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Chapter 1

Introduction

An “intensional” answer [Mot94] obtained from a database system or a knowledge-
based system characterizes the requested information not just in terms of ex-
plicitly listed predicate extensions, but in a way that is more convenient for the
client, in terms of concepts that can be understood or efficiently processed in
some sense by the client, abstracting from concrete extensions. In distributed
settings with multiple agents and knowledge sources, such answers are particu-
larly useful as intermediates that are passed as queries to agents with special-
ized knowledge bases and processing capabilities. View-based query processing
[Hal01,CGLV07,Mar07,NSV10] is an approach from database research that in-
volves such an intermediate layer and has numerous applications in query op-
timization, database design, information integration and distributed knowledge
processing. A further approach, to be called here split rewriting, has been inves-
tigated in [BdBF+10,FKN12,FKN13]. It is related to view-based query process-
ing, but also differs from it in important aspects. Both approaches are actually
closely related to the investigation of definability in a general logic setting, with
second-order operators naturally suggesting themselves as means of expression
[Tar35,Mar07].

The objective of this work is to develop a unifying formal framework that
captures different forms of answers to queries semantically, including those in-
volved in view-based query processing and split rewriting. The technical basis is
classical first-order logic, extended with second-order operators, in particular for
projection, a generalization of predicate quantification, and for circumscription.
The second-order operators play a twofold role: First, they add the expressivity
required to express the envisaged forms of answers in a natural way. Second,
a form of computational processing is associated with them: Second-order op-
erator elimination, that is, to compute for a given formula with second-order
operators, an equivalent formula without them. Further second-order operators
that correspond to recurring application patterns can be defined in terms of the
primitive operator for projection. Here, the most important of these patterns is
the globally weakest sufficient condition [Wer12], which is closely related to weak-
est sufficient condition [Lin01,D LS01] and provides the basis to specify notions
of definition and definability. An answer can then be characterized generically as
an alternate definition of the query with respect to the background knowledge
base, meeting constraints about the allowed vocabulary and satisfying further
application dependent properties, similarly to generic notions of abductive expla-
nation [KKT98]. With this second-order framework, we model various forms of
answers that occur in view-based query processing as made precise in [CGLV07]
and in split rewriting as investigated in [BdBF+10,FKN12,FKN13].
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The reconstructions formally relate specific concepts of view-based query
processing and split rewriting to fundamental general concepts of logic, indicat-
ing ways to generalize notions from databases to different types of knowledge
bases and showing parallels with other areas, suggesting ways to transfer and
combine techniques. Particularly relevant are abductive reasoning in logic pro-
gramming [KKT98,D LS01,Wer13], applications of uniform interpolation in de-
scription logics [GLW06,KWW09,LW11,CM12,KS13], and the investigation of
dedicated methods for second-order quantifier elimination [GSS08].

The impatient reader might now skip to Sect. 25, where a tabular summary
of the reconstructions of the concepts involved in view-based query processing is
given. For split rewriting, the characterization and essential properties are given
with Def. 74, Prop. 76 and Prop. 77.

The rest of the paper is organized as follows: In Chapter 2, syntax and seman-
tics of the background framework is introduced, that is, first-order logic extended
with a second-order operator for projection. Properties of projection that will be
relevant in subsequent chapters are noted. The globally weakest sufficient con-
dition and related application patterns of projection are specified in Chapter 3.
Properties of them are stated formally and further concepts are defined in terms
of them: Definition and definability as well as the related unique definability,
scope definability, and the conservative property. In Chapter 4, a generic model of
queries and answers is specified on the basis of the concept of definition. It is then
shown how the conventional basic types of answers and slight extensions of these
are rendered in this model. This includes the distinction between consistency-
and entailment-based extensional answer, extensional answers that are charac-
terized by formulas with equality constraints, answers with respect to datalog
formulas, as well as a simple form of intensional answers. In Chapter 5, the pre-
sented framework is applied to reconstruct the concepts involved in view-based
query processing as specified in [CGLV07]. Chapter 6 provides reconstructions
of the concepts of split rewriting investigated in [BdBF+10,FKN12,FKN13]. In
the conclusion, Chapter 7, issues for future research that are opened up by this
report are summarized.



Chapter 2

Notation and Preliminaries

1 First-Order Logic without Function Symbols

We assume a fixed first-order signature Σ = 〈CONST,PRED,VAR〉, that is,
a triple of a nonempty finite or countable infinite set CONST of constants, a
finite set PRED of predicates, each with an associated arity larger than or equal
to 0, and a finite set VAR of variables. The letters x, y, z, also with subscripts,
denote variables. We basically consider formulas that are constructed from first-
order atoms over Σ, truth value constants ⊤,⊥, the unary connective ¬, binary
connectives ∧,∨,→,←,↔ and first-order quantifiers ∀, ∃. In addition, we have
.
= as logic operator for syntactic equality of terms. As meta-level notation we
use n-ary versions of ∧ and ∨. To save parentheses, we assume that the syntactic
scope of quantifiers reaches as far to the right as possible. A sentence is a formula
without free variables. We us x as a shorthand for the sequence x1, . . . , xn of
variables. We write a formula F whose free variables are exactly x also as F (x).
If c = c1, . . . , cn is a sequence of constants, then, in a context where F (x) is
specified, F (c) denotes the sentence obtained from F by substituting each free
occurrence of xi by ci, for i ∈ {1, . . . , n}. A universal first-order formula is a
formula of the form ∀xF , where F is a first-order formulas without occurrences
of quantifiers. Later on we will extend the notion of formula by allowing certain
second-order operators.

If CONST is infinite, the restriction of first-order logic by disallowing function
symbols with exception of constants does not essentially constrain expressivity.
It simplifies expressing certain concepts and properties and is straightforwardly
compatible with established formalizations of databases.

2 Literals and Scopes

A literal is a pair of an atom and a sign, where we write the positive (negative)
literal with atom A as +A (−A). The complement of a literal L is denoted by L.
If S is a set of literals, then S denotes the set of the complements of the members
of S. An atom or literal without variables is called ground. Notice that so far
we use literals “by themselves”, as representatives of an atom and a polarity, in
contrast to formula constituents. We call a formula that is an atom or a negated
atom a literal formula, and only if no ambiguity arises, also briefly a literal.

A scope is a set of ground literals. The sets of all ground literals, all posi-
tive ground literals, and all negative ground literals over Σ are denoted by ALL,
POS, NEG, respectively. An atom scope S is a scope such that S = S. Since a
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literal is a member of an atom scope if and only if its complement is a mem-
ber, as a shorthand, we write an atom scope also just as the set of atoms of
its members. A predicate scope is a scope whose members are all the ground
literals whose predicate is in a given set of predicates. We use this set of pred-
icates as a shorthand for a predicate scope. As an example, consider the scope
{+p(a),−p(a),+p(b),−p(q)}. Since it is an atom scope, it can be written as the
set of atoms {p(a), p(b)}. If CONST = {a, b}, then it is a predicate scope and
can also be written as {p}.

3 Semantic Framework

We use a notational variant of the framework of Herbrand interpretations: An
interpretation is a pair 〈I, β〉, where I is a structure, that is, a set of ground
literals that contains for all ground atoms A over Σ exactly one of +A or −A,
and β is a variable assignment, that is, a mapping of the set of variables VAR into
the set of constants CONST. As explained in [Wer12], structures in this sense
represent Herbrand structures in the usual sense considered in model theory.
The representation as sets of ground literals facilitates to express the semantics
of certain second-order operators discussed later on.

The formula F with all free variables replaced by their image in β is denoted
by Fβ; the variable assignment that maps x to the constant c and all other
variables to the same values as β is denoted by β c

x .
The satisfaction relation between interpretations and a formulas is defined as

shown for a choice of operators in Def. 1 below. The semantics of the remaining
well-known operators can be specified analogously.

Definition 1 (Satisfaction Relation for First-Order Formulas). For in-
terpretations 〈I, β〉, atoms A, terms t, u and formulas F,G, the satisfaction re-
lation |= is defined as follows”

〈I, β〉 |= A iffdef +Aβ ∈ I.
〈I, β〉 |= t

.
= u iffdef β(t) = β(u).

〈I, β〉 |= ⊤.
〈I, β〉 6|= ⊥.
〈I, β〉 |= ¬F iffdef 〈I, β〉 6|= F .
〈I, β〉 |= F ∧G iffdef 〈I, β〉 |= F land 〈I, β〉 |= G.
〈I, β〉 |= F ∨G iffdef 〈I, β〉 |= F or 〈I, β〉 |= G.
〈I, β〉 |= ∀xF iffdef for all c ∈ CONST it holds that 〈I, β c

x 〉 |= F .
〈I, β〉 |= ∃xF iffdef there is a c ∈ CONST s.th. 〈I, β c

x 〉 |= F .

If F is a sentence, then the β component of an interpretation 〈I, β〉 is irrelevant
for the meaning of 〈I, β〉 |= F . In this case, we sometimes let just the structure
component I take the place of the interpretation, that is, we write I |= F instead
of 〈I, β〉 |= F .

A formula F is called satisfiable if and only if there exists an interpreta-
tion 〈I, β〉 such that 〈I, β〉 |= F . Entailment, equivalence, satisfiability and va-
lidity are straightforwardly defined in terms of the satisfaction relation. Entail-
ment: F |= G holds if and only if for all 〈I, β〉 such that 〈I, β〉 |= F it holds
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that 〈I, β〉 |= G. Equivalence: F ≡ G if and only if F |= G and G |= F . A
formula F is satisfiable if and only if there exists an interpretation 〈I, β〉 such
that 〈I, β〉 |= F . A formula F is valid if and only if for all interpretations 〈I, β〉
it holds that 〈I, β〉 |= F .

4 A Second-Order Operator for Projection

We extend first-order logic by certain second-order operators. One of these is
for projection [Wer09,Wer08,LLM03], a generalization of second-order predicate
quantification. Each of the standard operators for first-order logic has been se-
mantically defined by a clause in Def. 1. The semantic definition of projection
provides such a clause for the project operator:

Definition 2 (Projection). The projection of formula F onto scope S, in sym-
bols projectS(F ), is a formula whose semantics is defined as follows: For all in-
terpretations 〈I, β〉 it holds that

〈I, β〉 |= projectS(F ) iffdef there exists a structure J such that
〈J, β〉 |= F and J ∩ S ⊆ I.

Forgetting is a notational variant of projection, where the scope is considered
complementary. We define it here not as a primitive but in terms of projection:

Definition 3 (Forgetting). The forgetting in formula F about scope S is
defined as

forgetS(F ) def= projectALL\S(F ).

Combined with propositional logic, projection generalizes Boolean quantifica-
tion, combined with first-order logic second-order quantification: The second-
order formula ∃pF , where p is a predicate, can be expressed as projection of F
onto the set of all ground literals with a predicate other than p, or equivalently,
as the forgetting about the set of all ground literals with predicate p. Intuitively,
the projection of a formula F onto scope S is a formula that expresses about
literals in S the same as F , but expresses nothing about other literals.

Recall that a propositional formula is in negation normal form if ∧ and ∨
are the only allowed binary connectives, and negation ¬ is only allowed in front
of atoms. We say that a literal +A does occur in such a formula if and only if
there is an unnegated occurrence of A, and analogously, that −A does occur in
it if and only if there is a negated occurrence. A projection of a propositional
formula is equivalent to a propositional formula in negation normal form such
that all literals occurring in the formula are members of the projection scope.
Such a formula is a uniform interpolant of the original formula with respect to
the scope. A naive way to construct such an interpolant – or, in other words, to
eliminate the projection operator – is indicated by the following equivalences,
which hold for propositional formulas F and atoms A, where F [A\⊤] (F [A\⊥],
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resp.) denotes F with all occurrences of atom A replaced by ⊤ (⊥, resp.):

forget{A}(F ) ≡ F [A\⊤] ∨ F [A\⊥]. (E1)

forget{+A}(F ) ≡ F [A\⊤] ∨ (¬A ∧ F [A\⊥]). (E2)

forget{−A}(F ) ≡ (A ∧ F [A\⊤]) ∨ F [A\⊥]. (E3)

The particular variants of projection and forgetting specified in Def. 2 and 3
are also called literal projection and literal forgetting [Wer08,LLM03], since they
allow, so-to-speak, to express quantification upon just atom occurrences with
positive or negative polarity in a formula. This can be contrasted with atom
projection and atom forgetting, where the polarity is not taken into account, and
which can be expressed by literal projection and literal forgetting, respectively,
onto atom scopes.

The following proposition gives an overview on basic properties of projec-
tion. Most of them follow straightforwardly from the semantic definition of
project. Proofs, as well as more thorough material on projection can be found
in [Wer08,Wer09]. In the subsequent sections we will show further properties of
projection and define additional logic operators in terms of projection.

Proposition 4 (Basic Properties of Projection). For all formulas F,G and
scopes S, S1, S2 the following properties hold:

(i) F |= projectS(F ).
(ii) If F |= G, then projectS(F ) |= projectS(G).

(iii) If F ≡ G, then projectS(F ) ≡ projectS(G).
(iv) If S1 ⊇ S2, then projectS1

(F ) |= projectS2
(F ).

(v) projectS2
(projectS1

(F )) ≡ projectS1∩S2
(F ).

(vi) F |= projectS(G) iff projectS(F ) |= projectS(G).
(vii) projectALL(F ) ≡ F .

(viii) F is satisfiable iff projectS(F ) is satisfiable.
(ix) If no instance of L is in S, then projectS(L) ≡ ⊤.
(x) If all instances of L are in S, then projectS(L) ≡ L.

(xi) projectS(⊤) ≡ ⊤.
(xii) projectS(⊥) ≡ ⊥.

(xiii) projectS(F ∨G) ≡ projectS(F ) ∨ projectS(G).
(xiv) projectS(F ∧G) |= projectS(F ) ∧ projectS(G).
(xv) projectS(∃xF ) ≡ ∃x projectS(F ).

(xvi) projectS(∀xF ) |= ∀x projectS(F ).
(xvii) projectS(¬projectS(F )) ≡ ¬projectS(F ).

5 Projection onto the Empty Set

Projection onto the empty set has a special relationship to satisfiability, validity
and can be applied to specify of sets tuples of constants that represent the vari-
able assignments that satisfy a formula. We define the operator sat for projection
onto the empty set, together with the dual operator valid:
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Definition 5 (Sat, Valid). For formulas F define:

(i) sat(F ) def= project∅(F ).
(ii) valid(F ) def= ¬project∅(¬F ).

For all sentences F it holds that F is satisfiable if and only if sat(F ) is valid if
and only if sat(F ) is satisfiable. Analogously, for all sentences F it holds that F
is valid if and only if valid(F ) is satisfiable if and only if valid(F ) is valid.

The operators sat and valid can also be applied to formulas with free variables.
Let F (x) be a formula. Then

{c | c ∈ CONSTn and |= sat(F (c))} (E4)

is the set of all tuples c of constants such that F (c) is satisfiable. Concerning the
notation used here, recall that we have defined x as shorthand for x1, . . . , xn,
thus n is the arity of x. In addition, we use for tuples of terms the same notation
that we use for sequences of terms. The set of all tuples c such that F (c) is valid
can then be written, analogously to (E4), as:

{c | c ∈ CONSTn and |= valid(F (x)).} (E5)

6 Symbolic Notation in Proofs

Most of the material developed in the subsequent sections is accompanied by
detailed proofs, where we use the following additional symbolic shorthands and
abbreviations:

∀̇F ⋐ S : For all formulas F such that F ⋐ S it holds that

∃̇F ⋐ S : There exists a formula F such that F ⋐ S and
∧̇ and
⇒ implies
⇔ if and only if

exp. expanding the definition of
con. contracting the definition of

7 Aboutness of a Formula

The following notation provides a semantic account for expressing that a formula
is “in” a scope, or, in other words, just “about” literals in a scope:

Definition 6 (⋐). For formulas F and scopes S define:

F ⋐ S iffdef F ≡ projectS(F ).

We use the symbol ⋐ also when introducing variables, e.g., “let F ⋐ S be a
formula” for “let F be a formula such that F ⋐ S”. When used in this way, it
applies only to the single formula that directly precedes it, for example, “for all
F,G ⋐ S” stands for “for all F and for all G ⋐ S.” If F is a propositional formula,
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then F ⋐ S holds if and only if F is equivalent to some formula in negation
normal form in which only literals from scope S do occur. We express F ⋐ S
verbally as F is in scope S. The following two propositions show properties that
are useful in proofs and involve ⋐.

