FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES

Tableau Procedures I

Sebastian Rudolph
Tableau Calculus

- User Interface & Applications
- Trust
- Proof
- Unifying Logic
- Query: SPARQL
- Ontology: OWL
- Rule: RIF
- RDFS
- Data interchange: RDF
- XML
- URI/IRI

Crypto
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Automation

- by now: ad hoc arguments about satisfiability of DL axioms
- a concept is satisfiable, if it has a model
 ~ idea: constructive decision procedure that tries to build models
- analog: truth tables in propositional logic
Automation

- by now: ad hoc arguments about satisfiability of DL axioms
- a concept is satisfiable, if it has a model
 ~ idea: constructive decision procedure that tries to build models
- analog: truth tables in propositional logic

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]
Automation

- by now: ad hoc arguments about satisfiability of DL axioms
- a concept is satisfiable, if it has a model
 \[\rightsquigarrow \text{idea: constructive decision procedure that tries to build models} \]
- analog: truth tables in propositional logic

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]

negation in front of complex expressions and non-atomic operators difficult to handle, thus reformulate:
Automation

- by now: ad hoc arguments about satisfiability of DL axioms
- a concept is satisfiable, if it has a model
 ~ idea: constructive decision procedure that tries to build models
- analog: truth tables in propositional logic

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]

negation in front of complex expressions and non-atomic operators difficult to handle, thus reformulate:

\[\neg (p \lor q) \lor (\neg p \lor \neg q)\]
by now: ad hoc arguments about satisfiability of DL axioms

a concept is satisfiable, if it has a model

idea: constructive decision procedure that tries to build models

analog: truth tables in propositional logic

\[(p \lor q) \rightarrow (\neg p \lor \neg q)\]

negation in front of complex expressions and non-atomic operators difficult to handle, thus reformulate:

\[\neg (p \lor q) \lor (\neg p \lor \neg q)\]
\[(\neg p \land \neg q) \lor (\neg p \lor \neg q)\]
Automation

- by now: ad hoc arguments about satisfiability of DL axioms
- a concept is satisfiable, if it has a model
 \(\sim \) idea: constructive decision procedure that tries to build models
- analog: truth tables in propositional logic

\[
(p \lor q) \rightarrow (\neg p \lor \neg q)
\]

negation in front of complex expressions and non-atomic operators difficult to handle, thus reformulate:

\[
\neg (p \lor q) \lor (\neg p \lor \neg q)
\]

\[
(\neg p \land \neg q) \lor (\neg p \lor \neg q)
\]

\[
(\neg p \land \neg q) \lor \neg p \lor \neg q
\]
Agenda

• Basic Idea of the Tableau Calculus
• Propositional Example
• Transformation into Negation Normal Form
• Satisfiability of ALC Concepts
• Correctness and Termination
• Summary
Simple Tableau

\((\neg p \land \neg q) \lor \neg p \lor \neg q\)
Simple Tableau

\[(\neg p \land \neg q) \lor \neg p \lor \neg q \]

- disjunctions lead to branches in the tableau
- tableau: finite set of tableau branches
Simple Tableau

\((\neg p \land \neg q) \lor \neg p \lor \neg q\)

- \(\neg p\)
- \(\neg q\)

- disjunctions lead to branches in the tableau
- tableau: finite set of tableau branches
Simple Tableau

\((\neg p \land \neg q) \lor \neg p \lor \neg q\)

\[
\begin{align*}
\neg p \\
\neg q
\end{align*}
\]

- disjunctions lead to branches in the tableau
- tableau: finite set of tableau branches
- compare: truth table

<table>
<thead>
<tr>
<th>(I(p))</th>
<th>(I(q))</th>
<th>(I(\neg p))</th>
<th>(I(\neg q))</th>
<th>(I(p \lor q))</th>
<th>(I(\neg p \lor \neg q))</th>
<th>(I((p \lor q) \rightarrow (\neg p \lor \neg q)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>(t)</td>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(f)</td>
<td>(f)</td>
</tr>
<tr>
<td>(t)</td>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
</tbody>
</table>
Simple Tableau with Contradiction

