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Abstract. Linear Temporal Logic (LTL) interpreted on finite traces is
a robust specification framework popular in formal verification. However,
despite the high interest in the logic in recent years, the topic of their
quantitative extensions is not yet fully explored. The main goal of this
work is to study the effect of adding weak forms of percentage constraints
(e.g. that most of the positions in the past satisfy a given condition, or
that σ is the most-frequent letter occurring in the past) to fragments of
LTL. Such extensions could potentially be used for the verification of
influence networks or statistical reasoning. Unfortunately, as we prove in
the paper, it turns out that percentage extensions of even tiny fragments
of LTL have undecidable satisfiability and model-checking problems. Our
undecidability proofs not only sharpen most of the undecidability results
on logics with arithmetics interpreted on words known from the literature,
but also are fairly simple. We also show that the undecidability can be
avoided by restricting the allowed usage of the negation, and discuss how
the undecidability results transfer to first-order logic on words.

1 Introduction
Linear Temporal Logic [29] (LTL) interpreted on finite traces is a robust logical
framework used in formal verification [1,18,19]. However, LTL is not perfect:
it can express whether some event happens or not, but it cannot provide any
insight on how frequently such an event occurs or for how long such an event took
place. In many practical applications, such quantitative information is important:
think of optimising a server based on how frequently it receives messages or
optimising energy consumption knowing for how long a system is usually used
in rush hours. Nevertheless, there is a solution: one can achieve such goals by
adding quantitative features to LTL.

It is known that adding quantitative operators to LTL often leads to un-
decidability. The proofs, however, typically involve operators such as “next” or
“until”, and are often quite complicated (see the discussion on the related work
below). In this work, we study the logic LTLF, a fragment of LTL where the
only allowed temporal operator is “sometimes in the future” F . We extend its
language with two types of operators, sharing a similar “percentage” flavour: with
the Past-Majority PMϕ operator (stating that most of the past positions satisfy
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a formula ϕ), and with the Most-Frequent-Letter MFL σ predicates (meaning
that the letter σ is among the most frequent letters appearing in the past). These
operators can be used to express a number of interesting properties, such as if
a process failed to enter the critical section, then the other process was in the
critical section the majority of time. Of course, for practical applications, we could
also consider richer languages, such as parametrised versions of these operators,
e.g. stating that at least a fraction p of positions in the past satisfies a formula.
However, we show, as our main result, that even these very simple percentage
operators raise undecidability when combined with F .

To make the undecidability proof for both operators similar, we define an
intermediate operator, Half , which is satisfied when exactly half of the past
positions satisfy a given formula. The Half operator can be expressed easily
with PM , but not with MFL — we show, however, that we can simulate it to an
extent enough to show the undecidability. Our proof method relies on enforcing
a model to be in the language ({wht}{shdw})+, for some letters wht and shdw,
which a priori seems to be impossible without the “next” operator. Then, thanks
to the specific shape of the models, we show that one can “transfer” the truth of
certain formulae from positions into their successors, hence the “next” operator
can be partially expressed. With a combination of these two ideas, we show that
it is possible to write equicardinality statements in the logic. Finally, we perform
a reduction from the reachability problem of Two-counter Machines [26]. In the
reduction, the equicardinality statements will be responsible for handling zero-
tests. The idea of transferring predicates from each position into its successor
will be used for switching the machine into its next configuration.

The presented undecidability proof of LTL with percentage operators can
be adjusted to extensions of fragments of first-order logic on finite words. We
show that FO2

M[<], i.e. the two-variable fragment of first-order logic admitting
the majority quantifier M and linear order predicate < has an undecidable sat-
isfiability problem. Here the meaning of a formula Mx.ϕ(x, y) is that at least
a half of possible interpretations of x satisfies ϕ(x, y). Our result sharpens an
existing undecidability proof for (full) FO with Majority from [23] (since in our
case the number of variables is limited) but also FO2[<, succ] with arithmetics
from [25] (since our counting mechanism is weaker and the successor relation
succ is disallowed). On the positive side, we show that the undecidability heavily
depends on the presence of the negation in front of the percentage operators.
To do so, we introduce a logic, extending the full LTL, in which the usage of
percentage operators is possible, but suitably restricted. For this logic, we show
that the satisfiability problem is decidable.

All the above-mentioned results can be easily extended to the model checking
problem, where the question is whether a given Kripke structure satisfies a given
formula. The full version of the paper is available on arXiv [4].

1.1 Related work

The first paper studying the addition of quantitative features to logic was [21],
where the authors proved undecidability of Weak MSO with Cardinalities. They
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also developed a model of so-called Parikh Automaton, a finite automaton im-
posing a semi-linear constraint on the set of its final configurations. Such an
automaton was successfully used to decide logics with counting as well as logics
on data words [27,17]. Its expressiveness was studied in [11].

Another idea in the realm of quantitative features is availability languages [20],
which extend regular expressions by numerical occurrence constraints on the let-
ters. However, their high expressivity leads to undecidable emptiness problems.
Weak forms of arithmetics have also attracted interest from researchers working
on temporal logics. Several extensions of LTL were studied, including extensions
with counting [24], periodicity constraints [14], accumulative values [7], discount-
ing [2], averaging [9] and frequency constraints [8]. A lot of work was done to
understand LTL with timed constraints, e.g. a metric LTL was considered in [28].
However, its complexity is high and its extensions are undecidable [3].