Proposition 7 (Scope Closure and Negation). If F is a formula and S is
a scope, then

¬F ⋐ S if and only if F ⋐ S.

Proof (Proposition 7). Consider the following tables. We show that the right
side of the stated equivalence follows from the assumption of the left side, and
vice versa. Left-to-right:

(1) ¬F ⋐ S assumption
(2) ¬F ≡ project

S
(¬F ). by (1), exp. ⋐

(3) F ≡ ¬project
S

(¬F ). by (2)
(4) F ≡ project

S
(¬project

S
(¬F )). by (3), Prop. 4.xvii

(5) F ≡ project
S

(F ). by (4), (3)
(6) F ⋐ S. by (5), con. ⋐

The right-to-left direction is analogous:

(7) F ⋐ S. assumption
(8) F ≡ project

S
(F ). by (7), exp. ⋐

(9) ¬F ≡ ¬project
S

(F ). by (8)
(10) ¬F ≡ project

S
(¬project

S
(F )). by (9), Prop. 4.xvii

(11) ¬F ≡ project
S

(¬F ). by (10), (9)

(12) ¬F ⋐ S. by (11), con. ⋐

⊓⊔

Proposition 8 (Modifying Models Outside the Formula Scope). Let S
be a scope, let F be a formula, let I, J be structures and let β be an assignment.
If F ⋐ S, 〈I, β〉 |= F , and I ∩ S ⊆ J , then 〈J, β〉 |= F .

Proof (Proposition 8). Steps to derive the conclusion of the proposition from
assuming its preconditions are shown in the following table:

(1) F ⋐ S. assumption
(2) 〈I, β〉 |= F . assumption
(3) I ∩ S ⊆ J . assumption
(4) 〈I, β〉 |= project

S
(F ). by (2), (1)

(5) There exists a structure K such that 〈K,β〉 |= F and K ∩ S ⊆ I. by (4)
(6) There exists a structure K such that 〈K,β〉 |= F and K ∩ S ⊆ J . by (5), (3)
(7) 〈J, β〉 |= project

S
(F ). by (6)

(8) 〈J, β〉 |= F . by (7), (1)

⊓⊔

8 Further Properties of Projection

In this section we show further properties of projection that are useful for the
material developed in later sections. We first turn to the interplay of projection



10 Section 8

and conjunction. As we have seen with Prop. 4.xiii, projection distributes over
disjunction. From the projection of a conjunction, the projection of the individ-
ual conjuncts does follow (Prop. 4.xiv), however, the converse does not hold in
general. Proposition 9 shows semantic conditions that allow conclusions in both
directions.

A different semantic characterization of the interplay of projection with con-
junction shown in [Wer08] involves the additional concept of essential literal base
and applies in full only to formulas satisfying a certain compactness property,
called E-formulas in [Wer08]. For these reasons, we prefer to handle the seman-
tics of the interplay of projection and conjunction with Prop. 9, which suffices
for the applications in this report.

Proposition 9 (Projection over Contained Conjunct). Let F be a formula
and let S be a scope. It then holds that

(i) projectS(F ∧ projectS(G)) ≡ projectS(projectS(F ) ∧ projectS(G)).

(ii) If S is an atom scope and a F ⋐ S, then

F ∧ projectS(G) ≡ projectS(F ∧G).

Proof (Proposition 9).

(9.i) The left-to-right direction follows from Prop. 4.i and 4.ii. The right-to-
left direction can be shown as follows: Consider the table below. Let 〈I, β〉 be a
model of the right side, that is, an interpretation such that (1) holds.

(1) 〈I, β〉 |= project
S

(project
S

(F ) ∧ project
S

(G)). assumption
(2) There exist structures J,K,K′ such that: by (1), exp. project
(3) 〈K,β〉 |= F ,

(4) K ∩ S ⊆ J ,
(5) 〈K′, β〉 |= G,
(6) K′ ∩ S ⊆ J ,

(7) J ∩ S ⊆ I.
(8) J ∩ S ⊆ K. by (4), properties of structures
(9) K′ ∩ S ⊆ K. by (8), (6)

(10) K ∩ S ⋐ I. by (4), (7)
(11) 〈I, β〉 |= project

S
(F ∧ project

S
(G)). by (3), (5), (9), (10), con. project

(9.ii) The equivalence can be shown in the following steps, proceeding from
the right to the left side:

(1) project
S

(F ∧G)
(2) ≡ project

S
(project

S
(F ) ∧G)

(3) ≡ project
S

(project
S

(F ) ∧ project
S

(G) by Prop. 9.i
(4) ≡ project

S
(F ) ∧ project

S
(G), by Prop. 4.ii, 4.v, 4.i

(5) ≡ F ∧ project
S

(G).

⊓⊔

In Prop. 10 below we give a variant of the basic property Prop. 4.vi with flipped
antecedent and consequent, which is useful in proofs.
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Proposition 10 (Consequences of a Projection). If F,G are formulas and
S is a scope, then

projectS(F ) |= G if and only if F |= ¬projectS(¬G).

Proof (Proposition 10). Consider the following equivalences:

(1) project
S

(F ) |= G

(2) iff ¬G |= ¬project
S

(F )
(3) iff ¬G |= project

S
(¬project

S
(F )) by Prop. 4.xvii

(4) iff project
S

(¬G) |= project
S

(¬project
S

(F )) by Prop. 4.vi
(5) iff project

S
(¬G) |= ¬project

S
(F ) by Prop. 4.xvii

(6) iff project
S

(F ) |= ¬project
S

(¬G)
(7) iff project

S
(F ) |= project

S
(¬project

S
(¬G)) by Prop. 4.xvii

(8) iff F |= project
S

(¬project
S

(¬G)) by Prop. 4.vi
(9) iff F |= ¬project

S
(¬G). by Prop. 4.xvii

⊓⊔

Proposition 11 below gives alternate characterizations of entailment and equiv-
alence of formulas after projection, along with versions that in addition involve
negation.

Proposition 11 (Entailment of Projections and Projection). If F,G are
formulas and S is a scope, then

(i) The following statements are equivalent:

1. For all formulas H ⋐ S it holds that if F |= H, then G |= H.
2. G |= projectS(F ).

(ii) The following statements are equivalent:

1. For all formulas H ⋐ S it holds that F |= H if and only if G |= H.
2. projectS(F ) ≡ projectS(G).

(iii) The following statements are equivalent:

1. For all formulas H ⋐ S it holds that if H |= F , then H |= G.
2. ¬projectS(¬F ) |= G.

(iv) The following statements are equivalent:

1. For all formulas H ⋐ S it holds that H |= F if and only if H |= G.
2. projectS(¬F ) ≡ projectS(¬G).

Proof (Proposition 11).
(11.i) Assume the left side of the proposition, that is, for all formulas H ⋐ S it

holds that if F |= H then G |= H. Since projectS(F ) ≡ projectS(projectS(F )) (by
Prop. 4.v) and F |= projectS(F ) (by Prop. 4.i) it follows that G |= projectS(F ).

Right-to-left: Assume the right side of the proposition, that is, G |= projectS(F ).
Let H ⋐ S be a formula such that F |= H. From Prop. 4.vi it then follows that
projectS(F ) |= H. From the assumption it then follows that G |= H.
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(11.ii) Follows from Prop. 11.i and 4.iii.

(11.iii) For all formulas H ⋐ S, the following statements are equivalent:

(1) H |= F , then H |= G

(2) iff If project
S

(H) |= F , then H |= G

(3) iff If H |= ¬project
S

(¬F ), then H |= G by Prop. 10
(4) iff If project

S
(¬F ) |= ¬H, then ¬G |= ¬H.

Thus, also the following statements are equivalent:

(5) For all formulas H s.th. H ⋐ S:
If H |= F , then H |= G

(6) iff For all formulas H s.th. H ≡ project
S

(H):
If project

S
(¬F ) |= H, then ¬G |= H by equiv. of (1) to (3), Prop. 7

(7) iff ¬G |= project
S

(¬F ). by Prop. 11.i and 4.v
(8) iff ¬project

S
(¬F ) |= G.

(11.iv) Follows from Prop. 11.iii and 4.iii.
⊓⊔



Chapter 3

Definability and Related Concepts

Our basic tools for approaching queries and answers are the concepts of definition
and definability. Both of them can be characterized in terms of two particular
application patterns of projection, the globally strongest necessary condition and
globally weakest sufficient condition. In this chapter we develop this “intermedi-
ate layer” between the general projection operator and the analysis of queries
and answers.

9 Globally Strongest Necessary and Weakest Sufficient

Condition

The dual concepts globally strongest necessary condition (GSNC) and globally
weakest sufficient condition (GWSC) [Wer12] are application patterns of projec-
tion that arise in application such as non-monotonic reasoning [Wer12], charac-
terizing abductive explanations [Wer13] and characterizing definability and its
facets, which is the focus here. We define GSNC and GWSC as second-order oper-
ators that expand into projection. They are closely related to strongest necessary
conditions and weakest sufficient conditions, devised in [Lin01] for propositional
logic and adapted to first-order logic in [D LS01]. As shown in [Wer12], aside
of the consideration of polarity, the main difference to the variants introduced
in [Lin01] is that for a given formula and scope only the “global” variants are
unique up to equivalence. This justifies to speak of the GSNC and the GWSC.

Definition 12 (GSNC/GWSC). For scopes S and formulas F define:
(i) gsncS(F,G) def= projectS(F ∧G).

(ii) gwscS(F,G) def= ¬projectS(F ∧ ¬G).

The following proposition gathers properties of the GSNC and GWSC. They are
straightforward to prove from the definitions of GSNC and GWSC and properties
of projection.

Proposition 13 (Properties of GSNC/GWSC). For all scopes S and for-
mulas F,G it holds that

(i) gsncS(F,G) ≡ ¬gwscS(F,¬G).
(ii) gwscS(F,G) ≡ ¬gsncS(F,¬G).

(iii) If F1 ≡ F2 and G1 ≡ G2, then gsncS(F1, G1) ≡ gsncS(F2, G2).
(iv) If F1 ≡ F2 and G1 ≡ G2, then gwscS(F1, G1) ≡ gwscS(F2, G2).
(v) F |= G→ gsncS(F,G).

(vi) F |= gwscS(F,G)→ G.
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(vii) H ≡ gsncS(F,G) if and only if:
1. H ⋐ S.
2. F |= G→ H.
3. For all formulas H ′

⋐ S such that F |= G→ H ′ it holds that H |= H ′.
(viii) H ≡ gwscS(F,G) if and only if:

1. H ⋐ S.
2. F |= H → G.
3. For all formulas H ′

⋐ S such that F |= H ′ → G it holds that H ′ |= H.
(ix) gsncS(F,G) ⋐ S.
(x) gwscS(F,G) ⋐ S.

(xi) If F |= H, then gsncS(F,G) |= gsncS(H,G).
(xii) If H |= F , then gwscS(F,G) |= gwscS(H,G).

(xiii) If G |= H, then gsncS(F,G) |= gsncS(F,H).
(xiv) If G |= H, then gwscS(F,G) |= gwscS(F,H).
(xv) F ∧ gwscS(F,G) |= gsncS(F,G).

GSNC and GWSC are inter-definable (Prop. 13.i and 13.ii). Each of them is a
“semantic” operator, that is, for equivalent arguments, the values are equivalent
(Prop. 13.iii and 13.iv). The GSNC is a “necessary condition” of formulas F
and G, and analogously, the GWSC is a “sufficient condition” of F and G,
(Prop. 13.v and 13.vi). The GSNC can be characterized as the strongest “nec-
essary condition” of formulas F and G with respect to scope S, that is, the
strongest formula H ⋐ S such that F |= G → H (Prop. 13.vii). Analogously,
the GWSC can be characterized as the weakest “sufficient condition” of F and
G with respect to S, that is, the weakest formula H ⋐ S such that F |= H → G
(Prop. 13.viii). The GSNC as well as the GWSC with respect to scope S are in
scope S (Prop.13.ix and 13.x). In the first argument, the GSNC is monotonic,
while the GWSC is antimonotonic (Prop. 13.xi and 13.xii). Both operators are
monotonic in their second argument (Prop. 13.xiii and 13.xiv). When combined
with the base formula, the GWSC entails the GSNC after flipping the polarity
of the literals in the scope (Prop. 13.xv).

The following property relates the entailment of GWSCs to the conditional
entailment of their argument formulas.

Proposition 14 (Entailment of GWSCs and of Arguments). For all for-
mulas F1, F2, G1, G2 and scopes S it holds that if gwscS(F1, G1) |= gwscS(F2, G2)
and F1 |= G1, then F2 |= G2.

Proof. Consider the following table. Assume the preconditions of the proposition,
steps (1) and (2). With step (7) we derive the conclusion.

(1) gwsc
S

(F1, G1) |= gwsc
S

(F2, G2). assumption
(2) F1 |= G1. assumption
(3) ¬project

S
(F1 ∧ ¬G1) |= ¬project

S
(F2 ∧ ¬G2). by (1), exp. gwsc

(4) F1 ∧G1 ≡ ⊥. by (2)
(5) |=¬project

S
(F2 ∧ ¬G2). by (4), (3), Prop. 4.xii

(6) |=¬(F2 ∧ ¬G2). by (5), Prop. 4.i
(7) F2 |= ¬G2. by (6)

⊓⊔
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Concluding conversely to Prop. 14 from implication of entailments to entailment
of the GWSCs is not in general possible: Since p(a) 6|= p(x) it holds that if
p(a) |= p(x), then p(b) |= p(x). Any interpretation 〈I, β〉 such that β(x) = a

is then a model of gwsc∅(p(a), p(x)), which is equivalent to x
.
= a, but not of

gwsc∅(p(b), p(x)), which is equivalent to x
.
= b.

Proposition 15 below relates projection to entailment of GWSCs, analogously
as Prop. 11.iii and 11.iv relate projection to entailment from formulas that are
in a given scope.

Proposition 15 (Entailment of GWSCs and Projection). If F,G are for-
mulas and S, T are scopes such that T ⊆ S, then

(i) The following statements are equivalent:

1. For all H ⋐ S it holds that gwscT (H,F ) |= gwscT (H,G).

2. ¬projectS(¬F ) |= G.

(ii) The following statements are equivalent:

1. For all H ⋐ S it holds that gwscT (H,F ) ≡ gwscT (H,G).

2. projectS(¬F ) ≡ projectS(¬G).

Proof. (15.i) Left-to-right: Assume statement (1.). From Prop. 14 if follows that
for all H ⋐ S it holds that if H |= F , then H |= G. By Prop. 11.iii it follows
that ¬projectS(¬F ) |= G, that is, statement (2.).

Right-to-left. Consider the following table. Assume steps (1)–(4), that is,
assume the precondition of the propositions, statement (2.), let H ⋐ S be a
formula, and let 〈I, β〉 be a model of the left side of the statement (1.).

(1) T ⊆ S. assumption
(2) ¬project

S
(¬F ) |= G. assumption

(3) H ⋐ S. assumption
(4) 〈I, β〉 |= gwsc

T
(H,F ). assumption

(5) 〈I, β〉 |= ¬project
T

(H ∧ ¬F ). by (4), exp. gwsc
(6) 〈I, β〉 |= ¬project

T
(project

S
(H ∧ ¬F )). by (5), (1), Prop. 4.v

(7) 〈I, β〉 |= ¬project
T

(project
S

(H ∧ project
S

(¬F ))). by (6), (3), Prop. 9.i
(8) 〈I, β〉 |= ¬project

T
(H ∧ project

S
(¬F )). by (7), (1), Prop. 4.v

(9) 〈I, β〉 |= ¬project
T

(H ∧ ¬G). by (8), (2), Prop. 4.ii
(10) 〈I, β〉 |= gwsc

T
(H,G). by (9), con. gwsc

(15.ii) Follows from Prop. 15.i with Prop. 4.vi.

⊓⊔

Further properties of GSNC and GWSC that are related to the concept of defi-
nition are shown as Prop. 17 in next section.
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10 Characterization of Definitions and Definability

We specify the concept of definition of a formula in terms of a scope within a
formula semantically as follows:

Definition 16 (Definition). Let S be a scope and let F,G be formulas. A
formula H is a called a definition of G in terms of S within F if and only if

1. H ⋐ S,

2. gsncS(F,G) |= H, and

3. H |= gwscS(F,G).

In Prop. 18 below we show that Def. 16 indeed captures the intuitive concept of
definition. The proof of that proposition resides on the following properties of
GSNC/GWSC:

Proposition 17 (Sufficient and Necessary Conditions). For all scopes S
and formulas F,G and H ⋐ S it holds that

(i) F |= G→ H if and only if gsncS(F,G) |= H.

