird

• Wir wollen auf (die Binärkodierung von) left wie auf einen Stapel (Keller, Stack)
zugreifen:

– Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left := left div 2

– Push: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

left := left * 2 + top

• Auf thgir kann man genauso zugreifen

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 29 von 32



TM→WHILE (2)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wie gesagt:
left hat den Wert, der durch a1a2 · · · ap binär kodiert wird

• Wir wollen auf (die Binärkodierung von) left wie auf einen Stapel (Keller, Stack)
zugreifen:

– Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left := left div 2

– Push: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

left := left * 2 + top

• Auf thgir kann man genauso zugreifen

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 29 von 32



TM→WHILE (2)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wie gesagt:
left hat den Wert, der durch a1a2 · · · ap binär kodiert wird

• Wir wollen auf (die Binärkodierung von) left wie auf einen Stapel (Keller, Stack)
zugreifen:

– Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left := left div 2

– Push: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

left := left * 2 + top

• Auf thgir kann man genauso zugreifen

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 29 von 32



TM→WHILE (2)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wie gesagt:
left hat den Wert, der durch a1a2 · · · ap binär kodiert wird

• Wir wollen auf (die Binärkodierung von) left wie auf einen Stapel (Keller, Stack)
zugreifen:

– Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left := left div 2

– Push: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

left := left * 2 + top

• Auf thgir kann man genauso zugreifen

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 29 von 32



TM→WHILE (3)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wir haben das Band in zwei Stacks kodiert, mit den Zeichen links und rechts
neben dem TM-Kopf an oberster Stelle

• Die TM-Simulation erfolgt jetzt in einer WHILE-Schleife
WHILE halt!= 0 DO PEinzelschritt END

• Das Programm PEinzelschritt führt einen Schritt aus:
– thgir.pop() liefert Zeichen an Leseposition
– Durch eine Folge von If-Bedingungen kann man für jede Kombination aus

Zustand q (in state) und gelesenem Zeichen eine Behandlung festlegen
– Schreiben von Symbol a durch thgir.push(a)
– Bewegung nach rechts: left.push(thgir.pop())
– Bewegung nach links: thgir.push(left.pop())
– Zustandsänderung durch einfache Zuweisung
– Anhalten durch Zuweisung halt := 0

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 30 von 32



TM→WHILE (3)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wir haben das Band in zwei Stacks kodiert, mit den Zeichen links und rechts
neben dem TM-Kopf an oberster Stelle

• Die TM-Simulation erfolgt jetzt in einer WHILE-Schleife
WHILE halt!= 0 DO PEinzelschritt END

• Das Programm PEinzelschritt führt einen Schritt aus:
– thgir.pop() liefert Zeichen an Leseposition
– Durch eine Folge von If-Bedingungen kann man für jede Kombination aus

Zustand q (in state) und gelesenem Zeichen eine Behandlung festlegen
– Schreiben von Symbol a durch thgir.push(a)
– Bewegung nach rechts: left.push(thgir.pop())
– Bewegung nach links: thgir.push(left.pop())
– Zustandsänderung durch einfache Zuweisung
– Anhalten durch Zuweisung halt := 0

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 30 von 32



TM→WHILE (3)

Behauptung 2: WHILE-Programme können DTMs simulieren:

Zusammenfassung:

• Natürliche Zahlen simulieren Stacks der Bandsymbole links und rechts

• Berechnungsschritte werden durch einfache Arithmetik implementiert (in LOOP
möglich)

• WHILE-Schleife arbeitet Schritte ab, bis die TM hält

Was fehlt noch zum detaillierten Beweis?

• Unsere Stack-Implementierung kann noch nicht mit dem leeren Stack umgehen{
zusätzliche Tests und Sonderfälle (bei einseitig unendlichem TM-Band
asymmetrisch)

• Für größere Arbeitsalphabete würde man statt Binärkodierung eine n-äre
Kodierung verwenden □

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 31 von 32



Zusammenfassung und Ausblick

WHILE-Programme können alle berechenbaren Probleme lösen
(ein weiteres Indiz für die Church-Turing-These)

LOOP-Programme können fast alle praktisch relevanten Probleme lösen, aber nicht alle
berechenbaren Probleme

Online-Simulator für WHILE und LOOP (mit kleinen syntaktischen Verbesserungen wie
Kommentaren): https://tools.iccl.inf.tu-dresden.de/while/

Beweistechniken: strukturelle Induktion, Widerspruch durch Selbstbezüglichkeit (Busy
Beaver), TM mit zwei Stacks simulieren

Was erwartet uns als nächstes?

• Relevantere Probleme

• Reduktionen

• Rice

Markus Krötzsch, 12. Januar 2026 Formale Systeme Folie 32 von 32

https://tools.iccl.inf.tu-dresden.de/while/