Arithmetical constraints can also be added to the First-Order logic (FO)
on words via so-called counting quantifiers. It is known that weak MSO on
words is decidable with threshold counting and modulo-counting (thanks to the
famous Büchi theorem [10]), while even FO on words with percentage quantifiers
becomes undecidable [23]. Extensions of fragments of FO on words are often
decidable, e.g. the two-variable fragment FO2 with counting [12] or FO2 with
modulo-counting [25]. The investigation of decidable extensions of FO2 is limited
by the undecidability of FO2 on words with Presburger constraints [25].

Among the above-mentioned logics, the formalisms of this paper are most
similar to Frequency LTL [8]. The satisfiability problem for Frequency LTL was
claimed to be undecidable, but the undecidability proof as presented in [8] is
bugged (see [9, Sec. 8] for discussion). It was mentioned in [9] that the unde-
cidability proof from [8] can be patched, but no correction was published so far.
Our paper not only provides a valid proof but also sharpens the result, as we
use a way less expressive language (e.g. we are allowed to use neither the “until”
operator nor the “next” operator). We also believe that our proof is simpler.
The second-closest formalism to ours is average-LTL [9]. The main difference is
that the averages of average-LTL are computed based on the future, while in
our paper, the averages are based on the past. The second difference, as in the
previous case, is that their undecidability proof uses more expressive operators,
such as the “until” operator.

2 Preliminaries
We recall definitions concerning logics on words and temporal logics (cf. [15]).

Words and logics. Let AP be a countably-infinite set of atomic propositions,
called here also letters. A finite word w ∈ (2AP)∗ is a non-empty finite sequence
of positions labelled with sets of letters from AP. A set of words is called a
language. Given a word w, we denote its i-th position with wi (where the first
position is w0) and its prefix up to the i-th position with w≤i. We usually use
the letters p, q, i, j to denote positions. With |w| we denote the length of w.

The syntax of LTLF, a fragment of LTL with only the finally operator F , is
defined with the grammar: ϕ,ϕ′ ::= a (with a ∈ AP) | ¬ϕ | ϕ ∧ ϕ′ | Fϕ.
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The satisfaction relation |= is defined for words as follows:

w, i |= a if a ∈ wi
w, i |= ¬ϕ if not w, i |= ϕ
w, i |= ϕ1 ∧ ϕ2 if w, i |= ϕ1 and w, i |= ϕ2
w, i |= Fϕ if ∃j such that |w| > j ≥ i and w, j |= ϕ.

We write w |= ϕ if w, 0 |= ϕ. The usual Boolean connectives: >,⊥,∨,→,↔
can be defined, hence we will use them as abbreviations. Additionally, we use
the globally operator Gϕ := ¬F¬ϕ to speak about events happening globally in
the future.

Percentage extension. In our investigation, percentage operators PM, MFL and
Half are added to LTLF.

The operator PMϕ (read as: majority in the past) is satisfied if at least half
of the positions in the past satisfy ϕ:

w, i |= PMϕ if |{j < i : w, j |= ϕ}| ≥ i
2

For example, the formula G (r ↔ ¬g) ∧ G PM r ∧ G F (g ∧PM g) is true
over words where each request r is eventually fulfilled by a grant g, and where
each grant corresponds to at least one request. This can be also seen as the
language of balanced parentheses, showing that with the operator PM one can
define properties that are not regular.

The operator MFL σ (read as: most-frequent letter in the past), for σ ∈ AP,
is satisfied if σ is among the letters with the highest number of appearances in
the past, i.e.

w, i |= MFL σ if ∀τ ∈ AP. |{j < i : w, j |= σ}| ≥ |{j < i : w, j |= τ}|

For example, the formula G¬(r ∧ g) ∧G MFL r ∧G F (g ∧MFL g) again
defines words where each request is eventually fulfilled, but this time the formula
allows for states where nothing happens (i.e. when both r and g are false).

The last operator, Half is used to simplify the forthcoming undecidability
proofs. This operator can be satisfied only at even positions, and its intended
meaning is exactly half of the past positions satisfy a given formula.

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

It is not difficult to see that the operator Half ϕ can be defined in terms of the
past-majority operator as PM (ϕ) ∧PM (¬ϕ) and that Half ϕ can be satisfied
only at even positions.

In the next sections, we distinguish different logics by enumerating the allowed
operators in the subscripts, e.g. LTLF,PM or LTLF,MFL.

Computational problems Kripke structures are commonly used in verification to
formalise abstract models. A Kripke structure is composed of a finite set S of
states, a set of initial states I ⊆ S, a total transition relation R ⊆ S × S, and a
finite labelling function ` : S → 2AP. A trace of a Kripke structure is a finite word
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`(s0), `(s1), . . . , `(sk) for any s0, s1, . . . , sk satisfying s0 ∈ I and (si, si+1) ∈ R
for all i < k.