(ii) F |= H → G if and only if H |= gwscS(F,G).

(iii) F |= H ↔ G if and only if gsncS(F,G) |= H and H |= gwscS(F,G).

Proof (Proposition 17).

(17.i) Consider the following equivalences:

(1) gsnc
S

(F,G) |= H

(2) iff project
S

(F ∧G) |= H

(3) iff F ∧G |= H by the precondition H ⋐ S and Prop. 4.vi
(4) iff F |= G → H.

(17.ii) Consider the following equivalences:

(1) H |= gwsc
S

(F,G)
(2) iff H |= ¬project

S
(F ∧ ¬G)

(3) iff project
S

(F ∧ ¬G) |= ¬H
(4) iff F ∧ ¬G |= ¬H by the precondition H ⋐ S and Prop. 4.vi, 4.xvii
(5) iff F |= H → G.

(17.iii) Immediate from Prop. 17.ii and 17.i. ⊓⊔

Proposition 18 (Characteristics of a Definition). Let S be a scope and let
F,G be formulas. A formula H is a definition of G in terms of S within F if
and only if

1. H ⋐ S, and

2. F |= H ↔ G.

Proof (Proposition 18). Immediate from Prop. 17.iii. ⊓⊔
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Notice that, although condition (2.) in Prop. 18 has the shape of a biconditional,
the characterization in that proposition, like the equivalent Def. 16, corresponds
to implicit rather than explicit definability.

From Prop. 18 it is easy to see that definitions of predicates with arguments
are covered as special cases by our characterizations: If G(x) and H(x) are
formulas with free variables x and F does not contain free occurrences of these
variables, then

F |= ∀xH(x)↔ G(x) iff F |= H(x)↔ G(x). (E6)

The concept of definability can be specified analogously to definition in terms of
GSNC/GWSC:

Definition 19 (Definable). Let S be a scope and let F,G be formulas. Then G
is called definable in terms of S within F if and only if

gsncS(F,G) |= gwscS(F,G).

The intuitive characterization of definable as existence of a definition is shown
by the following proposition:

Proposition 20 (Characteristics of Definability). Let S be a scope and let
F,G be formulas. Then G is definable in terms of S within F if and only if there
exists a definition of G in terms of S within F .

Proof (Proposition 19). Left-to-right. Assume definability, that is, gsncS(F,G) |=
gwscS(F,G). Now gsncS(F,G) is a definition, since in the role of H it satisfies
the three conditions stated in Def. 16:

1. gsncS(F,G) ⋐ S, by Prop. 13.ix.
2. gsncS(F,G) |= gsncS(F,G), holds trivially.
3. gsncS(F,G) |= gwscS(F,G), as assumed.

Right-to-left. Immediate from Def. 16. ⊓⊔

The following proposition states further ways of characterizing definable, which
involve only either GSNC or GWSC.

Proposition 21 (Definable: Further Characterizations). Let S be a scope
and let F,G be formulas. Then G is definable in terms of S within F if and
only if

(i) F ∧ gsncS(F,G) |= G.
(ii) F ∧G |= gwscS(F,G).

Proof (Proposition 21). Consider the equivalences shown in the tables below.

(21.i)

(1) gsnc
S

(F,G) |= gwsc
S

(F,G)
(2) iff project

S
(F ∧G) |= ¬project

S
(F ∧ ¬G)

(3) iff project
S

(F ∧ ¬G) |= ¬project
S

(F ∧G)
(4) iff F ∧ ¬G |= ¬project

S
(F ∧G) by Prop. 4.xvii, 4.vi

(5) iff F ∧ project
S

(F ∧G) |= G

(6) iff F ∧ gsnc
S

(F,G) |= G.
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(21.ii)

(1) gsnc
S

(F,G) |= gwsc
S

(F,G)
(2) iff project

S
(F ∧G) |= gwsc

S
(F,G)

(3) iff F ∧G |= gwsc
S

(F,G). by Prop. 13.x, 4.vi

⊓⊔

If definability holds, then the GSNC and the GWSC themselves are both defi-
nitions:

Proposition 22 (GSNC/GWSC as Definitions). Let S be a scope and let
F,G be formulas such that G is definable in terms of S within F . Then the
following formulas are definitions of G in terms of S within F :

(i) gsncS(F,G).
(ii) gwscS(F,G).

Proof (Proposition 22). Assume that G is definable as stated in the precondition
of the proposition, that is, gsncS(F,G) |= gwscS(F,G). By Prop. 13.ix and 13.x
it holds that gsncS(F,G) ⋐ S and gwscS(F,G) ⋐ S. The conditions of Def. 16
can then be easily verified for formulas gsncS(F,G) and gwscS(F,G) in the role
of H. ⊓⊔

11 Unique Definability

We have seen that in case of definability all formulas in scope S that are, with
respect to entailment, between the GSNC and the GWSC, including GSNC
and GWSC themselves, are definitions (Def. 16 and Prop. 22). So far, it is
well possible that a formula has different definitions that are not semantically
equivalent. The following definition of uniquely definable characterizes the case
where a formula has exactly one definition, modulo equivalence.

Definition 23 (Uniquely Definable). Let S be a scope and let F,G be for-
mulas. Then G is called uniquely definable in terms of S within F if and only
if

gsncS(F,G) ≡ gwscS(F,G).

The characteristic property of unique definability is as follows:

Proposition 24 (Characteristics of Unique Definability). Let S be a scope
and let F,G be formulas. Then G is uniquely definable in terms of S within F
if and only if there exists a definition H of G in terms of S within F such that
for all definitions H ′ of G in terms of S within F it holds that H ≡ H ′.

Proof (Proposition 24). We understand definable and definition here implicitly
with respect to the parameters S and F .

Left-to-right. Assume the left side of the proposition, that is, gsncS(F,G) ≡
gwscS(F,G). By Def. 19 then G is definable, thus, by Prop. 20 there exists a
definition H of G. Let H ′′ be an arbitrary definition of G. It then holds that
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gsncS(F,G) |= H ′′ and H ′′ |= gwscS(F,G). With our assumption gsncS(F,G) ≡
gwscS(F,G) this implies gwscS(F,G) ≡ H ′′. Since this applies to arbitrary def-
initions H ′′ of G, we can conclude that for all definitions H ′ of G it holds that
H ≡ H ′.

Right-to-left. Assume that there exists a definition H of G such that for all
definitions H ′ of G it holds that H ≡ H ′. The formula G is then definable, and
from Prop. 22 follows that the formulas gsncS(F,G) and gwscS(F,G) are both
definitions of G. Since then each of these two formulas must be equivalent to H,
it follows that gsncS(F,G) ≡ gwscS(F,G). ⊓⊔

The following example shows a case where definability holds, but unique defin-
ability fails.

Example 25 (Uniquely Definable: A Counterexample). Let S = {r, s}
and let

F = ((p↔ r ∧ s) ∧ (r→ s)).

Then F |= p↔ (r∧ s) and F |= p↔ r. Thus (r∧ s) and r are both definitions of p
in terms of S within F . Since (r∧s) 6≡ r, it follows that p is not uniquely definable
in terms of S within F . Let us now consider the relevant characterizations in
terms of GSNC and GWSC. It holds that:

gsncS(F ) ≡ project{r,s}((p↔ r ∧ s) ∧ (r→ s) ∧ p) ≡ (r ∧ s), and

gwscS(F ) ≡ ¬project{r,s}((p↔ r ∧ s) ∧ (r→ s) ∧ ¬p) ≡ r.

Since (r ∧ s) |= r, it follows that p is definable in terms of S within F . From
Prop. 22 it follows that (r∧ s) and r are both definitions in terms of S within F .
Since r 6|= (r∧s) it follows that p is not uniquely definable in terms of S within F .

If definability is given, then for atom scopes unique definability follows by a
condition that just depends on the scope and the base formula, independently
of the particular formula whose unique definability is under consideration:

Proposition 26 (Uniquely Definable: A Further Characterization for
Atom Scopes). Let S be an atom scope and let F,G be formulas. Assume that
G is definable in terms of S within F . Then G is uniquely definable in terms
of S within F if and only if

|= projectS(F ).

Proof (Proposition 26). The formula G is uniquely definable in terms of S
within F if and only if

gsncS(F,G) ≡ gwscS(F,G). (E7)

We assumed definability as precondition, which implies the left-to-right direction
of (E7). It thus suffices to show equivalence of the right-to-left direction of (E7)
to the statement |= projectS(F ):



20 Section 12

(1) |= project
S

(F )
(2) iff |= project

S
((F ∧G) ∨ (F ∧ ¬G))

(3) iff |= project
S

(F ∧G) ∨ project
S

(F ∧ ¬G) by Prop. 4.xiii
(4) iff ¬project

S
(F ∧ ¬G) |= project

S
(F ∧G)

(5) iff gwsc
S

(F,G) |= gsnc
S

(F,G)
(6) iff gwsc

S
(F,G) |= gsnc

S
(F,G). since S is an atom scope

⊓⊔

In the special case of definability with respect to the empty scope, the require-
ment of Prop. 26 for unique definability amounts to satisfiability of the base
formula:

Proposition 27 (Uniquely Definable: Characterization for the Empty
Scope). Let F be a sentence and let G be a formula. Assume that G is definable
in terms of ∅ within F . Then G is uniquely definable in terms of ∅ within F if
and only if F is satisfiable.

Proof (Proposition 27). This follows as the special case of Prop. 26 where S = ∅
and F is a sentence. As explained in Sect. 5, it holds that |= project∅(F ) iff
|= sat(F ) iff F is satisfiable. ⊓⊔

12 Scope Definability

A typical database can be considered as a formula that provides definitions
of a set of predicates, the “database predicates”, where these definitions are
extensional, that is, in terms of the empty scope. Thus all formulas which are
in the scope corresponding to the database predicates are definable within the
database in terms of the empty scope. The notion of scope defining formula
expresses this property of formulas considered as databases, generalized such
that the definientia must not necessarily be in the empty scope.

Definition 28 (Scope Defining Formula). A formula F is said to define a
scope T in terms of a second scope S if and only if for all formulas G ⋐ T it
holds that G is definable in terms of S within F .

To ensure scope definability, that is, definability of all formulas in a given scope
it suffices to show just the definability of all ground literals in that scope, as
shown by the following proposition.

Proposition 29 (From Literal Definability to Scope Definability). Let S, T
be scopes and let F be a formulas such that for all ground literals L ∈ T it holds
that L is definable in terms of S within F . Then F defines T in terms of S
within F .

Proof (Proposition 29). Consider the following table. Assume the precondition
of the proposition, that is, step (1). Let G ⋐ T be a formula, as stated in step (2).
We prove the proposition by showing that G is definable in terms of S within F .
Assume that, to the contrary, G is not definable in terms of S within F . Then
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there must exist an interpretation 〈I, β〉 such that steps (3) and (4) hold. We
derive a contradiction from these assumptions.

(1) For all L ∈ T : L is definable i.t.o. S w. F . assumption
(2) G ⋐ T . assumption
(3) 〈I, β〉 |= gsnc

S
(F,G). assumption

(4) 〈I, β〉 6|= gwsc
S

(F,G). assumption
(5) 〈I, β〉 |= project

S
(F ∧G). by (3)

(6) There exists a structure J s.th.:
(7) 〈J, β〉 |= F ,
(8) 〈J, β〉 |= G,
(9) J ∩ S ⊆ I. by (5)

(10) 〈I, β〉 |= project
S

(F ∧ ¬G). by (4)
(11) There exists a structure K s.th.:
(12) 〈K,β〉 |= F ,
(13) 〈K,β〉 |= ¬G. by (9)

(14) K ∩ S ⊆ I. by (10)
(15) J ∩ T 6⊆ K. by (13), (8), (2), Prop. 8
(16) There is a ground literal M s.th.:
(17) M ∈ J ,
(18) M ∈ T ,

(19) M ∈ K. by (15)
(20) 〈J, β〉 |= F ∧M . by (17), (7)
(21) 〈I, β〉 |= project

S
(F ∧M). by (20), (9)

(22) 〈I, β〉 |= gsnc
S

(F,M). by (21)
(23) 〈K,β〉 |= F ∧ ¬M . by (19), (12)
(24) 〈I, β〉 |= project

S
(F ∧ ¬M). by (23), (14)

(25) 〈I, β〉 |= ¬gwsc
S

(F,M). by (24)
(26) gsnc

S
(F,M) |= gwsc

S
(F,M). by (18), (1)

(27) contradiction. by (26), (25), (22)

⊓⊔

The following concept of uniquely scope defining formula strengthens the prop-
erty specified in Def. 28 to require unique definability instead of just definability
of all formulas in some scope.

Definition 30 (Uniquely Scope Defining Formula). A formula F is said
to uniquely define a scope T in terms of a second scope S if and only if for all
formulas G ⋐ T it holds that G is uniquely definable in terms of S within F .

Analogously to Prop. 29, we would like to conclude unique definability of all
formulas in a given scope from unique definability of all ground literals in that
scope. However, as Prop. 31 below shows, this applies only under the precondi-
tion that the scope of the definientia is an atom scope. Example 32 below gives a
counterexample for the case where this precondition fails. A different condition
for concluding unique definability from definability, which also applies to scopes
that are not atom scopes, is given in Prop. 35 further down below.
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Proposition 31 (From Unique Literal Definability to Unique Scope
Definability). Let S be an atom scope and let T be a scope that is non-empty.
Let F be a formula such that for all ground literals L ∈ T it holds that L is
uniquely definable in terms of S within F . Then F uniquely defines T in terms
of S.

Proof (Proposition 31). Assume the preconditions of the proposition. Let G ⋐ T
be a formula. Since F is a formula such that for all ground literals L ∈ T it holds
that L is uniquely definable in terms of S within F , it also holds for all ground
literals L ∈ T that L is definable in terms of S within F . From Prop. 29 it then
follows that G is definable in terms of S within F . Given that T 6= ∅, there
must be a ground literal L ∈ T that is, by the assumed preconditions, uniquely
definable in terms of S within F . Since S is an atom scope, it follows from
Prop. 26 that |= projectS(F ). Because G is definable in terms of S within F , we
can apply Prop. 26 again to conclude that G is uniquely definable in terms of S
within F . ⊓⊔

Example 32 (From Unique Literal Definability to Unique Scope De-
finability: Counterexample for a Proper Literal Scope). Let U = {+p,+q},
let B = {+r,+s}, and let

V = (p↔ r) ∧ (q ↔ s) ∧ (p→ ¬q).

Then each literal in the scope U is uniquely definable in terms of B within V ,
which follows since gsncB(V, p) ≡ gwscB(V, p) ≡ r and gsncB(V, q) ≡ gwscB(V, q)
≡ s. Let F = (p∧q). Clearly F ⋐ U . However F is not uniquely definable in terms
of B within V , which follows since gwscB(V, F ) ≡ (r ∧ s) 6|= ⊥ ≡ gsncB(V, F ).
Indeed, both (r ∧ s) and ⊥ are definitions of F in terms of B within V . For the
atom scope B′ = {r, s}, not all literals in scope U are uniquely definable, since
gwscB′(V, p) ≡ r 6|= (r ∧ ¬s) ≡ gsncB′(V, p).

13 Conservative Formulas

The property conservative, specified in the following definition, is closely related
to the concept of conservative extension, which is used as basis of knowledge
base modularization in description logics [GLW06].

Definition 33 (Conservative). Let S be a scope and let F,G be formulas.
Then G is called conservative for S within F if and only if

F |= gsncS(G,F ).

A semantic analog of the notion of conservative extension can be characterized
with conservative as follows: A conservative extension of F for S is a formula
(F ∧G) such that G is conservative for S with respect to F . “Semantic analog”
refers here to the semantic characterization involving scopes instead of the usual
syntactic characterization in terms of formula signature.
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For base formulas that are within the scope considered for conservativeness,
and in the particular case that this is an atom scope, conservativeness can be
characterized in further ways:

Proposition 34 (Conservativeness within Scope Closed Formulas). Let S
be a scope, and let F ⋐ S, G be formulas. Then

(i) G is conservative for S within F if and only if

gsncS(G,F ) ≡ F.

