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Was bisher geschah . . .

Grundbegriffe, die wir verstehen und erklären können:
DTM, NTM, Entscheider, Aufzähler, berechenbar/entscheidbar, semi-entscheidbar,
unentscheidbar, Church-Turing-These

Das Unentscheidbare:

• „An algorithm is a finite answer to an infinite number of questions.“
(Stephen Kleene)

• Aber: Es gibt mehr Möglichkeiten, unendlich viele Fragen zu beantworten, als es
Algorithmen geben kann (Georg Cantor)

Weitere wichtige Ergebnisse:

• DTM und NTM haben die gleiche Ausdrucksstärke

• Zusammenhang Aufzähler↔ Semi-Entscheidbarkeit

• Busy Beaver ist unentscheidbar:
„Was eine TM schaffen kann, das kann keine TM vorherberechnen.“
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LOOP
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Von TMs zu Programmiersprachen

Turingmaschinen als Berechnungsmodell

• Pro: Einfache, kurze Beschreibung (eine Folie)
{ Beweise oft ebenfalls einfach und kurz

• Kontra: Umständliche Programmierung
{ einfache Algorithmen erfordern tausende Einzelschritte

Programmiersprachen als Berechnungsmodell

• Pro: Einfache, bequeme Programmierung
{ Großer Befehlssatz + Bibliotheken für Standardaufgaben

• Kontra: Umständliche Beschreibung
(z.B. Beschreibung von C++ [ISO/IEC 14882] hat 776 Seiten)
{ Eigenschaften oft unklar; Beweise sehr umständlich
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LOOP-Programme

Idee: Definiere eine imperative Programmiersprache, die dennoch sehr einfach ist.

Features:

• Variablen x0, x1, x2, . . . oder auch x, y, variablenName, . . .
alle vom Typ “natürliche Zahl”

• Wertezuweisungen der Form

x := y + 42 und x := y - 23

für beliebige natürliche Zahlen und Variablennamen

• “For-Schleifen”: LOOP x DO . . . END
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LOOP-Programme: Syntax

Definition: Die Programmiersprache LOOP basiert auf einer unendlichen Menge V
von Variablen und der Menge N der natürlichen Zahlen. LOOP-Programme sind induk-
tiv definiert:

• Die Ausdrücke

x := y + n und x := y - n (Wertzuweisung)

sind LOOP-Programme für alle x, y ∈ V und n ∈ N.

• Wenn P1 und P2 LOOP-Programme sind, dann ist

P1; P2 (Hintereinanderausführung)

ein LOOP-Programm.

• Wenn P ein LOOP-Programm ist, dann ist

LOOP x DO P END (Schleife)

ein LOOP-Programm, für jede Variable x ∈ V.

Vereinfachung: Wir erlauben ; in Programmen durch Zeilenumbrüche zu ersetzen
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Beispiel

Das folgende LOOP-Programm addiert zum Wert von y genau x-mal die Zahl 2:

LOOP x DO
y := y + 2

END

Dies entspricht also der Zuweisung y := y + (2 * x), die wir in LOOP nicht direkt
schreiben können.
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LOOP-Programme: Semantik (1)

Funktionsweise eines LOOP-Programms P:

• Eingabe: Eine Liste von k natürlichen Zahlen
(Anmerkung: k wird nicht durch das Programm festgelegt)

• Ausgabe: Eine natürliche Zahl

P berechnet also eine totale Funktion Nk → N, für beliebige k

Initialisierung für Eingabe n1, . . . , nk:

• LOOP speichert für jede Variable eine natürliche Zahl als Wert

• Den Variablen x1, . . . , xk werden anfangs die Werte n1, . . . , nk zugewiesen

• Allen anderen Variablen wird der Anfangswert 0 zugewiesen
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LOOP-Programme: Semantik (2)

Nach der Initialisierung wird das LOOP-Programm abgearbeitet:

• x := y + n:
der Variable x wird als neuer Wert die Summe des (alten) Wertes für y und der
Zahl n zugewiesen

• x := y - n:
der Variable x wird als neuer Wert die Differenz des (alten) Wertes für y und der
Zahl n zugewiesen, falls diese größer 0 ist; ansonsten wird x der Wert 0
zugewiesen

• P1; P2:
erst wird P1 abgearbeitet, dann P2

• LOOP x DO P END:
P wird genau n-mal ausgeführt, für den Zahlenwert n, der x anfangs zugewiesen ist
(n ändert sich also nicht, wenn P den Wert von x ändert)
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LOOP-Programme: Semantik (3)

Ausgabe eines LOOP-Programms:

• Das Ergebnis der Abarbeitung ist der Wert der Variable x0 nach dem Beenden der
Berechnung

Satz: LOOP-Programme terminieren immer nach endlich vielen Schritten.