The model-checking problem amounts to checking whether some trace of a
given Kripke structure satisfies a given formula ϕ. In the satisfiability problem,
or simply in SAT, we check whether an input formula ϕ has a model, i.e. a finite
word w witnessing w |= ϕ.

3 Playing with Half Operator
Before we jump into the encoding of Minsky machines, we present some exercises
to help the reader understand the expressive power of the logic LTLF,Half . The
tools established in the exercises play a vital role in the undecidability proofs
provided in the following section.

We start from the definition of shadowy words.

Definition 1. Let wht and shdw be fixed distinct atomic propositions from AP.
A word w is shadowy if its length is even, all even positions of w are labelled
with wht, all odd positions of w are labelled with shdw, and no position is labelled
with both letters.

wht shdw wht shdw wht shdw

We will call the positions satisfying wht simply white and their successors satis-
fying shdw simply their shadows.

The following exercise is simple in LTL, but becomes much more challenging
without the X operator.

Exercise 1. There is an LTLF,Half formula ψshadowy defining shadowy words.

Solution. We start with the “base” formula ϕex1
init := wht ∧G (wht ↔ ¬shdw) ∧

G (wht → F shdw), which states that the position 0 is labelled with wht, each
position is labelled with exactly one letter among wht, shdw and that every white
eventually sees a shadow in the future. What remains to be done is to ensure
that only odd positions are shadows and that only even positions are white.

In order to do that, we employ the formula ϕex1
odd := G ((Half wht) ↔ wht).

Since Half is never satisfied at odd positions, the formula ϕex1
odd stipulates that

odd positions are labelled with shdw. An inductive argument shows that all the
even positions are labelled with wht: for the position 0, it follows from ϕex1

init. For
an even position p > 0, assuming (inductively) that all even positions are labelled
with wht, the formula ϕex1

odd ensures that p is labelled with wht.
Putting it all together, the formula ψshadowy := ϕex1

init∧ϕex1
odd is as required. ut

In the next exercise, we show that it is possible to transfer the presence of
certain letters from white positions into their shadows. It justifies the usage of
“shadows” in the paper.

We introduce the so-called counting terms. For a formula ϕ, word w and a
position p, by #<

ϕ (w, p) we denote the total number of positions among 0, . . . , p−1
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satisfying ϕ, i.e. the size of {p′ < p | w, p′ |= ϕ}. We omit w in counting terms if
it is known from the context.

Exercise 2. Let σ and σ̃ be distinct letters from AP \ {wht, shdw}. There is an
LTLF,Half formula ϕtrans

σ σ̃ , such that w |= ϕtrans
σ σ̃ iff:

1. w is shadowy,
2. only white (resp., shadow) positions of w can be labelled σ (resp., σ̃) and
3. for any even position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.

wht shdw wht shdw wht shdw
σ σ̃ ¬σ ¬σ̃ ¬σ ¬σ̃

Solution. Note that the first two conditions can be expressed with the conjunction
of ψshadowy,G (σ → wht) and G (σ̃ → shdw). The last condition is more involving.
Assuming that the words under consideration satisfy conditions 1–2, it is easy to
see that the third condition is equivalent to expressing that all white positions p
satisfy the equation (♥):

(♥) : #<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

supplemented with the condition (♦), ensuring that the last white position sat-
isfies the condition 3, i.e.

(♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.

The proof of the following lemma can be found in the appendix.

Lemma 1. Let w be a word satisfying the conditions 1–2. Then w satisfies the
condition 3 iff w satisfies (♦) and for all white positions p the equation (♥) holds.

Going back to Exercise 2, we show how to define (♥) and (♦) in LTLF,Half ,
taking advantage of shadowness of the intended models. Take an arbitrary white
position p of w. The equation (♥) for p is clearly equivalent to:

(♥′) : #<
wht∧σ(w, p) +

(p
2 −#<

shdw∧σ̃(w, p)
)

= p

2

Since p is even, we infer that p
2 ∈ N. From the shadowness of w, we know that

there are exactly p
2 shadows in the past of p. Moreover, each shadow satisfies either

σ̃ or ¬σ̃. Hence, the expression p
2−#<

shdw∧σ̃(w, p) from (♥′), can be replaced with
#<

shdw∧¬σ̃(w, p). Finally, since wht and shdw label disjoint positions, the property
that every white position p satisfies (♥) can be written as an LTLF,Half formula
ϕ(♥) := G (wht → Half ([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])). Its correctness follows from
the correctness of each arithmetic transformation and the semantics of LTLF,Half .

For the property (♦), we first need to define formulae detecting the last and
the second to last positions of the model. Detecting the last position is easy:
since the last position of w is shadow, it is sufficient to express that it sees only
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shadows in its future, i.e. ϕex2
last := G (shdw). Similarly, a position is second to

last if it is white and it sees only white or last positions in the future, which
results in a formula ϕex2

stl := wht ∧G (wht ∨ ϕex2
last). Note that the correctness of

ϕex2
last and ϕex2

stl follows immediately from shadowness. Hence, we can define the
formula ϕ(♦) as F (ϕex2

stl ∧ σ)↔ F (ϕex2
last ∧ σ̃). The conjunction of ϕ(♥) and ϕ(♦)

formulae gives us to ϕtrans
σ σ̃ . ut

We consider a generalisation of shadowy models, where each shadow mimics
all letters from a finite set Σ ⊆ AP rather than just a single letter σ. Such a
generalisation is described below. In what follows, we always assume that for
each σ ∈ Σ there is a unique σ̃, which is different from σ, and σ̃ 6∈ Σ. Moreover,
we always assume that σ1 6= σ2 implies σ̃1 6= σ̃2.