(ii) If S is an atom scope, then G is conservative for S within F if and only if

F |= projectS(G).

Proof (Proposition 34).

(34.i) The left-to-right direction follows, since under the assumption F ⋐ S it
holds that gsncS(G,F ) ≡ projectS(G ∧ F ) |= projectS(F ) ≡ F . The right-to-left
direction is immediate from Def. 33.

(34.i) Under the assumptions that F ⋐ S and that S is an atom scope,
by Prop. 9.ii it follows that gsncS(G,F ) ≡ projectS(G ∧ F ) ≡ (projectS(G) ∧
projectS(F )) ≡ (projectS(G) ∧ F ). Thus F |= gsncS(G,F ) holds if and only if
F |= projectS(G) ∧ F if and only if F |= projectS(G). ⊓⊔

The following proposition shows that conservativeness with respect to all for-
mulas in a scope and definability in terms of that scope together imply unique
definability.

Proposition 35 (Conservativeness and Unique Definability). Let S be a
scope and let F,G be formulas such that

1. For all formulas H ⋐ S it holds that F is conservative for S within H, and

2. G is definable in terms of S within F .

Then G is uniquely definable in terms of S within F .

Proof (Proposition 35). Assume the preconditions of the proposition, that is,
(1.) for all formulas H ⋐ S it holds that F is conservative for S within H,
and (2.) that G is definable in terms of S within F . Assume further that the
conclusion does not hold, that is, (3.) that G is not uniquely definable in terms
of S within F . From (2.) and (3.) follows that there exist formulas H1 ⋐ S and
H2 ⋐ S such that (4.) H1 6≡ H2, F |= (G ↔ H1), and F |= (G ↔ H2). Hence
F |= (H1 ↔ H2), hence F ∧ H1 ↔ F ∧ H2, hence by Prop. 4.iii if follows (5.)
that projectS(F ∧H1) ≡ projectS(F ∧H2). With (1.) and Prop. 34.i it follows
from (5.) that H1 ≡ gsncS(F,H1) ≡ projectS(F ∧H1) ≡ projectS(F ∧H2) ≡ H2,
which contradicts with step (4.), that is, H1 6≡ H2. ⊓⊔
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14 Definability in First-Order Logic as Validity

As shown in [Tar35], within classical first-order logic checking definability in
terms of a predicate scope of predicates can be expressed as checking validity.
In our framework, this can be shown as follows. Let S be a predicate scope,
let F,G be first-order formulas and let P be the predicate scope that contains
exactly (all ground literals with) the predicates occurring in F or in G. Let
U = P \ S = {u1, . . . , un} and let V = {v1, . . . , vn} be a predicate scope that is
disjoint with S ∪ P . Now, for a formula E, let EV denote the formula obtained
from E by systematically replacing each predicate ui with vi. It then clearly
holds that

forgetU (E) ≡ forgetV (EV ). (E8)

From (E8) and properties of projection, we conclude that the following formulas
are equivalent:

(1) gsnc
S

(F,G) → gwsc
S

(F,G)
(2) project

S
(F ∧G) → ¬project

S
(F ∧ ¬G)

(3) ¬(project
S

(F ∧G) ∧ project
S

(F ∧ ¬G))
(4) ≡ ¬(forget

U
(F ∧G) ∧ forget

U
(F ∧ ¬G))

(5) ≡ ¬(forget
U

(F ∧G) ∧ forget
V

(FV ∧ ¬GV ))
(6) ≡ ¬(forget

U∪V
(F ∧G ∧ FV ∧ ¬GV )).

Now we can apply equivalence of (6) to (1), as well as properties of projection to
conclude that G is definable in terms of S within F if and only if the first-order
formula (F ∧G ∧ FV ∧ ¬GV ) is valid:

(7) gsnc
S

(F,G) |= gwsc
S

(F,G)
(8) iff |= gsnc

S
(F,G) → gwsc

S
(F,G)

(9) iff |=¬forget
U∪V

(F ∧G ∧ FV ∧ ¬GV ) by equivalence of (6) to (1)
(19) iff |=¬forgetALL(forget

U∪V
(F ∧G ∧ FV ∧ ¬GV ))

(11) iff |=¬forgetALL(F ∧G ∧ FV ∧ ¬GV )
(12) iff |=¬(F ∧G ∧ FV ∧ ¬GV ).

Clearly |=¬(F ∧ G ∧ FV ∧ ¬GV ) holds if and only if F ∧ G |= FV → GV . By
Craig’s interpolation theorem [Cra57], if F ∧G |= FV → GV , then there exists
a first-order formula H whose predicates are in S such that F ∧ G |= H and
H |= F → G. By Prop. 4.vi and 10 we can conclude that gsncS(F,G) |= H
and H |= gwscS(F,G), that is, H is a definition of G in terms of S within F .
This justifies that if definability holds, then any first-order proving method that
allows to extract interpolants from proofs can be successfully applied to compute
a definition H.



Chapter 4

A Generic Model of Query Answering

15 Answers as Alternate Definitions of Queries

We basically consider an answer as a reformulation of a query expression that
is obtained by taking a knowledge base into account. The reformulation must
satisfy certain requirements, for example, involving only expressions that can be
understood or efficiently processed by the clients who will receive the answer.
The following definition provides a formal frame for this approach.

Definition 36 (Answer). Let B be a sentence and let Q be a formula. An
answer in terms of answer scope S to query Q with respect to knowledge base B
is a formula A such that

1. A is a definition of Q in terms of S within B.

2. A satisfies certain syntactic and further semantic properties.

With the phrase certain syntactic and further semantic properties, Def. 36 pro-
vides a hook for instantiating it to model particular applications and kinds of
answers. Examples for instantiating syntactic conditions would be that predi-
cates not in scope S do actually not occur in A, that first-order quantifiers do
not occur in A, and that A has some specific syntactic shape such as disjunctive
normal form.

For classical semantics, in contrast to non-monotonic logic programming se-
mantics, Def. 36 is quite similar to the generic characterization of abductive
explanation [KKT98], with the essential difference, that in case of abduction
just a sufficient condition in place of a definition is required. More precisely, by
Prop. 18 we can express condition (1.) of Def. 36 equivalently as A ⋐ S and
F |= A↔ Q. If we replace condition (1.) with the weaker condition A ⋐ S and
A |= gwscS(B,Q) or, equivalently, with A ⋐ S and F |= A→ Q, then we obtain
a characterization of abductive explanation A for observation Q with respect
to the theory presentation B. A detailed comparison with [KKT98] shows that
specializations on our characterization of abductive explanation as well as that
of [KKT98] would be needed to obtain a precise matching: The condition A ⋐ S
included inherently in our condition (1.) of Def. 36 must in the specification
according to [KKT98] be stated as additional criteria, and the requirement of
[KKT98] that (B ∧ A) must be consistent has to be assumed as always present
in our condition (2.).
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16 Extensional Answers

For data- and knowledge-base systems, typically “extensional” answers are con-
sidered, that is, representations of the set of all assignments of the free vari-
ables in the query for which the corresponding instance of the query is con-
sistent with the knowledge base or entailed by the knowledge base. For some
important classes of restricted knowledge bases, such as relational databases, the
consistency-based and the entailment-based notion coincide. Both types answers
are defined in terms of GSNC or GWSC, respectively:

Definition 37 (Extensional Answers). Let B and Q be formulas. We define:

(i) The consistency-based extensional answer to Q with respect to B is

gsnc∅(B,Q).

(ii) The entailment-based extensional answer to Q with respect to B is

gwsc∅(B,Q).

If Q is definable in terms of ∅ within B, then, by Prop. 22, both, the consistency-
as well as the entailment-based answer, provide definitions of Q in terms of ∅
within B. Both these extensional answers are thus answers in the sense of Def. 36
if no additional conditions are required in its condition (2.). The following propo-
sition relates Def. 37 to the common view of extensional answers as sets of tuples
representing variable bindings under which the query is consistent with or en-
tailed by the knowledge base.

Proposition 38 (Characteristics of Extensional Answers). Let B be a
sentence and let Q(x) be a formula. For all formulas A(x) ⋐ ∅ it holds that

(i) A(x) is the consistency-based extensional answer to Q with respect to B
if and only if

{c | c ∈ CONSTn and |=A(c)} = {c | c ∈ CONSTn and |= sat(B ∧Q(c))}.

(ii) A(x) is the entailment-based extensional answer to Q with respect to B if
and only if

{c | c ∈ CONSTn and |=A(c)} = {c | c ∈ CONSTn and |= valid(B → Q(c))}.

Proof (Proposition 38). The following equivalences relate the formulas in the
proposition to the GSNC and GWSC, where the scope is empty:

sat(B ∧Q(x)) ≡ project∅(B ∧Q(x)) ≡ gsnc∅(B,Q(x)).

valid(B → Q(x)) ≡ ¬project∅(B ∧ ¬Q(x)) ≡ gwsc∅(B,Q(x)).

The proposition then follows since all formulas F (x), G(x) such that F (x) ⋐ ∅
and G(x) ⋐ ∅ it holds that

{c | c ∈ CONSTn and |=F (c)} = {c | c ∈ CONSTn and |=G(c)}
iff F (x) ≡ G(x).

⊓⊔



Answers to Relational Database Queries 27

Notice that |= valid(B → Q(c)) is equivalent to B |= Q(c), allowing to express
the equality of sets of tuples in Prop. 38.ii also as

{c | c ∈ CONSTn and |=A(c)} = {c | c ∈ CONSTn and B |= Q(c)}. (E9)

As stated in the following proposition, in case of unique definability of the query
formula, consistency-based and entailment-based extensional answers coincide.
Notice that by Prop. 27, unique definability in terms of ∅ within B follows for
satisfiable sentences B already from definability.

Proposition 39 (Uniquely Definable Extensional Answers). Let B,Q
be formulas such that Q is uniquely definable in terms of ∅ within B. The
consistency-based and entailment-based extensional answers to Q with respect
to B are the same (up to equivalence).

Proof (Proposition 39). Immediate from Def. 37 and Def. 23 ⊓⊔

17 Answers to Relational Database Queries

We do not adhere here to the often used identification of a relational database
with an interpretation, but consider a relational database as a formula. This
allows smooth passing from relational databases to knowledge bases expressed
in richer languages. Those properties of the data- or knowledge bases on which
a proven property actually depends can be more clearly exhibited. With second-
order operators, even properties that are not first-order expressible, such as
finiteness, could be expressed at the formula level, typically with the idea that
the second-order operators will be eliminated when answers are computed. A
further rationale for the representation of databases as formulas is that this
matches with constraint query languages [KKR95], an approach that overcomes
issues of safety by generalizing databases with finite relations to databases that
are finite representations of relations, in particular, finite disjunctions of finite
conjunctions of constraints.

An answer to a relational database query can be represented as instance of
an answer in the sense Def. 36, where the scope S is ∅ and condition (2.) is set
to the following syntactic properties:

(X1) A contains no predicate symbols.
(X2) A does not contain second-order operators.
(X3) A does not contain first-order quantifiers.

(E10)

Answers meeting (X1)–(X3) are quantifier-free first-order formulas with syn-
tactic equality statements, but without predicates, such as, for example, (x

.
=

a∧ y
.
= b)∨ (x

.
= a∧ y

.
= c)∨ (x

.
= b∧ y 6

.
= a), corresponding to the set of tuples

{〈a, b〉, 〈a, c〉}∪{〈b, y〉 | y ∈ CONST\{a}}. If Q is definable in terms of ∅ within B,
then a formula A′ meets the semantic requirements on answers, that is condi-
tion (1.) of Def. 18 if and only if A′

⋐ ∅ and gsnc∅(B,Q) |= A′ |= gwsc∅(B,Q).
This includes the two extremes A′ ≡ gsnc∅(B,Q) and A′ ≡ gwsc∅(B,Q), that is,
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the consistency- and the entailment-based extensional answer. In case of unique
definability, both extremes would be equivalent. Given such a formula A′, an
equivalent formula A that meets also the syntactic conditions (X1)–(X2) can be
obtained by eliminating in A′ the second-order operators and first-order quan-
tifiers. We flesh out this view on conventional answers to relational database
queries by indicating steps in which an answer can be determined for sentences B
of a particular form that can be considered as a relational database:

∧n

i=1 ∀xi (di(xi)↔ Gi(xi)),

where n ≥ 0, each di is a predicate, x = x1, . . . , xarity(di), and each
Gi(xi) is a quantifier-free first-order formula without predicates.

(E11)

Clearly, such a sentence B provides for each “database predicate” di a definition
Gi ⋐ ∅ that specifies the extension of di by equality constraints. Let D be the
predicate scope {d1, . . . , dn}. Then B defines scope D in terms of ∅. Moreover,
since B is a satisfiable sentence, by Prop. 27 it follows that B defines scope D
uniquely in terms of ∅. Any query formula Q ⋐ D is thus uniquely definable
in terms of ∅ within B and the semantics of an answer A to Q with respect
to ∅, corresponding to condition (1.) of Def. 36, is given by A ≡ gsnc∅(B,Q) ≡
gwsc∅(B,Q). If Q is a first-order formula in which only predicates from D do
occur, then a formula A that also meets the syntactic conditions (X1)–(X2)
can be obtained by eliminating the GSNC or GWSC operator, respectively, in
gsnc∅(B,Q) or gwsc∅(B,Q). This can actually be performed simply by starting
with Q and replacing all predicates with their definitions according to B. Finally,
(X3) can be ensured by performing first-order quantifier elimination on the result
obtained in the previous step.

18 The Datalog Perspective on Extensional Answers

Datalog formulas are first-order formulas that meet certain syntactic restrictions
and can be considered under a special semantics, allowing to understand them
as recursive specifications of named database relations. While there are many
variant classes of datalog formulas investigated in the literature (e.g. [Ull89]),
they usually have in common that their members must be universal first-order
formulas without functions except for constants. We specify the semantics associ-
ated with datalog formulas here in terms of predicate circumscription, expressed
by the second-order operator circ for scope-determined circumscription [Wer12],
which has the same argument types as project and is defined semantically, anal-
ogously to projection:

Definition 40 (Scope-Determined Circumscription). The scope-determined
circumscription of formula F onto scope S, in symbols circS(F ), is a formula
whose semantics is defined as follows: For all interpretations 〈I, β〉 it holds that

〈I, β〉 |= circS(F ) iffdef 〈I, β〉 |= F and
there does not exists a structure J such that
〈J, β〉 |= F and J ∩ S ⊂ I ∩ S.
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The circ operator allows to express variants of parallel predicate circumscription
where the effects on each atom are controlled by a scope argument. Atoms that
occur just in a positive literal in the scope are minimized, atoms that occur just
in a negative literal are maximized, atoms that occur in both polarities are fixed
and atoms that do not at all occur in the scope are varying. Thus, if F is a
formula whose atoms are in disjoint sets P , Q and Z, then the parallel predicate
circumscription of P in F with fixed Q and varied Z, traditionally written as
CIRC[F ;P ;Z], would be expressed as circ(P∩POS)∪Q(F ).

The following proposition shows a property of scope-determined circumscrip-
tion that underlies the correspondence of the circumscription semantics and
classical semantics for datalog, shown in Prop. 43 below: A universal first-order
formula “in the circumscription scope” is entailed by a formula if and only if it
is entailed by its circumscription. Proofs and further variants of this property
are shown in [Wer12].

Proposition 41 (Consequences of Scope-Determined Circumscription).
Let F be a universal first-order formula, let S be a scope and let G ⋐ S be a
further formula. It then holds that circS(F ) |= G if and only if F |= G.

We consider here exemplarily the variant of datalog where a knowledge base is
represented by a conjunction of range restricted Horn clauses, defined as follows:

Definition 42 (Range Restricted Horn Clause). A range restricted Horn
clause is a sentence of the form

∀xA0 ← A1 ∧ . . . ∧Ak (E12)

where k ≥ 0, the Ai are atoms, and all variables in A0 occur in (A1 ∧ . . . ∧Ak).

We assume a finite Herbrand domain. If B is a conjunction of range restricted
Horn clauses , then B has a unique minimal model in which all predicates have
a finite extent. It is the unique model of circPOS(B), which is equivalent to
a sentence of the form (E11). This implies implying unique definability of all
involved predicates in terms of ∅ within circPOS(B). The following proposition
gives further insight into the special role of circumscription for datalog and shows
a possibility to incorporate goal related projection into datalog knowledge bases.