Beweis: Die Behauptung gilt sicherlich für Wertzuweisungen.

Weitere Fälle:

• P1; P2:
wenn P1 und P2 nach endlich vielen Schritten terminieren, dann auch P1; P2

• LOOP x DO P END:
für jede mögliche Zuweisung von x wird P endlich oft wiederholt; wenn P in endlich
vielen Schritten terminiert, dann also auch die Schleife □
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Anmerkung: Strukturelle Induktion

Der vorangegangene einfache Beweis verwendet Induktion, um eine Aussage für
unendlich viele Programme zu zeigen:

• Induktionsanfang: Die Behauptung gilt für Wertzuweisungen (die einfachsten
LOOP-Programme)

• Induktionsannahme: Die Behauptung gilt bereits für Programme P, P1, P2

• Induktionsschritte:
(1) Die Behauptung gilt dann auch für P1; P2.
(2) Die Behauptung gilt dann auch für LOOP x DO P END.

Merke: Induktion kann man nicht nur auf natürliche Zahlen anwenden, sondern auf al-
le (unendlichen) Mengen, die man induktiv mit endlich vielen Operationen aus Grund-
fällen erzeugen kann.
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Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung mit Variable: “x := y”:

x := y + 0

Wertzuweisung mit 0: “x := 0”:

LOOP x DO
x := x - 1

END

Wertzuweisung einer beliebigen konstanter Zahl: “x := n”:

x := 0

x := x + n

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
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Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.1

Wertzuweisung: “x := y + z”:

x := y

LOOP z DO
x := x + 1

END

Fallunterscheidung: “IF x!= 0 THEN P END”:

LOOP x DO y := 1 END
LOOP y DO P END

Dabei ist y eine frische Variable, die bisher nirgends sonst verwendet wird.

1Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
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LOOP-Berechenbare Funktionen

Definition: Eine Funktion Nk → N heißt LOOP-berechenbar, wenn es ein LOOP-
Programm gibt, das die Funktion berechnet.

Beispiel: Die folgenden Funktionen sind LOOP-berechenbar:

• Addition: ⟨x, y⟩ 7→ x + y (gerade gezeigt)

• Multiplikation: ⟨x, y⟩ 7→ x · y (siehe Übung)

• Potenz: ⟨x, y⟩ 7→ xy (entsteht aus · wie · aus +)

• und viele andere . . . (max, min, div, mod, usw.)
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LOOP jenseits von N

LOOP kann auch das x-te Bit der Binärkodierung von y berechnen. Dadurch kann man
in LOOP (auf umständliche Weise) auch Daten verarbeiten, die keine Zahlen sind:

(1) Kodiere beliebigen Input binär

(2) Evaluiere die Binärkodierung als natürliche Zahl und verwende diese als Eingabe

(3) Dekodiere den Input im LOOP-Programm

In diesem Sinne sind viele weitere Funktionen LOOP-berechenbar.

Beispiele für LOOP-berechenbare Funktionen:

• das Wortproblem regulärer, kontextfreier und kontextsensitiver Sprachen

• alle Probleme in NP, z.B. Erfüllbarkeit propositionaler Logik

• praktisch alle gängigen Algorithmen (Sortieren, Suchen, Optimieren, . . . )
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Die Grenzen von LOOP

Satz: Es gibt berechenbare Funktionen, die nicht LOOP-berechenbar sind.

Das ist weniger überraschend, als es vielleicht klingt:

Beweis: Ein LOOP-Programm terminiert immer. Daher ist jede LOOP-berechenbare
Funktion total. Es gibt aber auch nicht-totale Funktionen, die berechenbar sind (z.B. die
“partiellste” Funktion, die nirgends definiert ist). □
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LOOP-berechenbar , berechenbar

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist überraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden können – quasi ein erster Versuch der Definition von Berechenbarkeit.
Hilbert definierte LOOP-Berechenbarkeit etwas anders, mithilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:

• Gabriel Sudan (1927)

• Wilhelm Ackermann (1928)

Jeder der beiden gab eine Funktion an (Sudan-Funktion und Ackermann-Funktion), die
nicht LOOP-berechenbar ist.