\((\neg p \lor q) \land p \land \neg q\)
Simple Tableau with Contradiction

$$(\neg p \lor q) \land p \land \neg q$$

$\neg p \lor q$

p

q
Simple Tableau with Contradiction

\[(\neg p \lor q) \land p \land \neg q\]

- \(\neg p \lor q\)
- \(p\)
- \(\neg q\)

\(\neg p\)
\(q\)
Simple Tableau with Contradiction

\[(\neg p \lor q) \land p \land \neg q\]

\[\neg p \lor q\]

\[p\]

\[\neg q\]

\[\neg p\]

\[q\]
Simple Tableau with Contradiction

\[(\neg p \lor q) \land p \land \neg q \]

\[\neg p \lor q \]

\[p \]

\[\neg q \]

\[\neg p \]

\[q \]

\[\bot \]

- if a branch contains an atomic contradiction (clash), we call this branch closed
Simple Tableau with Contradiction

\[(\neg p \lor q) \land p \land \neg q\]

\[\neg p \lor q\]

\[p\]

\[\neg q\]

\[\neg p\]

\[q\]

\[\bot\]

\[\bot\]

- if a branch contains an atomic contradiction (clash), we call this branch closed
- a tableau is closed, if all its branches are
Simple Tableau with Contradiction

\[(\neg p \lor q) \land p \land \neg q\]

\[\neg p \lor q\]

\[p\]

\[\neg q\]

\[\neg p\]

\[q\]

\[\bot\]

\[\bot\]

• if a branch contains an atomic contradiction (clash), we call this branch closed

• a tableau is closed, if all its branches are

• a complete tableau without open branches shows the formula’s unsatisfiability
Constructing a Model from the Tableau

\[(\neg p \land \neg q) \lor \neg p \lor \neg q\]

\[\neg p \land \neg q\]

\[\neg p\]

\[\neg q\]

- given an open branch, we can construct a model
Constructing a Model from the Tableau

\[
\neg p \land \neg q \lor \neg p \lor \neg q
\]

\[
\neg p \land \neg q
\]

\[
\neg p
\]

\[
\neg q
\]

- given an open branch, we can construct a model
- let I(p)=false and let I(q)=false
Constructing a Model from the Tableau

\((\neg p \land \neg q) \lor \neg p \lor \neg q\)

- given an open branch, we can construct a model
- let \(I(p) = \text{false}\) and let \(I(q) = \text{false}\)
- let \(I(p) = \text{false}\) (\(I(q)\) is irrelevant since not in the branch, default assignment false)
Constructing a Model from the Tableau

\[\neg p \land \neg q \lor \neg p \lor \neg q \]

- given an open branch, we can construct a model
- let \(I(p) = \text{false} \) and let \(I(q) = \text{false} \)
- let \(I(p) = \text{false} \) (\(I(q) \) is irrelevant since not in the branch, default assignment false)
- let \(I(q) = \text{false} \) (\(I(p) \) is irrelevant since not in the branch, default assignment false)
Propositional Tableau

- not always exponentially many combinations have to be checked (as opposed to truth table method)
- branches can be built one after the other \(\rightarrow\) only polynomial space needed
- if we care about satisfiability we can stop after constructing the first complete open branch
Construction with only one Branch in Memory

$$(\neg p \lor q) \land p \land q$$
Construction with only one Branch in Memory

$$(\neg p \lor q) \land p \land q$$

$$(\neg p^{1a} \lor q^{1b})$$

p

q

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
Construction with only one Branch in Memory

$$(\neg p \lor q) \land p \land q$$

$$(\neg p^{1a} \lor q^{1b})$$

$${p}$$

$${q}$$

$${\neg p^{1a}}$$

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
Construction with only one Branch in Memory

\[(\neg p \lor q) \land p \land q \]
\[\neg p^{1a} \lor q^{1b} \]
\[p \]
\[q \]
\[\neg p^{1a} \]
\[\bot^{1a} \]

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
- when encountering a contradiction caused by a choice, remove marked formulae and try next choice
Construction with only one Branch in Memory

\[(\neg p \lor q) \land p \land q\]

\[\neg p^1a \lor q^1b\]

- when encountering a disjunction we assign so-called choice points
- all extensions of the branch based on such a choice are also marked
- when encountering a contradiction caused by a choice, remove marked formulae and try next choice
From Propositional Tableau to Tableau for DLs

How can the tableaux be extended for checking satisfiability of \(\mathcal{ALC} \) concepts? NB: initially, we assume no underlying knowledge base, thus unsatisfiability means that the concept is contradictory “by itself”.