Definition 2. Let Σ ⊆ AP \ {wht, shdw} be a finite set. A shadowy word w is
called truly Σ-shadowy, if for every letter σ ∈ Σ only the white (resp. shadow)
positions of w can be labelled with σ (resp. σ̃) and every white position p of w
satisfies w, p |= σ ⇔ w, p+1 |= σ̃.

wht shdw wht shdw wht shdw
α, β α̃, β̃ ¬α, β ¬α̃, β̃ α,¬β α̃,¬β̃

Knowing the solution for the previous exercise, it is easy to come up with a
formula ψtruly−Σ

shadowy defining truly Σ-shadowy models: just take the conjunction of
ψshadowy and ϕtrans

σ σ̃ over all letters σ ∈ Σ. The correctness follows immediately
from from Exercise 2.

Corollary 1. The formula ψtruly−Σ
shadowy defines the language of truly Σ-shadowy

words.

The next exercise shows how to compare cardinalities in LTLF,Half over
truly Σ-shadowy models. We are not going to introduce any novel techniques
here, but the exercise is of great importance: it is used in the next section to
encode zero tests of Minsky machines.

Exercise 3. Let Σ be a finite subset of AP \ {wht, shdw} and let α 6=β ∈ Σ.
There exists an LTLF,Half formula ψ#α=#β such that for any truly Σ-shadowy
word w and any of its white positions p: the equivalence w, p |= ψ#α=#β ⇔
#<

wht∧α(w, p) = #<
wht∧β(w, p) holds.

wht shdw wht shdw

ψ#α=#β

α,¬β α̃,¬β̃ ¬α, β ¬α̃, β̃

#α = #β
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The solution is in the appendix, here we briefly discuss the main idea. Follow
the previous exercise. The main difficulty is to express the equality of counting
terms, written as LHS = RHS. Note that it is clearly equivalent to LHS + (p2 −
RHS) = p

2 . Unfold
p
2 on the left hand side, i.e. replace it with the total number

of shadows in the past. Use the fact that w satisfies ϕtrans
σ σ̃ , which implies the

equality #<
wht∧β(w, p) = #<

shdw∧β̃(w, p). Finally, get rid of subtraction and write
an LTLF,Half formula by employing Half . The presented exercises show that
the expressive power of LTLF,Half is so high that, under a mild assumption of
truly-shadowness, it allows us to perform cardinality comparison. We are now
only a step away from showing undecidability of the logic, which is tackled next.

4 Undecidability of LTL extensions
This section is dedicated to the main technical contribution of the paper, namely
that LTLF,Half , LTLF,PM and LTLF,MFL have undecidable satisfiability and
model checking problems. We start from LTLF,Half . Then, the undecidability of
LTLF,PM will follow immediately from the fact that Half is definable by PM.
Finally, we will show how the undecidability proof can be adjusted to LTLF,MFL.

We start by recalling the basics on Minsky Machines.

Minsky machines A deterministic Minsky machine is, roughly speaking, a finite
transition system equipped with two unbounded-size natural counters, where
each counter can be incremented, decremented (only in the case it is positive),
and tested for being zero. Formally, a Minsky machine A is composed of a finite
set of states Q with a distinguished initial state q0 and a transition function δ :
(Q×{0,+}2)→ ({−1, 0, 1}2×(Q\{q0}) satisfying three additional requirements:
whenever δ(q, f, s) = (f̄ , s̄, q′) holds, f̄ = −1 implies f = +, s̄ = −1 implies s = +
(i.e. it means that only the positive counters can be decremented) and q 6= q′

(the machine cannot enter the same state two times in a row). Intuitively, the
first coordinate of δ describes the current state of the machine, the second and
the third coordinates tell us whether the current value of the i-th counter is zero
or positive, the next two coordinates denote the update on the counters and the
last coordinate denotes the target state.

We define a run of a Minsky machine A as a sequence of consecutive transi-
tions of A. Formally, a run of A is a finite word w ∈ (Q×{0,+}2 × {−1, 0, 1}2 ×
Q \ {q0})+ such that, when denoting wi as (qi, f i, si, f̄ i, s̄i, qiN ), all the following
conditions are satisfied:

1. q0 = q0 and f0 = s0 = 0,
2. for each i we have δ(qi, f i, si) = (f̄ i, s̄i, qiN ),
3. for each i < |w| we have qiN = qi+1,
4. for each i, f i equals 0 iff f̄ 0 + . . .+ f̄ i−1 = 0, and + otherwise; similarly si is

0 if s̄0 + . . .+ s̄i−1 = 0 and + otherwise.