Proposition 43 (Coincidence Properties for Datalog). Let B be a con-
junction of range restricted Horn clauses and let q(x) be an atom with predi-
cate q. Then the following formulas are equivalent:

1. The consistency-based extensional answer to q(x) with respect to circPOS(B).
2. The entailment-based extensional answer to q(x) with respect to circPOS(B).
3. The entailment-based extensional answer to q(x) with respect to B.
4. The entailment-based extensional answer to q(x) with respect to project{q}(B).

Proof (Proposition 43). By Prop. 39, the unique definability of q(x) in terms
of ∅ within circPOS(B) implies equivalence of (2.) to (1.). By Prop. 38.ii, a for-
mula A(x) ⋐ ∅ is equivalent to (2.) if and only if

{c | c ∈ CONSTn and |=A(c)}
= {c | c ∈ CONSTn and circPOS(B) |= q(c)}.

(E13)
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Since q(x) ⋐ POS, by Prop. 41 it follows that circPOS(B) |= q(x) if and only
if B |= q(x). Thus, equality (E13) does not alter its meaning if we replace
circPOS(B) |= q(x) by B |= q(x). By applying Prop. 38.ii again, we can conclude
equivalence of (3.) to (2.). Equivalence of (4.) to (3.) follows in a similar way from
Prop. 4.vi, which justifies that B |= q(x) if and only if project{q}(B) |= q(x). ⊓⊔

The equivalence of (1.) and (2.) to (3.) in Prop. 43 shows that, while circum-
scription is essential to capture the meaning of datalog formulas as providing
actual definitions of the involved predicates, circumscription is not necessary
to evaluate queries, that is, to determine the extent of predicates. Equivalence
to (4.) shows that the extent of a predicate can be determined just from the
projection of the datalog formula onto the respective predicate.

19 Answers with Allowed Predicates

By Def. 36, an answer A is a special case of a definition of query formula Q
in terms of answer scope S within knowledge base B. For extensional answers,
the answer scope is empty. If S is not empty, that is, if certain predicates are
allowed to occur in answers, they correspond to certain forms of “intensional”
answers or “view rewritings”. For B of the form (E11), the GSNC and GWSC
operators in gsncS(B,Q) or gwscS(B,Q), respectively, can then be eliminated by
expanding just predicates that are not in S with their definitions according to B.
We generalize (E11) by specifying a class of formulas where predicates can be
defined as “views”, that is, predicates and first-order quantifiers are permitted
on the right side of definitions:

∧n

i=1 ∀xi (di(xi)↔ Gi(xi)),

where n ≥ 0, each di is a predicate, x = x1, . . . , xarity(di), and
each Gi(xi) is a first-order formula with predicates just from
d1, . . . , dn.

(E14)

To obtain the form (E14), void definitions ∀xi di(xi) ↔ di(xi) can be sup-
plied for all predicates di that have no other definition. Since definitions in a
formula B of form (E14) might be recursive, simple definition expansion does
no longer suffice in general as elimination technique to compute gsncS(B,Q) or
gwscS(B,Q).

If Q is definable in terms of S within B, then both gsncS(B,Q) and gwscS(B,Q)
provide answers. The following is an argument in favor or gsncS(B,Q): If E is a
formula that is not implied by B, but relevant for determining the answer, for
example the a schema mapping that provides definitions of certain predicates
occurring in the query in terms of concepts used in B, then E can be added
equivalently to the knowledge base B or the query Q. That is,

gsncS(B ∧ E,Q) ≡ projectS(B ∧ E ∧Q) ≡ gsncS(B,Q ∧ E). (E15)

A further subtlety concerning answers with allowed predicates is that, since we
have specified syntactic equality

.
= as a “built-in” logic operator in Def. 1 and
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not as a predicate, “extensional” answers, that is, answers that express results
in terms of

.
= and logic operators, are considered as special cases of answers

which are restricted to contain only specific allowed predicates. The following
example show the interplay of an “extensionally” and an “intensionally defined”
predicate for answers with allowed predicates.

Example 44 (Interplay with Extensional Definitions in Answer with
Allowed Predicates). Let B = (∀x q(x) ↔ p(x)) ∧ (∀x p(x) ↔ x = a), let
Q(x) = q(x) and let S = {p}. It then holds that

gsncS(B,Q(x)) ≡ (∀x p(x)↔ x
.
= a) ∧ x

.
= a ≡ (∀x p(x)↔ x

.
= a) ∧ p(x), and

gwscS(B,Q(x)) ≡ (∀x p(x)↔ x
.
= a)→ x

.
= a ≡ (∀x p(x)↔ x

.
= a)→ p(x).

Since Q(x) is definable in terms of S within B (i.e., gsncS(B,Q) |= gwscS(B,Q)),
all the shown equivalents to gsncS(B,Q) and gwscS(B,Q), respectively, provide
answers to Q(x) in terms of S with respect to B.
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View-Based Query Processing

20 Overview on View-Based Query Processing

In view-based query processing [Hal01,CGLV00,CGLV07,Mar07,NSV10], the sce-
nario basically includes two knowledge bases: First, the relation definitions or
database B of the form (E11), such that predicates D = {d1, . . . , dn} are uniquely
definable in terms of ∅ within B. Second, the view definitions V, that is, a sen-
tence of the form

∧m

i=1 ∀xi (ui(xi)↔ Hi(xi)),

where m ≥ 0, each ui is a predicate, x = x1, . . . , xarity(ui), and
each Hi(xi) is a first-order formula with predicates just from D.

(E16)

The predicates U = {u1, . . . , um} are then definable in terms of D within V .
The general objective of view-based query answering is to answer a query Q
over the “database predicates” D by using only answers to the views specified
in V . In the context of query optimization and database design, the idea is that
answers to these views can be computed in a particular efficient way since they
are precomputed or specially optimized. Notice that view-based query process-
ing in this sense corresponds to a proceeding in the direction from definiens
to definiendum: A view definition V provides definitions of formulas over view
predicates U in terms of the database predicates D, whereas view-based query
processing involves to determine for a given query Q over database predicates
D an alternate definition that is over the view predicates U .

Data integration is a further important application area of view-based query
processing, where the idea is that views are used to describe data sources in
terms of the mediated schema, that is, predicates D of a virtual global database.
The view definitions are then used to translate a user query over the mediated
schema into queries over the data sources, that is, view predicates U .

Query rewriting is a two-step approach to view-based query processing: First,
for a given query Q over D and given view definitions V a rewritten query R
over U is computed, with the characteristics that for all databases B the answer
to Q with respect to B is identical to the answer to R with respect to (B ∧ V ).
As second step, the rewritten query R is evaluated against the view extensions,
that is, the answer to R in terms of ∅ with respect to knowledge base (B ∧ V ),
for a particular given B, is determined. As discussed in [CGLV00,CGLV07], this
approach can be distinguished from query answering, where the two phases are
not strictly separated and the rewritten query R needs not necessarily to be
explicitly constructed.
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The concepts involved in view-based query processing have been made precise
and investigated for regular-path queries in [CGLV07]. In this chapter, we ap-
proach these concepts by semantic characterizations in terms of GSNC/GWSC,
definition and definability, applying to formulas in general as queries, and show
their relation to the characteristic properties specified in [CGLV07]. As proper-
ties that characterize formula classes of queries and rewritings, we consider here
just restrictions of the scope, that is conditions of the form F ⋐ S for some
scope S. This suffices to express in a semantic way restrictions of the allowed
predicates and the polarity in which they do occur. However, it is a limitation
compared to [CGLV07], where syntactically constrained classes, such as con-
junctive queries, regular-path queries, and conjunctive regular-path queries, are
taken into account. Since the essential difference of query answering to query
rewriting can be attributed to the consideration of the existence of rewritten
queries R in particular such classes, this is not modeled within our semantic
framework.

On the other hand, for many of the concepts in view-based query processing
we use generalizations that correspond to knowledge processing in first-order
logic. In particular, the roles of “database” and “view extension” can be played
by arbitrary formulas instead of interpretations, such that for example also dis-
junctive databases are covered. All involved concepts are characterized just by
semantic properties. For instance, a view specification is just a formula that is
semantically required to provide definability for all literals in the view scope and
to meet a further semantic conservativeness condition.

In this chapter, we basically consider view-based query processing with re-
spect to entailment-based extensional answers, that is, we consider as semantics
of the answer to query Q with respect to database B the formula gwsc∅(B,Q),
which, if Q = Q(x), by Prop. 38.ii and equality (E9), can be regarded as repre-
sentation of the set of tuples {c | c ∈ CONSTn and B |= Q(c)}.

21 View Definition

The concept of view definition, defined as follows, gathers the formula that ac-
tually provides definitions with the scopes of definienda and definientia, and
ensures definability and conservativeness constraints between them.

Definition 45 (View Definition). Let D,U be scopes and let V be a formula.
The triple V = 〈V, U,D〉 is called a view definition of U in terms of D with
specification V if and only if

1. For all formulas R ⋐ U it holds that R is definable in terms of D within V .
2. For all formulas B ⋐ D it holds that V is conservative for D within B.

Before we discuss the intuition behind that definition in more detail, we note that
if its condition (1.) is strengthened by requiring unique definability in place of
just definability, this leads to an equivalent characterization of view definition,
as stated in the following proposition, justified by Prop. 35, which allows to
conclude unique definability from definability and conservativeness.
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Proposition 46 (View Definitions Provide Unique Definability). Let
D,U be scopes and let V be a formula. The triple V = 〈V, U,D〉 is a view
definition of U in terms of D with specification V if and only if

1. For all formulas R ⋐ U it holds that R is uniquely definable in terms of D
within V .

2. For all formulas B ⋐ D it holds that V is conservative for D within B.

Proof (Proposition 46). The right-to-left direction, that is, concluding from unique
definability just definability, is trivial. The left-to-right direction follows from
Prop. 35. ⊓⊔

If V is sentence of the form (E16), then V = 〈V, U,D〉, with U = {u1, . . . , um} is
a prototypical example of a view definition. The intuition behind Def. 45 is that
a view specification is a formula V that provides definitions of all literals in the
“view vocabulary” U in terms of the “database vocabulary” D (condition (1.))
and that, if combined with an arbitrary database B, then V does not mess up
with the knowledge about the “database vocabulary” that is provided by B
(condition (2.)). The semantic characterization of view definition in Def. 45 does
not restrict the scopes U and D any further. They may, for example, overlap.

By Proposition 34.i, the condition (2.) in Def. 45 is equivalent to: For all
formulas B ⋐ D it holds that gsncD(V,B) ≡ B. The latter equivalence can
also be expressed directly in terms of projection as projectD(V ∧B) ≡ B. In
case the “database vocabulary” D is an atom scope, by Proposition 34.ii the
condition (2.) is equivalent to the weaker condition projectD(V ) ≡ ⊤, as stated
in the following Proposition 47.

Proposition 47 (View Definition for Atom Scopes). Let D be an atom
scope, let U a scope and let V be a formula. The triple V = 〈V, U,D〉 is a view
definition of U in terms of D with specification V if and only if

1. For all formulas R ⋐ U it holds that R is definable in terms of D within V .
2. projectD(V ) ≡ ⊤.

Proof (Proposition 47). Left-to-right: Assume the left side of the proposition,
that is, for all formulas B ⋐ D it holds that V is conservative for D within
B. Since ⊤ ⋐ D it then holds that V is conservative for D within ⊤; thus, by
Prop. 34.ii, ⊤ |= projectD(V ); thus projectD(V ) ≡ ⊤. Right-to-left: Assume the
right side of the proposition, that is, projectD(V ) ≡ ⊤ and let B be a formula
such that B ⋐ D. Then ⊤ |= projectD(V ) and thus B |= projectD(V ). Thus, by
Prop. 34.ii, it holds that V is conservative for D within B. ⊓⊔

As the following counterexample shows, the characterization of view definitions
in Prop. 47 indeed fails of scopes D that are not atom scopes. The example
gives a formula V, a scope U and a scope D that is not an atom scope such that
condition (2.) of Prop. 47 is met, but the stronger condition (2.) of Def. 45 fails,
establishing that V = 〈V, U,D〉 is not a view definition:



View Extension 35

Example 48 (Variants of Condition (2.) of View Definition). Let V =
(¬p ∧ ¬q), U = {+p,−p} and D = {+q}. It then holds that all formulas in
scope U are definable in terms of D within V : That p is definable follows
from Prop. 19, since gwsc+q(¬p ∧ ¬q, p) ≡ project+q(¬p ∧ ¬q ∧ p) ≡ ⊥. That
¬p is definable follows from that proposition, since ¬gsnc+q(¬p ∧ ¬q,¬p) ≡
¬project

−q(¬p ∧ ¬q ∧ p) ≡ ⊤. Condition (2.) of Prop. 47 holds: project+q(¬p ∧ ¬q) ≡
⊤. Condition (2.) of Def. 45 does not hold. We show this by giving a formula
B ⋐ +q such that projectD(V ∧B) 6≡ B, which by Prop. 34.i implies fail-
ure of the conservative property required in the condition. Let B = q. Then
projectD(V ∧B) = project¬q(¬p ∧ ¬q ∧ q) ≡ ⊥ 6≡ q.

22 View Extension

What we call here exact view extensions corresponds to the symbolically written
VΣ(B) in [CGLV07]. Intuitively, the exact view extension of a view definition
V = 〈V, U,D〉 for a database B ⋐ D is another database E ⋐ U that defines
the view scope U in terms of ∅ and is obtained from the view specification V
by applying the definitions of the members of the database scope D according
to B. For all queries Q ⋐ D and R ⋐ U such that Q is a definition of R in
terms of D within V it must hold that the answer to R with respect to E is
the same as the answer to Q with respect to B. Definition 49 below specifies a
semantic characterization of such formulas E. It is followed by Prop. 50, which
states the characteristic properties of an exact view extension, and certifies that
Def. 49 specifies the unique formula with these properties. The condition (2.)
of Def. 45, conservativeness, is applied in the proof of Prop. 50 to infer that
gsncD(V,B) ≡ B. Examples for exact view extensions are then provided with
Examp. 51 and 52.

Definition 49 (Exact View Extension). Let V = 〈V, U,D〉 be a view defi-
nition and let B ⋐ D be a formula. Then the exact view extension of V for B is
the formula

gsncU (V,B).

Proposition 50 (Characteristics of Exact View Extension). Let V =
〈V, U,D〉 be a view definition and let B ⋐ D be a formula. Then, for all formu-
las E the following statements are equivalent:

1. E is the exact view extension of V for B.
2. E ⋐ U , and for all formulas Q ⋐ D and R ⋐ U such that Q is a definition

of R in terms of D within V the entailment-based extensional answer to R
with respect to E and the entailment-based extensional answer to Q with
respect to B are equivalent.

Proof (Proposition 50). We first note that by Def. 49 statement (1.) is equivalent
to

E ≡ gsncU (V,B),
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and, by Def. 37.ii, the equivalence in statement (2.) is equivalent to

gwsc∅(E,R) ≡ gwsc∅(B,Q).

Assume the preconditions of the proposition:

(1) V = 〈V, U,D〉 is a view definition. assumption
(2) B ⋐ D. assumption

Left-to-right. We show that statement (2.) is true under the stated preconditions
if E is replaced by gsncU (V,B). By Prop. 13.ix it holds that gsncU (V,B) ⋐ U ,
the first conjunct of statement (2.). We now show the second conjunct Consider
the following table. Assume as further preconditions steps (3)–(5). Steps (6)–(8)
follow.