- tableau represents an element of the domain (plus its “environment”)
How can the tableaux be extended for checking satisfiability of \mathcal{ALC} concepts? NB: initially, we assume no underlying knowledge base, thus unsatisfiability means that the concept is contradictory “by itself”.

- tableau represents an element of the domain (plus its “environment”)
- tableau branch: finite set of propositions of the form $C(a)$, $r(a, b)$
- for existential quantifiers, new domain elements are introduced
- universal quantifiers propagate formulae (=concept expressions) to neighboring elements
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Propositional Logic – Some Logical Equivalences

- We aim at negations being present only in front of atomic concepts

\[
\begin{align*}
\phi \land \psi & \equiv \psi \land \phi \\
\phi \lor \psi & \equiv \psi \lor \phi \\
\phi \land (\psi \land \omega) & \equiv (\phi \land \psi) \land \omega \\
\phi \lor (\psi \lor \omega) & \equiv (\phi \lor \psi) \lor \omega \\
\phi \land \phi & \equiv \phi \\
\phi \lor \phi & \equiv \phi \\
\phi \land (\psi \lor \phi) & \equiv \phi \\
\phi \lor (\psi \land \phi) & \equiv \phi \\
\neg \neg \phi & \equiv \phi \\
\neg (\phi \land \psi) & \equiv \neg \phi \lor \neg \psi \\
\neg (\phi \lor \psi) & \equiv \neg \phi \land \neg \psi \\
\neg \phi \land \psi & \equiv \neg \phi \lor \psi \\
\phi \lor (\psi \land \omega) & \equiv (\phi \lor \psi) \land (\phi \lor \omega) \\
\phi \land (\psi \lor \omega) & \equiv (\phi \land \psi) \lor (\phi \land \omega)
\end{align*}
\]
Further Logical Equivalences

\begin{align*}
\neg (C \cap D) & \iff \neg C \cup \neg D \\
\neg (D \cup D) & \iff \neg C \cap \neg D \\
\neg \neg C & \iff C \\
\neg (\forall r. C) & \iff \exists r. (\neg C) \\
\neg (\exists r. C) & \iff \forall r. (\neg C) \\
\neg (\leq n s. C) & \iff \geq n + 1 s. C \\
\neg (\geq n s. C) & \iff \leq n - 1 s. C, \quad n \geq 1 \\
\neg (\geq 0 s. C) & \iff \bot
\end{align*}

- apply these rules iteratively until none can be applied any more
- \iff equivalent concept in negation normal form
NNF Transformation

recursive definition of an NNF transformation:

if C atomic:

$$\text{NNF}(C) := C$$

$$\text{NNF}(\neg C) := \neg C$$

otherwise:

$$\text{NNF}(\neg\neg C) := \text{NNF}(C)$$

$$\text{NNF}(C \sqcap D) := \text{NNF}(C) \sqcap \text{NNF}(D)$$

$$\text{NNF}(C \sqcup D) := \text{NNF}(C) \sqcup \text{NNF}(D)$$

$$\text{NNF}(\forall r.C) := \forall r. (\text{NNF}(C))$$

$$\text{NNF}(\exists r.C) := \exists r. (\text{NNF}(C))$$

$$\text{NNF}(\leq n \ s. C) := \leq n \ s. (\text{NNF}(C))$$

$$\text{NNF}(\geq n \ s. C) := \geq n \ s. (\text{NNF}(C))$$

$$\text{NNF}(\geq 0 \ s. C) := \top$$

$$\text{NNF}(\neg(\geq 0 \ s. C)) := \bot$$

$$\text{NNF}((\leq n \ s. C)) := \geq n + 1 \ s. (\text{NNF}(C))$$

$$\text{NNF}((\geq n \ s. C)) := \leq n - 1 \ s. (\text{NNF}(C))$$

if $n \geq 1$ otherwise
NNF Transformation – Example

\[
\text{NNF}(\neg(\neg C \sqcap (\neg D \sqcup E)))
= \text{NNF}(\neg \neg C) \sqcup \text{NNF}(\neg(\neg D \sqcup E))
= \text{NNF}(C) \sqcup \text{NNF}(\neg(\neg D \sqcup E))
= C \sqcup \text{NNF}(\neg(\neg D \sqcup E))
= C \sqcup (\text{NNF}(\neg \neg D) \sqcap \text{NNF}(\neg E))
= C \sqcup (\text{NNF}(D) \sqcap \text{NNF}(\neg E))
= C \sqcup (D \sqcap \text{NNF}(\neg E))
= C \sqcup (D \sqcap \neg E)
\]
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of ALC Concepts
- Correctness and Termination
- Summary
Tableau for \mathcal{ALC} Concepts

- tableau for a propositional formulal α: one element, labeled with subformulae of α
- tableau for an \mathcal{ALC} concept C: graph (more precisely: tree) where the nodes are labeled with subformulae of C
- root labeled with C
- represents model for C (if complete and clash-free)
- non-root nodes are enforced by existential quantifiers

Definition

Let C be an \mathcal{ALC} concept, $\text{SF}(C)$ the set of all subformulae of C and $\text{Rol}(C)$ the set of all roles occurring in C. A tableau for C is a tree $G = \langle V, E, L \rangle$, with nodes V, edges $E \subseteq V \times V$ and a labeling function L with $L: V \rightarrow 2^{\text{SF}(C)}$ and $L: V \times V \rightarrow 2^{\text{Rol}(C)}$.
Properties of the \mathcal{ALC} Tableau Algorithm

- the algorithm is specified as a set of rules
- every rule breaks down a complex concept into its parts
- rules applicable in any order
- the algorithm is non-deterministic (due to disjunction)
- check for atomic contradictions

Tableau algorithm for checking satisfiability of \mathcal{ALC} concepts

Input: an \mathcal{ALC} concept in NNF

Output:
- true if there is a clash-free tableau where no more rules can be applied
- false otherwise (tableau closed)
Tableau Rules for \mathcal{ALC} Concepts

\square-rule: For an arbitrary $v \in V$ with $C \sqcap D \in L(v)$ and $
\{C, D\} \not\subseteq L(v)$, let $L(v) := L(v) \cup \{C, D\}$.

\square-rule: For an arbitrary $v \in V$ with $C \sqcup D \in L(v)$ and
$\{C, D\} \cap L(v) = \emptyset$, choose $X \in \{C, D\}$ and let
$L(v) := L(v) \cup \{X\}$.

\exists-rule: For an arbitrary $v \in V$ with $\exists r. C \in L(v)$ such that
there is no r-successor v' of v with $C \in L(v')$,
let $V = V \cup \{v'\}$, $E = E \cup \{(v, v')\}$, $L(v') := \{C\}$ and
$L(v, v') := \{r\}$ for v' a new node.

\forall-rule: For arbitrary $v, v' \in V$, v' r-neighbor of v,
$\forall r. C \in L(v)$ and $C \notin L(v')$, let $L(v') := L(v') \cup \{C\}$.

- a node v' is an r-neighbor of a node v if $(v, v') \in E$ and $r \in L(v, v')$
Tableau Rules for \mathcal{ALC} Concepts

\sqcap-rule: For an arbitrary $v \in V$ with $C \sqcap D \in L(v)$ and $\{C, D\} \not\subseteq L(v)$, let $L(v) := L(v) \cup \{C, D\}$.

\sqcup-rule: For an arbitrary $v \in V$ with $C \sqcup D \in L(v)$ and $\{C, D\} \cap L(v) = \emptyset$, choose $X \in \{C, D\}$ and let $L(v) := L(v) \cup \{X\}$.

\exists-rule: For an arbitrary $v \in V$ with $\exists r.C \in L(v)$ such that there is no r-successor v' of v with $C \in L(v')$, let $V = V \cup \{v'\}$, $E = E \cup \{(v, v')\}$, $L(v) := \{C\}$ and $L(v, v') := \{r\}$ for v' a new node.