It is not hard to see that this definition is equivalent to the classical one [26]. We
say that a Minsky machine reaches a state q ∈ Q if there is a run with a letter
containing q on its last coordinate. It is well known that the problem of checking
whether a given Minsky machine reaches a given state is undecidable [26].
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4.1 “Half of” meets the halting problem

We start from presenting the overview of the claimed reduction. Until the end
of Section 4, let us fix a Minsky machine A = (Q, q0, δ) and its state q ∈ Q.
Our ultimate goal is to define an LTLF,Half formula ψq

A such that ψq
A has a

model iff A reaches q. To do so, we define a formula ψA such that there is a
one-to-one correspondence between the models of ψA and runs of A. Expressing
the reachability of q, and thus ψq

A, based on ψA is easy.
Intuitively, the formula ψA describes a shadowy word w encoding on its white

positions the consecutive letters of a run of A. In order to express it, we introduce
a set ΣA, composed of the following distinguished atomic propositions:

– fromq and toq for all states q ∈ Q,
– fValc and sValc for counter values c ∈ {0,+}, and
– fOPop and sOPop for all operations op ∈ {−1, 0, 1}.

We formalise the one-to-one correspondence as the function run, which takes
an appropriately defined shadowy model and returns a corresponding run of A.
More precisely, the function run(w) returns a run whose ith configuration is
(q, f, s, f̄ , s̄, qN ) if and only if the ith white configuration of w is labelled with
fromq, fValf , sVals, fOP f̄ , sOP s̄ and toqN

.
The formula ψA ensures that its models are truly ΣA-shadowy words repre-

senting a run satisfying properties P1–P4. To construct it, we start from ψtruly−ΣA
shadowy

and extending it with four conjuncts. The first two of them represent properties
P1–P2 of runs. They can be written in LTLF in an obvious way.

To ensure the satisfaction of the property P3, we observe that in some sense
the letters fromq and toq are paired in a model, i.e. always after reaching a state
in A you need to get out of it (the initial state is an exception here, but we
assumed that there are no transitions to the initial state). Thus, to identify for
which q we should set the fromq letter on the position p, it is sufficient to see
for which state we do not have a corresponding pair, i.e. for which state q the
number of white fromq to the left of p is not equal to the number of white toq to
the left of p. We achieve this in the spirit of Exercise 3.

Finally, the satisfaction of the property P4 can be achieved by checking for
each position p whether the number of white fOP+1 to the left of p is the same as
the number of white fOP−1 to the left of p, and similarly for the second counter.
This reduces to checking an equicardinality of certain sets, which can be done
by employing shadows and Exercise 3.

The reduction Now we are ready to present the claimed reduction.
We first restrict the class of models under consideration to truly ΣA-shadowy
words (for the feasibility of equicardinality encoding) with a formula ψtruly−ΣA

shadowy .
Then, we express that the models satisfy properties P1 and P2. The first property
can be expressed with ψP1 := fromq0 ∧ fVal0 ∧ sVal0.
The property P2 will be a conjunction of two formulae. The first one, namely
ψ1
P2, is an immediate implementation of P2. The second one, i.e. ψ2

P2, is not
necessary, but simplifies the proof; we require that no position is labelled by more
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than six letters from ΣA.

ψ1
P2 := G (wht →

∨
δ(q,f,s)=(f̄ ,s̄,qN )

fromq ∧ fValf ∧ sVals ∧ fOP f̄ ∧ sOP s̄ ∧ toqN
),

ψ2
P2 := G

∧
p1,...,p7∈ΣA

p1,...,p7 are pairwise different

¬(p1 ∧ p2 ∧ . . . ∧ p7).

We put ψP2 := ψ1
P2 ∧ ψ2

P2 and ψenc-basics := ψtruly−ΣA
shadowy ∧ ψP1 ∧ ψP2.

We now formalise the correspondence between intended models and runs. Let
run be the function which takes a word w satisfying ψenc-basics and returns the
word wA such that |wA| = |w|/2 and for each position i we have:

(!) : wAi = (q, f, s, f̄ , s̄, qN ) iff
w2i ⊇ {wht, fromq, fValf , sVals, fOP f̄ , sOP s̄, toqN

} .

The definition of ψenc-basics makes the function run correctly defined and
unambiguous, and that the results of run satisfy properties P1 and P2.

Fact 5 The function run is uniquely defined and returns words satisfying P1
and P2.

What remains to be done is to ensure properties P3 and P4. Both formulas
rely on the tools established in Exercise 3 and are defined as follows:

ψP3 := G (wht →
∧

q∈Q\{q0}

(fromq ∨ ψ#fromq=#toq )).

ψP4 := G (fVal0 → ψ#fOP+1=#fOP−1)
∧G (sVal0 → ψ#sOP+1=#sOP−1)
∧G (wht → (fVal0↔¬fVal+)) ∧G (wht → (sVal0↔¬sVal+))

Lemma 2. If w satisfies ψenc-basics ∧ ψP3, then run(w) satisfies P1–P3.

Proof. The satisfaction of the properties P1 and P2 by run(w) follows from Fact 5.
Ad absurdum, assume that run(w) does not satisfy P3. It implies the existence of
a white position p in w such that w, p |= toq but w, p+2 |= fromq′ for some q 6= q′.
By our definition of Minsky machines, we conclude that w, p |= fromq′′ for some
q′′ 6= q. Thus, w, p 6|= fromq.