(3) Q ⋐ D. assumption
(4) R ⋐ U . assumption
(5) Q is a definition of R in terms of D within V . assumption

(6) ∀̇B ⋐ D : V is conservative for D within B. by (1), cond. (2.) of Def. 45
(7) project

D
(V,B) ≡ B. by (6), (2), Prop. 34.i, exp. gwsc

(8) V ∧ ¬R ≡ V ∧ ¬Q. by (5)

Now gwsc∅(gsncU (V,B), R) ≡ gwsc∅(B,Q) can be derived as follows:

(9) gwsc∅(gsnc
U

(V,B), R)
(10) ≡ ¬project∅(project

U
(V ∧B) ∧ ¬R) by exp. gwsc, gsnc

(11) ≡ ¬project∅(project
U

(project
U

(V ∧B) ∧ ¬R)) by Prop. 4.v
(12) ≡ ¬project∅(project

U
(V ∧B ∧ ¬R)) by (4), Prop. 4.xvii, 9.i

(13) ≡ ¬project∅V ∧B ∧ ¬R by Prop. 4.v
(14) ≡ ¬project∅(V ∧B ∧ ¬Q) by (8)
(15) ≡ ¬project∅(project

D
(V ∧B) ∧ ¬Q) by (3), Prop. 4.v, Prop. 4.xvii, 9.i

(16) ≡ ¬project∅(B ∧ ¬Q) by (7)
(17) ≡ gwsc∅(B,Q). by con. gwsc

Right-to-left. We have to show that, under the preconditions (1) and (2), when-
ever E satisfies statement (2.), then E ≡ gsncU (V,B). Let DEF(V,D,R,Q) be
a shorthand for Q is a definition of R in terms of D within V . Consider the
following table. Let E be a formula that satisfies (2.), that is, assume steps (18)
and (19). To derive step (20), we assume the left-to-right direction of this propo-
sition, which we have just shown. With step (26) we derive statement (1.).
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(18) E ⋐ U . assumption

(19) ∀̇R ⋐ U :

∀̇Q ⋐ D : DEF(V,D,R,Q) ⇒
gwsc∅(E,R) ≡ gwsc∅(B,Q). assumption

(20) ∀̇R ⋐ U :

∀̇Q ⋐ D : DEF(V,D,R,Q) ⇒
gwsc∅(E,R) ≡ gwsc∅(gsnc

U
(V,B), R). by (19), l-to-r dir. of this prop.

(21) ∀̇R ⋐ U :

(∃̇Q ⋐ D ∧̇ DEF(V,D,R,Q)) ⇒
gwsc∅(E,R) ≡ gwsc∅(gsnc

U
(V,B), R). equiv. to (20)

(22) ∀̇R ⋐ U :

∃̇Q ⋐ D : DEF(V,D,R,Q). by (1), cond. (1.) of Def. 45

(23) ∀̇R ⋐ U :
gwsc∅(E,R) ≡ gwsc∅(gsnc

U
(V,B), R). by (22), (21)

(24) ∀̇R ⋐ U :
(E |= R ⇔ gsnc

U
(V,B) |= R). by (23), Prop. 14

(25) project
U

(E) ≡ project
U

(gsnc
U

(V,B)). by (24), Prop. 11.ii
(26) E ≡ gsnc

U
(V,B). by (25), (18), Prop. 13.ix

⊓⊔

Example 51 (Exact View Extension). Let CONST = {a, b, c}, D = {r/1, s/1},
U = {p/1, q/1}, and let V,B be as follows:

V = (∀x p(x)↔ r(x)) ∧ (∀x q(x)↔ r(x) ∧ s(x)),
B = (∀x r(x)↔ x

.
= a ∨ x

.
= b) ∧ (∀x s(x)↔ x

.
= b ∨ x

.
= c).

Then the exact view extension E of V = 〈V, U,D〉 for B is E = gsncU (V,B) ≡

projectU (V ∧B) ≡ ((∀x p(x)↔ x
.
= a ∨ x

.
= b) ∧ (∀x q(x)↔ x

.
= b)).

As a query in U consider for example R = q(x). Then Q = (r(x) ∧ s(x)) is a
definition of R in terms of D within V . The answer to R with respect to E is the
same as the answer to B with respect to Q: gwsc∅(E,R) ≡ gwsc∅(B,Q) ≡ x

.
= b.

The characteristic property of exact view extensions (Prop. 50) applies to “data-
base formulas” B that are in the “database scope” D. In Examp. 51 we consid-
ered a formula B where all predicates in D are defined in terms of ∅, for example,
the predicate r/1 as r(x)↔ x

.
= a. This is, however, no requirement for the con-

cept of exact view extension, as the following example demonstrates, where we
consider a formula B in which the predicates in D are not fully defined.

Example 52 (Exact View Extension with an “Incomplete” Database).
Let CONST = {a, b, c}, let D = {r/1}, let U = {p/1}, let V = (∀x p(x)↔ r(x))
and let B = ¬r(a). Then the exact view extension E of V = 〈V, U,D〉 for B is
E = gsncU (V,B) ≡ projectU (V ∧B) ≡

projectU ((∀x p(x)↔ r(x)) ∧ ¬r(a)) ≡ ¬p(a).

For ¬p(x) as query in the view scope U , we then obtain as answer gwsc∅(E,¬p(x)) ≡
gsnc∅(B,¬r(x)) ≡ x

.
= a. For p(x) as query in the view scope U , we obtain as

answer gwsc∅(E, p(x)) ≡ gsnc∅(B, r(x)) ≡ ⊤.
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A sound view extension E of a view definition V = 〈V, U,D〉 for a database B ⋐

D generalizes exact view extension by requiring just that for all queries Q ⋐ D
and R ⋐ U such that Q is a definition of R in terms of D within V it must hold
that the answer to R with respect to E entails the answer to Q respect to B. If
answers are considered as sets of tuples, this means that the set of answer tuples
to R are a subset of the set of answer tuples to Q. In this sense the answer
tuples to R are considered as “sound”. Definition 53 below specifies a semantic
characterization of sound view extensions. The subsequent Prop. 54 shows its
characteristic properties.

Definition 53 (Sound View Extension). Let V = 〈V, U,D〉 be a view def-
inition and let B ⋐ D be a formula. Then a formula E is called a sound view
extension of V for B if and only if

1. E ⋐ U .
2. gsncU (V,B) |= E.

Proposition 54 (Characteristics of Sound View Extension). Let V =
〈V, U,D〉 be a view definition and let B ⋐ D be a formula. Then for all formu-
las E the following statements are equivalent:

1. E is a sound view extension of V for B.
2. E ⋐ U , and for all formulas Q ⋐ D and R ⋐ U such that Q is a definition

of R in terms of D within V it holds that the entailment-based extensional
answer to R with respect to E entails the entailment-based extensional an-
swer to Q with respect to B.

Proof (Proposition 54). We first note that by Def. 53 statement (1.) is equivalent
to

E ⋐ U and gsncU (V,B) |= E,

and, by Def. 37.ii, the entailment in statement (2.) is equivalent to

gwsc∅(E,R) |= gwsc∅(B,Q).

Left-to-right. Let E be a formula that satisfies statement (1.). The first con-
junct of statement (2.), that is, E ⋐ U , then follows immediately. Let R,Q be
formulas that satisfy the precondition of the second conjunct of statement (2.).
From Prop. 49 it can be concluded that gwsc∅(gsncU (V,B), R) |= gwsc∅(B,Q).
From our assumption gsncU (V,B) |= E if then follows by Prop. 13.xii that
gwsc∅(E,R) |= gwsc∅(B,Q).

Right-to-left. We proceed similarly than in the proof of Prop. 50. Let DEF(V,D,R,Q)
be a shorthand for Q is a definition of R in terms of D within V . Consider
the following table. Assume steps (1) and (2) which are preconditions of the
proposition and let E be a formula that satisfies statement (2.), that is, assume
steps (3) and (4). The first conjunct of statement (1.) is immediate from (3).
With step (11) we derive the second conjunct of statement (1.), where, to derive
step (5) we apply Prop. 50.
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(1) V = 〈V, U,D〉 is a view definition. assumption
(2) B ⋐ D. assumption
(3) E ⋐ U . assumption

(4) ∀̇R ⋐ U :

∀̇Q ⋐ D : DEF(V,D,R,Q) ⇒
gwsc∅(E,R) |= gwsc∅(B,Q). assumption

(5) ∀̇R ⋐ U :

∀̇Q ⋐ D : DEF(V,D,R,Q) ⇒
gwsc∅(E,R) |= gwsc∅(gsnc

U
(V,B), R). by (4), Prop. 50

(6) ∀̇R ⋐ U :

(∃̇Q ⋐ D ∧̇ DEF(V,D,R,Q)) ⇒
gwsc∅(E,R) |= gwsc∅(gsnc

U
(V,B), R). equiv. to (5)

(7) ∀̇R ⋐ U :

∃̇Q ⋐ D : DEF(V,D,R,Q). by (1), cond. (1.) of Def. 45

(8) ∀̇R ⋐ U :
gwsc∅(E,R) |= gwsc∅(gsnc

U
(V,B), R). by (7), (6)

(9) ∀̇R ⋐ U :
(E |= R ⇒ gsnc

U
(V,B) |= R). by (8), Prop. 14

(10) project
U

(gsnc
U

(V,B)) |= E. by (9), Prop. 11.i
(11) gsnc

U
(V,B) |= E. by (10), Prop. 13.ix

⊓⊔

23 View-Based Query Answering and Rewriting

The query answering approach to view-based query processing, to be contrasted
with query rewriting [CGLV00,CGLV07], is based on the notion of certain an-
swer [AD98], which applies to answer tuples. We use here the term certain an-
swer tuple instead, for consistency with our use of answer to denote full answers
instead of components like tuples. The idea is as follows: For a given view defi-
nition V = 〈V, U,D〉 and formula E ∈ U there might be several databases, that
is, formulas B ⋐ D, such that V is a sound view extension for B. Given a query,
an answer tuple that is in the answer obtained with respect to each of these
databases is called a certain answer tuple to the query. We consider here certain
answer tuples always under sound views [CGLV07]. Definition 55 below charac-
terizes certain answer tuples in terms of the GWSC. The subsequent Prop. 56
shows their characteristic properties, matching the informal explanation above,
and Examp. 57 illustrates the concept with examples.

Definition 55 (Certain Answer Tuple). Let V = 〈V, U,D〉 be a view defini-
tion and let Q(x) ⋐ D and E ⋐ U be formulas. Then an n-tuple c of constants
is a certain answer tuple to Q(x) with respect to V and E if and only if

gwscD(V,E) |= Q(c).

Proposition 56 (Characteristics of Certain Answer Tuples). Let V =
〈V, U,D〉 be a view definition, let E ⋐ U and Q(x) ⋐ D be formulas and let c
be an n-tuple of constants. Then the following statements are equivalent:
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1. The tuple c is a certain answer tuple to Q(x) with respect to V and E.
2. For all formulas B ⋐ D such that E is a sound view extension of V for B it

holds that

B |= Q(c).

Proof (Proposition 56). Assume the following precondition of the proposition:

(1) E ⋐ U . assumption

A derivation of the equivalence of statements (1.) to (2.) is shown in the following
table, where statement (2.) is step (2) and statement (1.) is step (9):

(2) ∀̇B ⋐ D :
E is a sound view extension of V for B ⇒ B |= Q(c)

(3) iff ∀̇B ⋐ D : gsnc
U

(V,B) |= E ⇒ B |= Q(c) by (1), Def 53

(4) iff ∀̇B ⋐ D : project
U

(V ∧B) |= E ⇒ B |= Q(c) by exp. gsnc

(5) iff ∀̇B ⋐ D : V ∧B |= E ⇒ B |= Q(c) by (1), Prop. 4.vi

(6) iff ∀̇B ⋐ D : B |= ¬V ∨ E ⇒ B |= Q(c)
(7) iff ¬project

D
(V ∧ ¬E) |= Q(c) by Prop. 11.iii

(8) iff gwsc
D

(V,E) |= Q(c) by con. gwsc
(9) iff c is a certain answer to Q(x) w.r.t. V and E. by Def. 55

⊓⊔

Example 57 (Certain Answer Tuple). Let V = 〈V, U,D〉 be a view defini-
tion, where U = {p, q}, D = {r, s}, and

V ≡ (p↔ r ∨ s) ∧ (q↔ r).

Let E = p. According to Def. 55, the empty tuple 〈〉 is a certain answer tuple to
a query Q ⋐ D with respect to V and E if and only if gwscD(V,E) |= Q. Let us
determine the GWSC:

gwscD(V,E)
≡ ¬projectD(V ∧ ¬E)
≡ ¬project{r,s}((p↔ r ∨ s) ∧ (q↔ r) ∧ ¬p)

≡ r ∨ s.

If Q = (r∨ s), then, since clearly (r∨ s) |= (r∨ s), the empty tuple 〈〉 is a certain
answer tuple to Q. If, however, we let Q = r, then, since (r ∨ s) 6|= r, there is
no certain answer tuple to Q. Let us now consider examples of formulas B ⋐ D
such that E is a sound view extension of V for B, that is, according to Def. 53,
such that it holds that gsncU (V,B) |= E. If B = s or B = (r ∨ s) it holds that
gsncU (V,B) ≡ projectU (V ∧B) ≡ p = E. If B = r, then gsncU (V,B) ≡ (p∧q) |=
p = E. If Q = (r ∨ s), then in all of the three considered cases for B it holds
that B |= Q, in accordance with statement (2.) of Prop. 56. However, also in
accordance with this statement, if Q = r and B = s, then B 6|= Q. As a fourth
case for B consider B = ¬r. Then gsncU (V,B) ≡ ¬q 6|= p = E. Thus, in this
case E is not a sound view extension of V for B and, again in accordance with
statement (2.) of Prop. 56, it is of no harm that B 6|= (r ∨ s).
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Following [CGLV07], the decision problem of view-based query answering is de-
fined on the basis of certain answer tuple:

Definition 58 (View-Based Query Answering). View-based query answer-
ing consists in deciding whether c is a certain answer tuple to Q(x) with respect
to V and D, for given x, c, V, E,Q(x), D be as specified in Def. 55.

It is immediate from the definition of certain answer tuple, Def. 55, that view-
based query answering according to Def. 58 amounts to deciding

gwscD(V,E) |= Q(c),

for the respective given x, c, V, E,Q(x), D. The query that yields for every view
extension E the set of certain answer tuples to query Q with respect to view
definition V and E is denoted symbolically by certQ,V in [CGLV07]. We call it
here certain query. It is defined in the following Def. 59 and its characteristics
are stated as Prop. 60.

Definition 59 (Certain Query). Let V = 〈V, U,D〉 be a view definition and
let Q ⋐ D be a formula. Then the certain query for Q and V is defined as

gwscU (V,Q).

Proposition 60 (Characteristics of the Certain Query). Let V = 〈V, U,D〉
be a view definition and let Q(x) ⋐ D be a formula. Then the following state-
ments are equivalent

1. R(x) is the certain query for Q(x) and V.
2. R(x) ⋐ U , and for all n-tuples of constants and formulas E ⋐ U it holds

that E |= R(c) if and only if c is a certain answer tuple to Q(x) with respect
to V and E.

Proof (Proposition 60). We start by showing that statement (2.) is equivalent
to the following statement (E17), which is like (2.) except that in the right side
of the if and only if is replaced by E |= gwscU (V,Q(c)):

R(x) ⋐ U, and for all n-tuples c and formulas E ⋐ U it holds that
E |= R(c) if and only if E |= gwscU (V,Q(c)).

(E17)

Consider the table below. Assume (1) and (2) which are preconditions of the
proposition, and step (3) which holds in the context of the substatement to be
replaced.

(1) V = 〈V, U,D〉 is a view definition. assumption
(2) Q(x) ⋐ D. assumption
(3) E ⋐ U . assumption
(4) gwsc

D
(V,E) ≡ gsnc

D
(V,E). by (3), (1) Prop. 46

Let c be an n-tuple of constants. We can establish the equivalence of state-
ment (2.) and (E17) in the following steps:
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(5) c is a certain answer tuple
to Q(c) w.r.t. V and D

(6) iff gwsc
D

(V,E) |= Q(c) by Def. 55
(7) iff gsnc

D
(V,E) |= Q(c) by (4)

(9) iff V ∧ E |= Q(c) by (2), Prop. 17.i
(12) iff E |= gwsc

U
(V,Q(c)). by (3), Prop. 17.ii

We now conclude the proof by showing the equivalence of (E17) to statement (1.).
Consider the following table of equivalences. Statement (E17) is listed there as
the first step and statement (1.) as the last step.

(13) R(x) ⋐ U ∧̇

∀̇c ∈ CONSTn : ∀̇E ⋐ U :
E |= R(c) ⇔ E |= gwsc

U
(V,Q(c))

(14) iff R(x) ⋐ U ∧̇

∀̇E ⋐ U : E |= R(x) ⇔ E |= gwsc
U

(V,Q(x))
(15) iff R(x) ⋐ U ∧̇

project
U

(¬R(x)) ≡ project
U

(¬gwsc
U

(V,Q(x))) by Prop. 11.iv
(16) iff R(x) ⋐ U ∧̇ R(x) ≡ gwsc

U
(V,Q(x)) by Prop. 4.xvii, 13.x, con. gwsc

(17) iff R(x) ≡ gwsc
U

(V,Q(x)) by Prop. 13.x
(18) iff R(x) is the certain query for. Q(x) and V. by Def. 59

⊓⊔

In view-based query rewriting [CGLV00,CGLV07], a query over the database
language is processed by first reformulating it in terms of the view language,
and then evaluated with respect to the view extensions. As we will see below,
the difference to view-based query answering is in essence only relevant if the
allowed reformulations are constrained to be in a certain formula class such as
conjunctive queries, regular-path queries, or conjunctive regular-path queries,
which can not be straightforwardly specified with our semantic second-order
operators. Like view-based answering, we consider view-based rewriting here
always under sound views. Definition 61 below specifies the semantic conditions
on the involved query reformulations.