\forall-rule: For arbitrary $v, v' \in V$, v' r-neighbor of v,

$\forall r.C \in L(v)$ and $C \notin L(v')$, let $L(v') := L(v') \cup \{C\}$.

- a node v' is an r-neighbor of a node v if $\langle v, v' \rangle \in E$ and $r \in L(v, v')$

- rule application order: “don’t care” non-determinism
Tableau Rules for \mathcal{ALC} Concepts

\square-rule: For an arbitrary $v \in V$ mit $C \cap D \in L(v)$ and
$\{C, D\} \not\subseteq L(v)$, let $L(v) := L(v) \cup \{C, D\}$.

\top-rule: For an arbitrary $v \in V$ with $C \sqcup D \in L(v)$ and
$\{C, D\} \cap L(v) = \emptyset$, choose $X \in \{C, D\}$ and let
$L(v) := L(v) \cup \{X\}$.

\exists-rule: For an arbitrary $v \in V$ with $\exists r.C \in L(v)$ such that
there is no r-successor v' of v with $C \in L(v')$,
let $V := V \cup \{v'\}$, $E := E \cup \{(v, v')\}$, $L(v') := \{C\}$ and
$L(v, v') := \{r\}$ for v' a new node.

\forall-rule: For arbitrary $v, v' \in V$, v' r-neighbor of v,
$\forall r.C \in L(v)$ and $C \notin L(v')$, let $L(v') := L(v') \cup \{C\}$.

- a node v' is an r-neighbor of a node v if $(v, v') \in E$ and $r \in L(v, v')$
- rule application order: “don’t care” non-determinism
- choice of disjunction: “don’t know” non-determinism
Tableau Algorithmus Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C \} \]
Tableau Algorithmus Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \]
Tableau Algorithmus Example

\[C = \exists r. (A \cup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[L(u) = \{ C, \exists r. (A \cup \exists r. B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \} \]

\[L(v) = \{ A \cup \exists r. B \} \]
Tableau Algorithmus Example

\[C = \exists r. (A \cup \exists r.B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[L(u) = \{ C, \exists r. (A \cup \exists r.B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \} \]

\[L(v) = \{ A \cup \exists r.B \} \]

\[L(w) = \{ \neg A \} \]
Tableau Algorithmus Example

\[C = \exists r.(A \sqcup \exists r.B) \sqcap \exists r.\neg A \sqcap \forall r.(\neg A \sqcap \forall r.(\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r.(A \sqcup \exists r.B), \exists r.\neg A, \forall r.(\neg A \sqcap \forall r.(\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r.B, \neg A, \forall r.(\neg B \sqcup A) \} \]

\[L(w) = \{ \neg A \} \]
Tableau Algorithmus Example

\[C = \exists r. (A \cup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[L(u) = \{ C, \exists r. (A \cup \exists r. B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \} \]

\[L(v) = \{ A \cup \exists r. B, \neg A, \forall r. (\neg B \cup A) \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \cup A) \} \]
Tableau Algorithmus Example

\[C = \exists r. (A \sqcup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A), A \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \sqcup A) \} \]
Tableau Algorithmus Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A) \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \sqcup A) \} \]
Tableau Algorithmus Example

\[C = \exists r. (A \sqcup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \]

\[
\begin{align*}
L(u) &= \{ C, \exists r. (A \sqcup \exists r. B), \\
& \quad \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \}\end{align*}
\]

\[
\begin{align*}
L(v) &= \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A), \not\exists r. B \}\end{align*}
\]

\[
\begin{align*}
L(w) &= \{ \neg A, \forall r. (\neg B \sqcup A) \}\end{align*}
\]
Tableau Algorithmus Example

\[C = \exists r. (A \sqcup \exists r. B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A), x, \exists r. B \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \sqcup A) \} \]

\[L(x) = \{ B \} \]
Tableau Algorithmus Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[
\begin{align*}
L(u) &= \{ C, \exists r. (A \sqcup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \\
L(v) &= \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A), \neg r. B \} \\
L(w) &= \{ \neg A, \forall r. (\neg B \sqcup A) \} \\
L(x) &= \{ B, \neg B \sqcup A \}
\end{align*}
\]
Tableau Algorithmus Example