From the satisfaction of ψP3 by w we know that w, p |= ψ#fromq=#toq
. Let

k be the total number of positions labelled with fromq before p. Since w, p |=
ψ#fromq=#toq holds, by Exercise 3 we infer that the number of positions satisfying
toq before p is also equal to k. Since w, p+2 6|= fromq and from the satisfaction of
ψP3 by w we once more conclude w, p+2 |= ψ#fromq=#toq

. But such a situation
clearly cannot happen due to the fact that the number of toq in the past is equal
to k + 1, while the number of fromq in the past is k. ut
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Finally, let us define ψA as ψenc-basics ∧ ψP3 ∧ ψP4. The use of ↔ in ψP4
guarantees that fVal0 labels exactly the white positions having the counter empty
(and similarly for the second counter). The counters are never decreased from 0,
thus the white positions not satisfying fVal0 are exactly those having the first
counter positive.

The proof of the forthcoming fact relies on the correctness of Exercise 3 and
is quite similar to the proof of Lemma 2, and is presented in the appendix.

Lemma 3. If w satisfies ψA, then run(w) is a run of A.

Lastly, to show that the encoding is correct, we need to show that each run
has a corresponding model. It is again easy: it can be shown by constructing
an appropriate w; the white positions are defined according to (!), and the
shadows can be constructed accordingly.

Fact 6 If wA is a run of A, then there is a word w |= ψA s.t. run(w) = wA.

Let ψq
A := ψA ∧ F (toq). Observe that the formula ψq

A is satisfiable if and
only if A reaches q. The “if” part follows from Lemma 3 and the satisfaction
of the conjunct F (toq) from ψA. The “only if” part follows from Fact 6. Hence,
from undecidability of the reachability problem Minsky machines we infer our
main theorem:

Theorem 1. The satisfiability problem for LTLF,Half is undecidable.

6.1 Undecidability of model-checking

For a given alphabet Σ, we can define a Kripke structure KΣ whose set of traces
is the language (2Σ)+: the set of states S of KΣ is composed of all subsets of Σ,
all states are initial (i.e. I = S), the transition relation is the maximal relation
(R = S×S) and `(X)=X for any subset X ⊆ Σ. It follows that a formula ϕ
over an alphabet Σ is satisfiable if and only if there is a trace of KΣ satisfying
ϕ. From the undecidability of the satisfiability problem for LTLF,Half we get:

Theorem 2. Model-checking of LTLF,Half formulae over Kripke structures is
undecidable.

The decidability can be regained if additional constraints on the shape of Kripke
structures are imposed: model-checking of LTLF,Half formulae over flat structures
is decidable [13].

As discussed earlier, the Half operator can be expressed in terms of the PM
operator. Hence, we conclude:

Corollary 2. Model-checking and satisfiability problems for LTLF,PM are un-
decidable.



12 Bartosz Bednarczyk, Jakub Michaliszyn

6.2 Most-Frequent Letter and Undecidability
We next turn our attention to the MFL operator, which turns out to be a little
bit problematic. Typically, formulae depend only on the atomic propositions that
they explicitly mentioned. Here, it is not the case. Consider a formula ϕ = MFL a
and words w1 = {a}{}{a} and w2 = {a, b}{b}{a, b}. Clearly, w1, 2 |= ϕ whereas
w2, 2 6|= ϕ. This can be fixed in many ways – for example, by parametrising
MFL with a domain, so that it expresses that “a is the most frequent letter
among b1, . . . , bn”. We show, however, that even this very basic version of MFL
is undecidable. The proof is an adaptation of our previous proofs with a little
twist inside.

First, we adjust the definition of shadowy words. A word w is strongly shadowy
if w is shadowy and for each even position of w we have that wht and shdw are the
most frequent letters among the other labelling w while for odd positions wht is
the most frequent. Note that the words constructed in the previous sections were
strongly shadowy because each letter σ appeared only at whites or at shadows.

Exercise 4. There exists an LTLF,MFL formula ψMFL
shadowy defining strongly shad-

owy words.

Proof. It suffices to revisit Exercise 1 and to modify the formula ϕex1
odd stipulating

that odd positions are exactly those labelled with shdw (since it is the only
formulae employing Half ). We claim that ϕex1

odd can be expressed with

ϕMFL
odd := G [MFL (wht) ∧ (wht ↔MFL (shdw))]

Indeed, take any word w |= ϕex1
init ∧ ϕMFL

odd . Of course we have w, 0 |= wht (due to
ϕex1

init). Moreover, w, 1 |= shdw holds: otherwise we would get contradiction with
shdw not being the most frequent letter in the past of 1. Now assume p > 1 and
assume that the word w0, . . . ,wp−1 is strongly shadowy. Consider two cases. If p
is odd, then both wht and shdw are the most frequent letters in the past of p−1
and p−1 is labelled by wht. Then, shdw is not the most frequent letter in the past
of p and thus p is labelled by shdw and wht is the most frequent letter in the past
of p. If p is even, p−2 is labelled by wht and the most frequent letters in the past
of p−2 are wht and shdw, and p−1 is labelled by shdw. Thus both wht and shdw
are the most frequent letters in the past of p and therefore wht is labelled by wht.
Thus, w0, . . . ,wp is strongly shadowy. By induction, w is strongly shadowy. It
can be readily checked that every strongly shadowy word satisfies ψMFL

shadowy. ut

We argue that over the strongly shadowy models, the formulae Half σ and
MFL σ are equivalent.