Definition 61 (Rewriting). Let V = 〈V, U,D〉 be a view definition and let
Q ⋐ D be a formula. A formula R is called a rewriting of Q with respect to V if
and only if

1. R ⋐ U .

2. R |= gwscU (V,Q).

In presence of condition (1.) of Def. 61, its condition (2.) is equivalent to

V ∧R |= Q, (E18)

which can be easily verified from the definition of gwsc and properties of projec-
tion. The following Prop. 62 ensures the characteristic properties of rewritings.



View-Based Query Answering and Rewriting 43

Proposition 62 (Characteristics of Rewriting). Let V = 〈V, U,D〉 be a
view definition and let Q ⋐ D be a formula. Then for all formulas R the following
statements are equivalent:

1. R is a rewriting of Q with respect to V.
2. R ⋐ U , and for all formulas B ⋐ D and E ⋐ U such that E is a sound view

extension of V for B and E |= R it holds that B |= Q.

Proof (Prop. 62). Consider the table below. Assume (1) and (2), which are
preconditions of the proposition. Further, assume (3), which is a condition in
both statements of the proposition, implicit via Def. 61 in statement (1.) and
explicit in statement (2.). Step (4), a lemma that is used later on, follows from
the assumptions (3) and (2).

(1) V = 〈V, U,D〉 is a view definition. assumption
(2) Q ⋐ D. assumption
(3) R ⋐ U . assumption
(4) gsnc

D
(V,R) ≡ gwsc

D
(V,R). by (3), (1) Prop. 46

We now show the equivalence of the two statements in the proposition by pro-
ceeding from statement (2.) to statement (1.). If E ⋐ U , then gsncU (V,B) |= E
is equivalent to E is a sound view extension of V for B. Thus, statement (2.)
can be expressed as step (5). According to Def. 61, the final step (15) conjoined
with assumption (3) is equivalent to statement (1.).

(5) ∀̇B ⋐ D : ∀̇E ⋐ U :
gsnc

U
(V,B) |= E ∧̇ E |= R ⇒ B |= Q

(6) iff ∀̇B ⋐ D : V ∧B |= R ⇒ B |= Q

(7) iff ∀̇B ⋐ D : B |= ¬V ∨R ⇒ B |= Q

(8) iff ¬project
D

(V ∧ ¬R) |= Q by Prop. 11.iii
(9) iff gwsc

D
(V,R) |= Q by con. gwsc

(10) iff gsnc
D

(V,R) |= Q by (4)
(11) iff V ∧R |= Q by (2), Prop. 17.i
(12) iff R |= gwsc

U
(V,Q). by (3), Prop. 17.ii

⊓⊔

So far, a rewriting is, aside of the requirement on its scope, only constrained
with respect to a formula that is must entail. Any stronger formula in the scope
is also a rewriting. If C is some class of formulas, then a C-maximal rewriting
[CGLV07] is a rewriting that is in C and such that there is no weaker formula
in C which is also a rewriting. Typical such classes are defined by syntactic
constraints such as conjunctive queries, regular-path queries, and conjunctive
regular-path queries. With our toolkit of semantic second-order operators, we
can not express in a straightforward way such syntactic properties. We thus
consider here just the semantics of the ⊤-maximal rewriting, with respect to
the unconstrained class ⊤ of all formulas. It is defined in Def. 63 below, with its
characteristic properties stated in Prop. 64. Actually, the ⊤-maximal rewriting is
identical to the certain query (Def. 59), which means that the difference between
view-based query answering and view-based query rewriting is only essential if
strictly constraining classes C are considered.



44 Section 24

Definition 63 (⊤-Maximal Rewriting). Let V = 〈V, U,D〉 be a view defi-
nition and let Q ⋐ D be a formula. Then the ⊤-maximal rewriting of Q with
respect to V is the formula

gwscU (V,Q).

Proposition 64 (Characteristics of the ⊤-Maximal Rewriting). Let V =
〈V, U,D〉 be a view definition and let Q ⋐ D be a formula. Then for all formu-
las R the following statements are equivalent:

1. R is the ⊤-maximal rewriting of Q with respect to V.
2. The following holds:

a. R ⋐ U .
b. R is a rewriting of Q with respect to V.
c. For all formulas R′

⋐ U it holds that if R′ is a rewriting of Q with respect
to V, then R′ |= R.

Proof (Proposition 64). By Def. 62, considering entailment (E18), statement (2.)
is equivalent to:

a. R ⋐ U.
b. V ∧R |= Q.
c. For all R′

⋐ U it holds that if V ∧R′ |= Q, then R′ |= R.
(E19)

By Prop. 13.viii the statement (E19) is equivalent to R ≡ gwscU (V,Q), hence, by
Def. 63 also equivalent to statement (1.), that is, R is the ⊤-maximal rewriting
of Q with respect to V.

⊓⊔

24 Exactness, Losslessness and Perfectness

Three different notions of losslessness in view-based query processing are speci-
fied and related in [CGLV07], lossless views, exact rewritings and perfect rewrit-
ings. We provide here definitions of these concepts in terms of definability, def-
inition, and GWSC, respectively, and show their coincidence with the charac-
terizations in [CGLV07]. As discussed towards the end of this section, with our
formal reconstruction, relationships between these concepts can be shown, which
do not fully coincide with the informally presented observations in [CGLV07].

We first consider exact rewritings, that is, rewriting that are equivalent to the
original query modulo the view definition. Definition 65 below correspondingly
characterizes an exact rewriting just as a definition in the sense of Def. 16.
Proposition 66 then ensures that an exact rewriting is indeed a rewriting in the
sense of Def. 61. By Prop. 67, an exact rewriting can be characterized in the
same way as in [CGLV07].

Definition 65 (Exact Rewriting). Let V = 〈V, U,D〉 be a view definition
and let Q ⋐ D be a formula. A formula R is then called an exact rewriting of Q
with respect to V if and only if R is a definition of Q in terms of U within V .
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Proposition 66 (An Exact Rewriting is a Rewriting). Let V = 〈V, U,D〉
be a view definition and let Q ⋐ D be a formula. A formula R that is an exact
rewriting of Q with respect to V is also a rewriting of Q with respect to V.

Proof (Proposition 66). Assume that R is an exact rewriting of Q with respect
to V. Then, by Def. 65, R is a definition of Q in terms of U within V . Hence from
Def. 16 it follows that R ⋐ U and that R |= gwscU (V,Q). According to Def. 61,
these two conditions characterize R as a rewriting of Q with respect to V. ⊓⊔

Proposition 67 (Characteristics of Exact Rewritings). Let V = 〈V, U,D〉
be a view definition and let Q ⋐ D be a formula. Then for all formulas R the
following statements are equivalent

1. R is an exact rewriting of Q with respect to V.
2. R ⋐ U , and for all formulas B ⋐ D the entailment-based extensional answer

to R with respect to the exact view extension of V for B and the entailment-
based extensional answer to Q with respect to B are equivalent.

Proof (Proposition 67). Statement (1.) expands into R ⋐ U , and

gsncU (V,Q) |= R and R |= gwscU (V,Q). (E20)

Statement (2.) expands into R ⋐ U , and for all formulas B ⋐ D it holds that

gwsc∅(gsncU (V,B), R) ≡ gwsc∅(B,Q). (E21)

Consider the following table. Assume (1) and (2), the preconditions of the propo-
sition. Further assume (3), which is asserted by both statements in the propo-
sition, implicitly via Def. 65 and Def. 16 in statement (1.), and explicitly in
statement (2.).

(1) V = 〈V, U,D〉 is a view definition. assumption
(2) Q ⋐ D. assumption
(3) R ⋐ U . assumption
(4) gsnc

D
(V,R) ≡ gwsc

D
(V,R). by (3), (1), Prop. 46

Under assumptions (2) and (3) the equivalence (E21) is equivalent to gwscD(V,R) ≡
Q, where B is not referenced:

(5) ∀̇B ⋐ D : gwsc∅(gsnc
U

(V,B), R) ≡ gwsc∅(B,Q).

(6) iff ∀̇B ⋐ D : project∅(project
U

(V ∧B) ∧ ¬R) ≡
project∅(B ∧ ¬Q). by exp. gwsc, gsnc

(7) iff ∀̇B ⋐ D : project∅(V ∧B ∧ ¬R) ≡ project∅(B ∧ ¬Q) by (3), Prop. 4.v, 9.i

(8) iff ∀̇B ⋐ D : gwsc∅(B,¬(V ∧ ¬R)) ≡ gwsc∅(B,Q) by con. gwsc
(9) iff project

D
(V ∧ ¬R) ≡ project

D
(¬Q) by Prop. 15.ii

(10) iff project
D

(V ∧ ¬R) ≡ ¬Q by (2), Prop. 4.xvii
(11) iff gwsc

D
(V,R) ≡ Q. by con. gwsc

We conclude the proof by showing that the statement of step (11) is, under
the given preconditions, equivalent to (E20). Actually, the left-to-right direction
of (11) is equivalent to R |= gwscU (V,Q):
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(12) gwsc
D

(V,R) |= Q

(13) iff gsnc
D

(V,R) |= Q by (4)
(14) iff V ∧R |= Q by (2), Prop. 17.i
(15) iff R |= gwsc

U
(V,Q). (3), by Prop. 17.ii

The right-to-left direction of (11) is equivalent to gsncU (V,Q) |= R:

(16) Q |= gwsc
D

(V,R)
(17) iff V ∧Q |= R by (2), Prop. 17.ii
(18) iff gsnc

U
(V,Q) |= R. by (3), Prop. 17.i

⊓⊔

While exact rewritings correspond to definitions, lossless view definitions cor-
respond to definability, that is, the existence of a definition, without the re-
quirement to make that definition explicit or materialize it. Definition 68 below
characterizes lossless view definitions correspondingly in terms of definability,
completely analogous to Def. 65 for exact rewritings. Proposition 69 then relates
Def. 68 to a characterization of lossless that follows [CGLV07].

Definition 68 (Lossless View Definition). Let V = 〈V, U,D〉 be a view
definition and let Q ⋐ D be a formula. The V is called lossless with respect to Q
if and only if Q is definable in terms of U within V .

Proposition 69 (Characteristics of Lossless View Definitions). Let V =
〈V, U,D〉 be a view definition and let Q ⋐ D be a formula. Then the following
statements are equivalent

1. V is lossless with respect to Q.
2. For all formulas B ⋐ D it holds that the entailment-based extensional answer

to the certain query for Q and V, with respect to the exact view extension
of V for B, is equivalent the entailment-based extensional answer to Q with
respect to B.

Proof (Proposition 69). Statement (1.) expands into

gsncU (V,Q) |= gwscU (V,Q). (E22)

Statement (2.) expands into for all formulas B ⋐ D it holds that

gwsc∅(gsncU (V,B), gwscU (V,Q)) ≡ gwsc∅(B,Q). (E23)

Consider the following table. Assume (1) and (2), the preconditions of the
proposition.

(1) V = 〈V, U,D〉 is a view definition. assumption
(2) Q ⋐ D. assumption
(3) gsnc

D
(V, gwsc

U
(V,Q)) ≡ gwsc

D
(V, gwsc

U
(V,Q)). by (1), Prop. 46, 13.x

Analogously to steps (5)-(11) in the proof of Prop. 67, but with gwscU (V,Q) in
place of R, we can derive that equivalence (E23) is equivalent to

gwscD(V, gwscU (V,Q)) ≡ Q. (E24)
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Thus, we have to show the equivalence of statement (E24) to (E22) under the
assumptions (1)–(3). The left-to-right direction of (E24) is under the assump-
tion (3) always true.

gwsc
D

(V, gwsc
U

(V,Q)) |= Q

iff gsnc
D

(V, gwsc
U

(V,Q)) |= Q by (3)
iff V ∧ gwsc

U
(V,Q) |= Q by (2), Prop. 17.i

iff V ∧ ¬Q |= project
U

(V ∧ ¬Q) by exp. gwsc
iff true. by Prop. 4.i

The right-to-left direction of (E24) is equivalent to (E22), which completes the
proof:

Q |= gwsc
D

(V, gwsc
U

(V,Q))
iff V ∧Q |= gwsc

U
(V,Q)) by (2), Prop. 17.ii

iff gsnc
U

(V ∧Q) |= gwsc
U

(V,Q)). by Prop. 17.i, 13.x

⊓⊔

According to Def. 61, a query rewriting is a formula in the view scope that en-
tails the certain query. The answer to a rewriting with respect to a sound view
extension then entails the answer to the certain query, or, in other words, if the
corresponding sets of tuples are considered as answers, the answer to the rewrit-
ing is a (not necessarily proper) subset of the answer to the certain query. In this
sense query rewriting is an approximation to query answering. A perfect rewrit-
ing [CGLV00] is a query rewriting that is equivalent to the certain query. The
definition of perfect rewriting in [CGLV07] takes in addition a class C of formulas
into account, requiring that a perfect rewriting is a member of C. However, in the
semantic characterization of [CGLV07, p. 176], the class C actually does not play
any role. It becomes relevant in investigations about whether a perfect rewriting
in a certain class does exist. In fact, perfect rewritings are characterized for a
given view definition and query uniquely up to equivalence, such that we can
speak of the perfect rewriting. In the following definition we straightforwardly
identify the perfect rewriting with the certain query. Proposition 71 then renders
the semantic characterization of perfect rewriting from [CGLV07], but without
taking into consideration that it must be in some formula class.

Definition 70 (Perfect Rewriting). Let V = 〈V, U,D〉 be a view definition
and let Q ⋐ D be a formula. Then the perfect rewriting of Q with respect to V
is defined as

gwscU (V,Q).

Proposition 71 (Characteristics of the Perfect Rewriting). Let V =
〈V, U,D〉 be a view definition and let Q ⋐ D be a formula. Let R be a rewriting
of Q with respect to V. The following statements are then equivalent:

1. R is the perfect rewriting of Q with respect to V.
2. For all formulas B ⋐ D and sound view extensions E of V for B it holds that

the entailment-based extensional answer to the certain query for Q and V,
with respect to E, is equivalent to the entailment-based extensional answer
to R with respect to E.
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Proof (Proposition 71). Statement (1.) expands into

R ≡ gwscU (V,Q). (E25)

Statement (2.) expands into: For all formulas B ⋐ D and E ⋐ U such that
gsncU (V,B) |= E it holds that

gwsc∅(E, gwscU (V,Q)) ≡ gwsc∅(E,R). (E26)

Consider the following table. Assume (1) and (2), which are preconditions of the
proposition. Steps (6) and (7) follow from them.

(1) V = 〈V, U,D〉 is a view definition. assumption
(2) R is a rewriting with respect to V. assumption

(3) ∀̇E′
⋐ U : E is definable in terms of D within V . by (1)

(4) ∀̇E′
⋐ U : ∃̇B′

⋐ D : V ∧ E′ ≡ V ∧B′. by (3)

(5) ∀̇E′
⋐ U : ∃̇B′

⋐ D : V ∧B′ |= E′. by (4)

(6) ∀̇E′
⋐ U : ∃̇B′

⋐ D : gsnc
U

(V,B′) |= E′. by (5), Prop. 17.i
(7) R ⋐ U . by (2)

Given (6) and (7), the equivalence of (E25), expressed as the first step in the
table below, and (E26), the last step, can be shown as follows:

(8) ∀̇B ⋐ D : ∀̇E ⋐ U : gsnc
U

(V,B) |= E ⇒
gwsc∅(E, gwsc

U
(V,Q)) ≡ gwsc∅(E,R)

(9) iff ∀̇E ⋐ U : (∃̇B ⋐ D : gsnc
U

(V,B) |= E) ⇒
gwsc∅(E, gwsc

U
(V,Q)) ≡ gwsc∅(E,R)

(10) iff ∀̇E ⋐ U : gwsc∅(E, gwsc
U

(V,Q)) ≡ gwsc∅(E,R) by (6)
(13) iff project

U
(¬gwsc

U
(V,Q)) ≡ project

U
(¬R) by Prop. 15.ii

(15) iff R ≡ gwsc
U

(V,Q). by (7), Prop. 13.x, 4.xvii

⊓⊔

Clearly losslessness (that is, definability) is equivalent to the existence of an ex-
act rewriting (that is, a definition). The following Proposition 72 shows a relation
between all three concepts, perfectness, exactness and losslessness. In [CGLV07,
p. 171] it is suggested that exactness is the conjunction of perfectness and loss-
lessness. From Proposition 72 it follows that the conjunction of perfectness and
losslessness implies exactness. However, as demonstrated by Example 73, the
converse of this implication does not hold in the general setting considered here.