Unser Beweis verwendet eine etwas andere Idee . . .
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Fleißige Biber für LOOP

Die Länge eines LOOP-Programms ist die Anzahl an Zeichen, aus denen es besteht.
Dazu nehmen wir an:

• Zahlen werden in ihrer Dezimalkodierung geschrieben

• Variablen sind mit lateinischen Buchstaben und Ziffern benannt (wir sehen x123 als
Schreibweise für x123 an)

• Wir betrachten ; als ein Zeichen (und Zeilenumbrüche ebenso)

Definition: Die Funktion ΣLOOP : N → N liefert für jede Zahl ℓ die größte Zahl
ΣLOOP(ℓ), die ein LOOP-Programm der Länge ≤ ℓ für eine leere Eingabe (alle Varia-
blen sind 0) ausgibt. Dabei sei ΣLOOP(ℓ) = 0 falls es kein Programm der Länge ≤ ℓ
gibt.

Beobachtung: ΣLOOP ist wohldefiniert:

• Die Zahl der LOOP-Programme mit maximaler Länge ℓ ist endlich

• Unter diesen Programmen gibt es eine maximale Ausgabe
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Beispiele

Beispiel: Die LOOP-Anweisung x0:=y+9 liefert das fleißigste Programm für ℓ = 7, d.h.
ΣLOOP(7) = 9.

Für ℓ = 8 gilt dementsprechend bereits ΣLOOP(8) = 99.

Für ℓ < 7 gibt es keine Zuweisung, die x0 ändert, d.h., ΣLOOP(ℓ) = 0.

Bonusaufgabe: Gibt es eine Zahl ℓ, bei der ΣLOOP(ℓ) durch ein Programm berechnet
wird, welches die Zahl ΣLOOP(ℓ) nicht als Konstante im Quelltext enthält? Wie könnte
das entsprechende Programm aussehen?
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Beweis (1)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (1) ist leicht zu zeigen:

• Es gibt endlich viele LOOP-Programme der Länge ≤ ℓ

• Man kann alle davon durchlaufen und auf einem Computer simulieren

• Die Simulation liefert immer nach endlich vielen Schritten ein Ergebnis

• Das Maximum aller Ergebnisse ist der Wert von ΣLOOP(ℓ)

(Anmerkung: Wir verwenden hier einen intuitiven Berechnungsbegriff und Church-Turing.)
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Beweis (2)

Satz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ΣLOOP ist berechenbar

(2) ΣLOOP ist nicht LOOP-berechenbar

Behauptung (2) zeigen wir per Widerspruch:

• Angenommen ΣLOOP ist LOOP-berechenbar durch Programm PΣ. Sei k die Länge
von PΣ.

• Wir wählen eine Zahl m mit m ≥ k + 17 + log10 m (immer möglich)

• Sei Pm das Programm x1:=x1+m (Länge: 7 + ⌈log10 m⌉)

• Sei P++ das Programm x0:=x0+1 (Länge: 8)

• Wir definieren P = Pm;PΣ;P++.
Die Länge von P ist k + 17 + ⌈log10 m⌉ und damit ≤ m.
Aber P gibt die Zahl ΣLOOP(m) + 1 aus. Widerspruch. □
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WHILE
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Was fehlt?

Frage: Wieso ist LOOP zu schwach?

Intuitive Antwort: LOOP-Programme terminieren immer (zu vorhersehbar)

{Wir brauchen ein weniger vorhersehbares Programmkonstrukt
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WHILE-Programme: Syntax und Semantik

Definition: Die Programmiersprache WHILE basiert wie LOOP auf Variablen V und
natürlichen Zahlen N.
WHILE-Programme sind induktiv definiert:

• Jedes LOOP-Programm ist ein WHILE-Programm

• Wenn P ein WHILE-Programm ist, dann ist

WHILE x!= 0 DO P END

ein WHILE-Programm, für jede Variable x ∈ V.

Semantik von WHILE x!= 0 DO P END:
P wird ausgeführt solange der aktuelle Wert von x ungleich 0 ist.
(dies hängt davon ab, wie P den Wert von x ändert)

Ansonsten werden WHILE-Programme wie LOOP-Programme ausgewertet.
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WHILE: Beobachtungen1

Es ist möglich, dass ein WHILE-Programm nicht terminiert, z.B.

x := 1

WHILE x!= 0 DO
y := y + 2

END

Wir können LOOP x DO P END ersetzen durch:

z := x

WHILE z!= 0 DO
P

z := z - 1

END

(für ein frisches z)

Also sind LOOP-Schleifen eigentlich nicht mehr nötig.

1Unser Online-Tool funktioniert auch als WHILE-Simulator [Link].
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WHILE-Berechenbare Funktionen

Definition: Eine partielle Funktion f : Nk → N heißt WHILE-berechenbar, wenn es ein
WHILE-Programm P gibt, so dass gilt:

• Falls f (n1, . . . , nk) definiert ist, dann terminiert P bei Eingabe n1, . . . , nk mit der
Ausgabe f (n1, . . . , nk)

• Falls f (n1, . . . , nk) nicht definiert ist, dann terminiert P bei Eingabe n1, . . . , nk nicht

Das wichtigste Ergebnis zu WHILE ist nun das folgende:

Satz: Eine partielle Funktion ist genau dann WHILE-berechenbar, wenn sie Turing-
berechenbar ist.
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WHILE→ TM

Behauptung 1: DTMs können WHILE-Programme simulieren:

• Wir verwenden eine Mehrband-TM, in der es für jede Variable im simulierten
Programm ein eigenes Band gibt.