Lemma 4. For all strongly shadowy words w |= ψMFL
shadowy, all even positions 2i

and all letters σ we have the equivalence w, 2i |= Half σ iff w, 2i |= MFL σ.

Proof. Ifw, 2i |= MFL σ, then w, 2i |= MFL wht due to the strongly shadowness
of w. Hence #<

σ (w, 2i) = #<
wht(w, 2i) = 2i

2 , implying w, 2i |= Half σ.
Now, assume thatw, 2i |= Half σ holds, so σ appears i times in the past. Since

w is strongly shadowy we know that wht is the most frequent letter. Moreover,
wht appears 2i

2 = i times in the past. Hence, w, 2i |= MFL σ. ut
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We say that a letter σ is importunate in a word w if σ labels more than half
of the positions in some even prefix of w. Notice that strongly shadowy words
cannot have importunate letters.

With the above lemma, it is tempting to finish the proof as follows: replace
each Half (ϕ) in the formulae from Section 4.1 with MFL (pϕ) for some fresh
atomic proposition pϕ and require that G (ϕ↔ pϕ) holds. A formula obtained
from ϕ in this way will be called a dehalfication of ϕ and will be denoted with
dehalf(ϕ). The next lemma shows that dehalf(·) preserves satisfaction of certain
LTLF,Half formulae.

Lemma 5. Let ϕ be an LTLF,Half formula without nested Half operators and
without F modality, Λ be the set of all formulae λ such that Half λ appears in
ϕ and let w be a word such that w |= ψMFL

shadowy ∧
∧
λ∈Λ G (pλ ↔ λ). Then for

all even positions 2p of w we have that w, 2p |= dehalf(ϕ) implies w, 2p |= ϕ.
Moreover, w |= G (wht → dehalf(ϕ)) implies w |= G (wht → ϕ).

Proof. The proof goes via structural induction over LTLF,Half formulae without
nested Half operators and without F operators. The only interesting case is
when ϕ = Half λ, which follows from Lemma 4. ut

Note, however, that the above lemma works only one way: it fails when the
formula ϕ is satisfied in more than half of the positions of some prefix, as that
would make pϕ importunate leading to unsatisfiablity of ψMFL

shadowy.

6.3 Most-Frequent Letter: the reduction

The next step is to construct a formula defining truly ΣA-shadowy words, which
are the crucial part of ψMFL

enc-basics. To do it, we first need to rewrite a formula ϕtrans
σ σ̃ ,

transferring the truth of a letter σ from whites into their shadows. The main ingre-
dient of ϕtrans

σ σ̃ is the formula ϕ(♥) := G (wht → Half ([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])),
which we replace with dehalf(ϕ(♥)). We call the obtained formula (ϕtrans

σ σ̃)MFL

and show its correctness below.
First, by Lemma 5 we know that every model of (ϕtrans

σ σ̃)MFL is also a model
of ϕtrans

σ σ̃ . Then, the models of ϕtrans
σ σ̃ can be made strongly shadowy, so dehalfi-

cation of ϕtrans
σ σ̃ is satisfiability-preserving.

Lemma 6. Let pϕ be a fresh letter for ϕ := [wht ∧ σ] ∨ [shdw ∧ ¬σ̃]. Take w,
a strongly shadowy word satisfying w |= ϕtrans

σ σ̃ without any occurrences of pϕ.
Then w′, the word obtained by labelling with pϕ all the positions of w satisfying
ϕ, is strongly shadowy.

Hence, we obtain the correctness of (ϕtrans
σ σ̃)MFL. By applying the same strategy

to other conjuncts of ψenc-basics and Fact 5, we obtain ψMFL
enc-basics satisfying:

Corollary 3. The function run (taking as input the words satisfying ψMFL
enc-basics)

is uniquely defined and returns words satisfying P1 and P2. Moreover the formulae
ψMFL

enc-basics and ψenc-basics are equi-satisfiable.
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Towards completing the undecidability proof we need to prepare the rewritings
of the formulae ψP3 and ψP4. For ψP3 we proceed similarly to the previous case.
We know that the models of ψMFL

enc-basics∧dehalf(ψP3) satisfy P3 (due to Lemma 5
they satisfy ψP3 and hence, by Lemma 2, also P3). To observe the existence
of such models, we show again that the satisfiability of ψP3 is preserved by
dehalfication.

Lemma 7. Let pq be a fresh letter for ϕq := [wht∧ fromq]∨ [shdw∧¬t̃oq] indexed
over q ∈ Q\{q0}. Take w, a strongly shadowy word satisfying w |= ψMFL

enc-basics∧ψP3
without any occurrences of pq. Then w′, the word obtained by labelling with pq
all the positions of w satisfying ϕq, is strongly shadowy.