\[C = \exists r. (A \cup \exists r.B) \cap \exists r. \neg A \cap \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \]

\[L(u) = \{ C, \exists r. (A \cup \exists r.B), \exists r. \neg A, \forall r. (\neg A \cap \forall r. (\neg B \cup A)) \} \]

\[L(v) = \{ A \cup \exists r.B, \neg A, \forall r. (\neg B \cup A), \Box, \exists r.B \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \cup A) \} \]

\[L(x) = \{ B, \neg B \cup A, \neg B \} \]
Tableau Algorithmus Example

\[C = \exists r. (A \sqcup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

- \(L(u) = \{C, \exists r.(A \sqcup \exists r. B), \exists r. \neg A, \forall r.(\neg A \sqcap \forall r. (\neg B \sqcup A))\} \)
- \(L(v) = \{A \sqcup \exists r. B, \neg A, \forall r.(\neg B \sqcup A), \times, \exists r. B\} \)
- \(L(w) = \{\neg A, \forall r.(\neg B \sqcup A)\} \)
- \(L(x) = \{B, \neg B \sqcup A, \times, B\} \)
Tableau Algorithmus Example

\[C = \exists r. (A \cup \exists r. B) \sqcap \exists r. \neg A \sqcap \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \]

\[L(u) = \{ C, \exists r. (A \cup \exists r. B), \exists r. \neg A, \forall r. (\neg A \sqcap \forall r. (\neg B \sqcup A)) \} \]

\[L(v) = \{ A \sqcup \exists r. B, \neg A, \forall r. (\neg B \sqcup A), x, \exists r. B \} \]

\[L(w) = \{ \neg A, \forall r. (\neg B \sqcup A) \} \]

\[L(x) = \{ B, \neg B \sqcup A, \not\exists r. B, A \} \]
Tableau Algorithm Example

the model \mathcal{I} constructed by the algorithm is the following:

$$\Delta^\mathcal{I} = \{u, v, w, x\}$$

$$A^\mathcal{I} = \{x\}$$

$$B^\mathcal{I} = \{x\}$$

$$r^\mathcal{I} = \{\langle u, v \rangle, \langle u, w \rangle, \langle v, x \rangle\}$$

Check that indeed $C^\mathcal{I} = \{u\}$, given the defined semantics of \mathcal{ALC}
Tableau Algorithm Properties

1. the model is **finite**: only finitely many elements in the domain
2. the model is **tree-shaped**: the tableau is a labeled tree

the algorithm will always construct finite trees
- from a clash-free tableau, we can construct a finite model
- if there is no clash-free tableau, there is no model
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Tableau Properties

- the depth (number of nested quantifiers) decreases in every node
- every node is labeled only with subformulae of C
- C has only polynomially many subformulae
- if the output is true we can build a model out of the constructed tableau
- on the other hand, we can use a model of a satisfiable concept to construct a clash-free tableau for this concept
Tableau Algorithm for \mathcal{ALC} Concepts

Theorem

1. the algorithm terminates for every input
2. if the output is $true$, then the input concept is satisfiable
3. if the input concept is satisfiable, then the output is $true$.

Corollary

Every \mathcal{ALC} concept C has the following properties:
1. finite model property: If C has a model, then it has a finite one.
2. tree model property: If C has a model, then it has a tree-shaped one.
Tableau Algorithm for \mathcal{ALC} Concepts

Theorem

1. the algorithm terminates for every input
2. if the output is $true$, then the input concept is satisfiable
3. if the input concept is satisfiable, then the output is $true$.

Corollary

Every \mathcal{ALC} concept C has the following properties:

1. finite model property: If C has a model, then it has a finite one.
2. tree model property: If C has a model, then it has a tree-shaped one.
Agenda

- Basic Idea of the Tableau Calculus
- Propositional Example
- Transformation into Negation Normal Form
- Satisfiability of \mathcal{ALC} Concepts
- Correctness and Termination
- Summary
Summary

- we now have a constructive method for building model abstractions
- satisfiable \mathcal{ALC} concepts always have a finite model that we can construct
- the algorithm is correct, complete and terminating
- serves as basis for practically implemented algorithms
- next: extension to knowledge bases