Proposition 72 (Perfectness Implies Equivalence of Exactness and Loss-
lessness). Let V = 〈V, U,D〉 be a view definition and let Q ⋐ D be a formula. Let
R be the perfect rewriting of Q with respect to V. Then the following statements
are equivalent

1. R is an exact rewriting of Q with respect to V.
2. V is lossless with respect to Q.

Proof (Proposition 72). Consider the following table. Assume step (1), the pre-
condition of the proposition.
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(1) R is the perfect rewriting of Q w.r.t. V. assumption
(2) R ≡ gwsc

U
(V,Q). by (1), Def. 70

(3) R ⋐ U . by (2), Prop. 13.x
(4) R |= gwsc

U
(V,Q). by (2)

The equivalence of statement (1.) to statement (2.) then can be derived in the
following steps:

(5) R is an exact rewriting of Q with respect to V
(6) iff gsnc

U
(V,Q) |= R by (4), (3), Def. 65, Prop. 16

(7) iff gsnc
U

(V,Q) |= gwsc
U

(V,Q) by (2)
(8) iff V is lossless with respect to Q. by Def. 68, Prop. 19

⊓⊔

Example 73 (Exactness does not Imply Perfectness). Let V = 〈V, U,D〉
be a view definition, where V = ((p ↔ a) ∧ (q ↔ a)), U = {p, q} and D = {a},
and let Q = a. It then holds that

gsncU (V,Q) ≡ (p ∧ q) |= (p ∨ q) ≡ gwscU (V,Q). (E27)

From (E27) it is immediate that (p ∧ q) is an exact rewriting but is not equiv-
alent to the perfect rewriting (p ∨ q). The situation in the example is that Q
is definable – but not uniquely definable – in terms of U within V , as can be
derived from (E27) with the respective definitions Def. 19 and 23.

25 Summary

Table 1 summarizes the concepts involved in view-based query processing. It
shows their formal definitions in terms of GWSC/GSNC, as well as their various
verbal names, used here and in the literature on view-based query processing.
Some of the items in the table require additional explanation: In the specifica-
tion of the involved formulas we use the ⋐ symbol to express that the respective
formula is in the indicated scope. For view definition, the shown characteriza-
tion incorporates Prop. 46. Maximal and perfect rewriting differ from the certain
query in subtle respects that are not captured in the table: The maximal rewrit-
ing with respect to the class ⊤ of all formulas is equivalent to the certain query,
but with respect to other classes of formulas it is not necessarily equivalent. The
perfect rewriting might be coupled with additional non-semantic conditions. If
there is no formula that meets these conditions and is equivalent to the certain
query, then one would say that no perfect rewriting exists.
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Table 1. Concepts of View-Based Query Processing – Summary

The involved scopes are: U (view scope), D (database scope)

The involved formulas are: V (view specification), Q ⋐ D (query), R ⋐ U
(rewritten query), B ⋐ D (database), E ⋐ U (view extension)

V = 〈V, U,D〉 is a view definition iff

For all R⋐U : gsncD(V,R) ≡ gwscD(V,R) and
for all B⋐D : gsncD(V,B) ≡ B

gwscU (V,Q) is

– the globally weakest sufficient condition of Q on U within V
– the certain query w.r.t. Q and V
– the perfect rewriting of Q w.r.t. V
– the ⊤-maximal rewriting of Q w.r.t. V

A formula R s.t. R⋐U and R |= gwscU (V,Q) is

– a rewriting of Q w.r.t. V

A formula R s.t. R⋐U , gsncU (V,Q) |= R and R |= gwscU (V,Q) is

– a definition of Q i.t.o. U within V
– an exact rewriting of Q w.r.t. V

gsncU (V,Q) |= gwscU (V,Q) holds iff

– Q is definable i.t.o. U within V
– V is lossless w.r.t. Q

gsncU (V,B) is

– the globally strongest necessary condition of B on U within V
– the exact view extension of V for B

A formula E s.t. E⋐U and gsncU (V,B) |= E is

– a sound view extension of V for B

An n-tuple c of constants s.t. gwscD(V,E) |= Q(c) is

– a certain answer tuple to Q(x) w.r.t. V and E



Chapter 6

Split Rewritings

26 Characterization of Split Rewritings

In this chapter we consider the scenario where a query against a combination of
a database with a knowledge base in some expressive logic is evaluated in two
steps, by first constructing from the given query and knowledge base a database
query, and then evaluating this database query against the database with stan-
dard technologies, which has been investigated in [BdBF+10,FKN12,FKN13].
Notice that, unlike in the approach of view-based query processing discussed
in Chap. 5, the vocabulary of the original query is not assumed to be in the
database vocabulary, but can include concepts from the knowledge base part.
The underlying model comprises exact view extensions and exact rewritings.
This model has also been used in the investigations of [Mar07,NSV10], however
in the different scenario of view-based query processing described in Sect. 20.
We call here the database query obtained in the first step from the given query
and knowledge base a split rewriting, defined as follows:

Definition 74 (Split Rewriting). Let D be a scope, let K,Q be formulas and
let C be a class of formulas. A formula R is called a split rewriting of Q in terms
of D with respect to K and C if and only if

1. R ⋐ D,
2. For all formulas B ∈ C it holds that the entailment-based extensional answer

to R with respect to B is equivalent to the entailment-based extensional
answer to Q with respect to (B ∧K).

Condition (2.) in Def. 74 expands into for all B ∈ C it holds that

gwsc∅(B,R) ≡ gwsc∅(B ∧K,Q). (E28)

The intuition in Def. 74 is that scope D represents the set of database predicates,
class C specifies the conditions on formulas B to be considered as databases,
for example, that B uniquely defines D, formula K is an arbitrary formula,
expressing additional knowledge such as an ontology, constraints or definitions
of view predicates, possibly involving predicates not in D, and Q, again an
arbitrary formula, expresses the query.

In case C includes the condition that its members B define D uniquely in
terms of ∅, by Prop. 39 it follows that the consistency-based answer to a split
rewriting R is equivalent to the entailment-based answer. Definition 74 then
could be also expanded to for all B ∈ C it holds that

gsnc∅(B,R) ≡ gwsc∅(B ∧K,Q). (E29)
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27 The GWSC and Definitions as Split Rewritings

Proposition 76 and 77 below each provide the foundation of an alternate ap-
proach to compute split rewritings. These propositions ensure that certain for-
mulas, which might involve second-order operators, are split rewritings with
respect to certain classes of database formulas. They are based on the following
auxiliary properties of the GWSC and GSNC:

Proposition 75 (Splitting Lemma). Let S,D be scopes and let B ⋐ D,K,
Q be formulas. It then holds that

(i) If S ⊆ D, then gwscS(B ∧K,Q) ≡ gwscS(B, gwscD(K,Q)).
(ii) If S ⊆ D, then gsncS(B ∧K,Q) ≡ gsncS(B, gsncD(K,Q)).

Proof (Proposition 75).
(75.i) Assume the preconditions of the proposition, that is:

(A1) S ⊆ D.
(A2) B ⋐ D.

The proposition then can be derived in the following steps:

gwsc
S

(B ∧K,Q)
≡ ¬project

S
(B ∧K ∧ ¬Q)

≡ ¬project
S

(project
D

(B ∧K ∧ ¬Q)) by (A1), Prop. 4.v
≡ ¬project

S
(project

D
(B ∧ project

D
(K ∧ ¬Q))) by (A2), Prop. 9.i

≡ ¬project
S

(B ∧ project
D

(K ∧ ¬Q)) by (A1), Prop. 4.v
≡ ¬project

S
(B ∧ ¬gwsc

D
(K,Q))

≡ gwsc
S

(B, gwsc
D

(K,Q)).

(75.ii) Assume the preconditions of the proposition, that is:

(A1) S ⊆ D.
(A2) B ⋐ D.

The proposition then can be derived in the following steps:

gsnc
S

(B ∧K,Q)
≡ project

S
(B ∧K ∧Q)

≡ project
S

(project
D

(B ∧K ∧Q)) by (A1), Prop. 4.v
≡ project

S
(project

D
(B ∧ project

D
(K ∧Q))) by (A2), Prop. 9.i

≡ project
S

(B ∧ project
D

(K ∧Q)) by (A1), Prop. 4.v
≡ project

S
(B ∧ gsnc

D
(K,Q))

≡ gsnc
S

(B, gsnc
D

(K,Q)).

Proposition 76 (The GWSC as a Split Rewriting). Let D be a scope, let
C = {B | B ⋐ D} and let K,Q be formulas. Then

gwscD(K,Q)

is a split rewriting of Q in terms of D with respect to K and C.

Proof (Proposition 76). By Prop. 13.x it holds that gwscD(K,Q) ⋐ D, corre-
sponding to condition (1.) of Def. 74. Condition (2.), which expands into for all
B ⋐ D it holds that gwsc∅(B, gwscD(K,Q)) ≡ gwsc∅(B ∧K,Q), follows from
Prop. 75.i.
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Proposition 77 (Definitions as Split Rewritings). Let D be an atom scope,
let

C = {B | B ⋐ D and B uniquely defines D in terms of ∅}

and let K,Q be formulas such that for all formulas B ∈ C it holds that

|= project∅(B ∧K).

Any definition R of Q in terms of D within K is then a split rewriting of Q in
terms of D with respect to K, and C.

Proof (Proposition 77). Condition (1.) of the definition of split rewriting is im-
mediate from Def. 16. It remains to show condition (2.), which expands into for
all B ⋐ D such that B uniquely defines D in terms of ∅ it holds that

gwsc∅(B,R) ≡ gwsc∅(B ∧K,Q). (E30)

Consider the table below. Assume steps (1) and (2) which are preconditions of
the proposition. Let B be a formula in C, that is, assume that B satisfies (3)
and (4). In addition, assume that K satisfies the precondition with respect to
all members of C stated in the proposition. Then (5) must hold. Steps (6)–(8)
follow from (2).

(1) D is an atom scope. assumption
(2) R is a definition of Q in terms of D within K. assumption
(3) B ⋐ D. assumption
(4) B uniquely defines D in terms of ∅. assumption
(5) |= project∅(B ∧K). assumption
(6) R ⋐ D. by (2)
(7) gsnc

D
(K,Q) |= R. by (2)

(8) R |= gwsc
D

(K,Q). by (2)

By (8), Prop. 13.xiv, (3), and Prop. 75.i it holds that

gwsc∅(B,R) |= gwsc∅(B, gwscD(K,Q)) ≡ gwsc∅(B ∧K,Q), (E31)

which justifies the left-to-right direction of (E30). From (3), (1), Prop. 75.ii, (7)
and Prop. 13.xiii it follows that

gsnc∅(B ∧K,Q) ≡ gsnc∅(B, gsncD(K,Q)) |= gsnc∅(B,R). (E32)

It follows from (6) and (4) that R is uniquely definable in terms of ∅ within B,
and thus

gsnc∅(B,R) ≡ gwsc∅(B,R). (E33)

From (E33), (E32) and (E31) it follows that

gsnc∅(B ∧K,Q) |= gwsc∅(B ∧K,Q), (E34)

that is, definability of Q in terms of ∅ within (B∧K). From (A4) it then follows
by Prop. 26 that Q is also uniquely definable, that is

gsnc∅(B ∧K,Q) ≡ gwsc∅(B ∧K,Q). (E35)

The right-to-left direction of (E30) now follows from (E35), (E33) and (E32). ⊓⊔
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If B and K are sentences, then the condition |= project∅(B ∧K) in the pre-
conditions of Prop. 77 is equivalent to (B ∧ K) is satisfiable. While Prop. 76
and 77 show that particular formulas are split rewritings, neither of them does
conversely give a characterizations of all split rewritings with respect to certain
classes. This remains an issue for further investigations.

For first-order knowledge bases, Prop. 77 suggests to compute split rewrit-
ings by applying the reduction of definability to validity, and the correspondence
of definitions to interpolants that can be extracted from proofs, as sketched in
Sect. 14. This is the approach of [BdBF+10,FKN12,FKN13]. Prop. 77 justifies
that any definition is a split rewriting, permitting to choose the most appropriate
one from these, with respect to further criteria. In [BdBF+10,FKN12,FKN13],
domain independence and the safe-range property have been identified as such
criteria, since they ensure processability by standard database engines. Tableau
calculi that facilitate the construction of domain independent interpolants by
preserving syntactic properties guaranteeing domain independence are investi-
gated there.

Proposition 76 suggests to apply second-order quantifier elimination or the
computation of uniform interpolants to construct split rewritings. So far, this
approach seems not to have been investigated in the database community.



Chapter 7

Conclusion

An answer to a query with respect to a knowledge base can be understood
generically as a definition of the query, within the knowledge base, and meet-
ing certain application specific requirements, such as restrictions on the used
vocabulary. This notion of answer can be formally modeled with second-order
operators. As we have seen, such a modeling provides a basis for reconstruc-
tions of view-based query processing and a related approach, called here split
rewriting, where knowledge bases that are combined from parts in languages
with different expressivity are considered. The reconstructions relate many of
the database specific concepts to general logic concepts, such as globally weakest
sufficient condition and definition, show several subtle new aspects and provide
a ground for further investigations.

This semantic foundation should make techniques of view-based query pro-
cessing and split rewriting transferable to knowledge representation systems in
general. Various restrictions of component knowledge bases could be investi-
gated, including second-order properties such as finiteness of predicate exten-
sions, with the idea that in applications they are passed to a context where they
can be dropped or easily be eliminated. We have seen an example for this with
the circumscription operator, which can be dropped if consequences are consid-
ered with respect to datalog semantics. Also the exchange of techniques with
other fields that can be characterized on the same formal basis should be fa-
cilitated. This concerns in particular abductive reasoning in logic programming
[KKT98,D LS01,Wer13] and investigations of uniform interpolation in descrip-
tion logics [GLW06,KWW09,LW11,CM12,KS13].

As we have seen, particular query rewritings can be characterized as globally
strongest necessary and weakest sufficient condition, respectively, and thus – un-
der suitable language restrictions – can be computed by second-order quantifier
elimination. It seems that this has so far not been considered as a computational
method in research on view-based query processing. It is, however, promising in
particular in presence of the recent results on methods for and completeness
of uniform interpolation in description logics and since it opens up an alterna-
tive approach to compute split rewritings that does, in contrast to the methods
described in the literature, not depend on Tarski’s reduction of first-order defin-
ability to provability, which is well-known to fail in the finite.

Projection allows to express semantic properties as well as restrictions of the
allowed symbols and polarity of predicate occurrences. Seeming limitations of the
presented approach become apparent when properties that can not be straight-
forwardly expressed with projection come into play, for example, formula classes
that are characterized by syntactic restrictions. Exploration of possibilities to
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encode relevant syntactic properties into the semantics-based tools is one of the
issues for future research.

Split rewriting, in particular, requires further semantic investigations: We
have seen preconditions under which definitions and the globally weakest suffi-
cient condition are split rewritings, however, converse properties, leading from
split rewritings to definitions, are still missing.

Some straightforward semantic characterizations with second-order operators
are up to a range of formulas, for example, definitions or exact rewritings are
all the formulas that are stronger than a particular formula with second-order
operators and weaker than another. It remains an issue for future research to
investigate possibilities to take preference criteria for picking a solution from
such a range into account, for example, to pick a solution that ensures domain
independence, as investigated in the literature on split rewriting.

The generic modeling of answer used in the framework covers various forms
of answers, including also the standard forms of extensional answers to relational
and constraint query languages. It is actually closely related to abductive ex-
planations, suggesting a further direction of research: Extending the framework
to a general approach to question answering in knowledge representation and
relating it to interrogative approaches from philosophy such as [Hin07].
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