• Natürliche Zahlen werden auf den Bändern binär kodiert.

• DTMs können leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhöhen
{ daraus kann man schon DTMs für x := y + n erzeugen

• Simulation von x := y - n ist analog möglich (mit zusätzlichem Test auf
Gleichheit mit 0 beim Dekrementieren)

• Sequentielle Programmausführung P1;P2 wird direkt im Zustandsgraphen der
DTM umgesetzt („Hintereinanderhängung“ von TMs)

• While-Schleifen sind durch Zyklen im Zustandsgraph darstellbar, wobei am Anfang
jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu können
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jeweils ein Test auf Gleichheit mit 0 steht, um die Schleife verlassen zu können
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TM→WHILE (1)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wir nehmen zur Vereinfachung an, dass das TM-Arbeitsalphabet
Γ = {0, 1} ist, und dass die Zustände natürliche Zahlen sind

• Eine TM-Konfiguration a1a2 · · · ap q ap+1ap+2 · · · aℓ wird dargestellt durch drei
Variablen:

– left hat den Wert, der durch a1a2 · · · ap binär kodiert wird (least significant bit
ist dabei ap)

– state hat den Wert q
– thgir hat den Wert, der durch aℓ · · · ap+2ap+1 binär kodiert wird (least

significant bit ist also ap+1)

• Diese Kodierung kann leicht auf größere Arbeitsalphabete erweitert werden (n-äre
statt binäre Kodierung)
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TM→WHILE (2)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wie gesagt:
left hat den Wert, der durch a1a2 · · · ap binär kodiert wird

• Wir wollen auf (die Binärkodierung von) left wie auf einen Stapel (Keller, Stack)
zugreifen:

– Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left := left div 2

– Push: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

left := left * 2 + top

• Auf thgir kann man genauso zugreifen
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TM→WHILE (3)

Behauptung 2: WHILE-Programme können DTMs simulieren:

• Wir haben das Band in zwei Stacks kodiert, mit den Zeichen links und rechts
neben dem TM-Kopf an oberster Stelle

• Die TM-Simulation erfolgt jetzt in einer WHILE-Schleife
WHILE halt!= 0 DO PEinzelschritt END

• Das Programm PEinzelschritt führt einen Schritt aus:
– thgir.pop() liefert Zeichen an Leseposition
– Durch eine Folge von If-Bedingungen kann man für jede Kombination aus

Zustand q (in state) und gelesenem Zeichen eine Behandlung festlegen
– Schreiben von Symbol a durch thgir.push(a)
– Bewegung nach rechts: left.push(thgir.pop())
– Bewegung nach links: thgir.push(left.pop())
– Zustandsänderung durch einfache Zuweisung
– Anhalten durch Zuweisung halt := 0
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TM→WHILE (3)

Behauptung 2: WHILE-Programme können DTMs simulieren:

Zusammenfassung:

• Natürliche Zahlen simulieren Stacks der Bandsymbole links und rechts

• Berechnungsschritte werden durch einfache Arithmetik implementiert (in LOOP
möglich)

• WHILE-Schleife arbeitet Schritte ab, bis die TM hält

Was fehlt noch zum detaillierten Beweis?

• Unsere Stack-Implementierung kann noch nicht mit dem leeren Stack umgehen{
zusätzliche Tests und Sonderfälle (bei einseitig unendlichem TM-Band
asymmetrisch)

• Für größere Arbeitsalphabete würde man statt Binärkodierung eine n-äre
Kodierung verwenden □
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Zusammenfassung und Ausblick

WHILE-Programme können alle berechenbaren Probleme lösen
(ein weiteres Indiz für die Church-Turing-These)

LOOP-Programme können fast alle praktisch relevanten Probleme lösen, aber nicht alle
berechenbaren Probleme

Online-Simulator für WHILE und LOOP (mit kleinen syntaktischen Verbesserungen wie
Kommentaren): https://tools.iccl.inf.tu-dresden.de/while/

Beweistechniken: strukturelle Induktion, Widerspruch durch Selbstbezüglichkeit (Busy
Beaver), TM mit zwei Stacks simulieren

Was erwartet uns als nächstes?

• Relevantere Probleme

• Reduktionen

• Rice
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