From Lemma 2, Lemma 7 and Lemma 5 we immediately conclude:

Corollary 4. If w satisfies ψMFL
enc-basics ∧ dehalf(ψP3), then run(w) satisfies P1–

P3. Moreover the formulae ψMFL
enc-basics ∧ dehalf(ψP3) and ψenc-basics ∧ ψP3 are

equi-satisfiable.

The last formula to rewrite is ψP4. We focus only on its first part, speaking
about the first counter, i.e.
G (fVal0 → Half ([wht ∧ fOP+1] ∨ [shdw ∧ ¬˜fOP−1]) ∧G (wht → (fVal0 ↔ ¬fVal+))
Note that this time we cannot simply dehalfise this formula: the letter re-
sponsible for the inner part of Half would necessarily be importunate – con-
sider an initial fragment of a run of A in which A increments its first counter
without decrementing it. Fortunately, we cannot say the same when the ma-
chine decrements the counter and hence, it suffices to express the equivalent
(due to even length of shadowy models) statement ψ′P4 as follows: G (fVal0 →
Half ¬([wht ∧ fOP+1] ∨ [shdw ∧ ¬˜fOP−1]) ∧G (wht → (fVal0 ↔ ¬fVal+)).

As we did before, we show that dehalfication of ψ′P4 preserves satisfiability:

Lemma 8. Let pϕ be a fresh letter for ϕ := ¬([wht ∧ fOP+1]∨[shdw ∧¬˜fOP−1]).
Take w, a strongly shadowy word satisfying w |= ψMFL

enc-basics ∧ dehalf(ψP3) ∧ ψ′P4
without any occurrences of pϕ. Then w′, the word obtained by labelling with pϕ
all the positions of w satisfying ϕ, is strongly shadowy.

Finally, let (ψq
A)MFL := ψMFL

enc-basics ∧ dehalf(ψP3) ∧ dehalf(ψP4) ∧ F toq. From
Lemma 3, Lemma 8 and Lemma 5 we immediately conclude:

Corollary 5. If w satisfies (ψq
A)MFL then it satisfies P1–P4. Moreover the for-

mulae (ψq
A)MFL and ψq

A are equi-satisfiable.

Thus, by Theorem 1 and the above corollary, we obtain the undecidability
of LTLF,MFL. Undecidability of the model-checking problem is concluded by
virtually the same argument as in Section 6.1. Hence:

Theorem 3. The model-checking and the satisfiability problems for LTLF,MFL
are undecidable.
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7 Decidable variants
We have shown that LTLF with frequency operators lead to undecidability. With-
out the operators that can express F (e.g. F, G or U ), the decision problems
become NP-complete. Below we assume the standard semantics of LTL operator
X , i.e. w, i |= Xϕ iff i+1 < |w| and w, i+1 |= ϕ.

Theorem 4. Model-checking and satisfiability problems for LTLX,MFL,PM are
NP -complete.

The complexity of LTLX,MFL,PM is so low because the truth of the formula
depends only on some initial fragment of a trace. This is a big restriction of the
expressive power. Thus, we consider a different approach motivated by [7].

In the new setting, we allow to use arbitrary LTL formulae as well as per-
centage operators as long as the they are not mixed with G . We introduce a
logic LTL%, which extends the classical LTL [29] with the percentage operators
of the form P./k%ϕ for any ./ ∈ {≤, <,=, >,≥}, k ∈ N and ϕ ∈ LTL. By way
of example, the formula P<20%(a) is true at a position p if less then 20% of
positions before p satisfy a. The past majority operator is a special case of the
percentage operator: PM ≡ P≥50%. Formally:

w, i |= P ./k%ϕ if |{j < i : w, j |= ϕ}| ./ k
100 i

To avoid undecidability, the percentage operators cannot appear under nega-
tion or be nested. Therefore, the syntax of LTL% is defined with the grammar
ϕ,ϕ′ ::= ψLTL | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | F (ψLTL ∧ P./k%ψ

′
LTL), where ψLTL, ψ′LTL

are (full) LTL formulae.
The main tool used in the decidability proof is the Parikh Automata [21].

A Parikh automaton P = (A, E) over the alphabet Σ is composed of a finite-
state automaton A accepting words from Σ∗ and a semi-linear set E given as a
system of linear inequalities with integer coefficients, where the variables are xa
for a ∈ Σ. We say that P accepts a word w if A accepts w and the mapping
assigning to each variable xa from E the total number of positions of w carrying
the letter a, is a solution to E . Checking non-emptiness of the language of P can
be done in NP [17]. Our main decidability results is obtained by constructing an
appropriate Parikh automaton recognising the models of an input LTL% formula.

Theorem 5. Model-checking and satisfiability problems for LTL% are decidable.

Proof. Let ϕ ∈ LTL%. By turning ϕ into a DNF, we can focus on checking
satisfiability of some of its conjuncts. Hence, w.l.o.g. we assume that ϕ = ϕ0 ∧∧n
i=1 ϕi, where ϕ0 is in LTL and all ϕi have the form F (ψi,1LTL ∧P./ki%ψ

i,2
LTL) for

some LTL formulae ψi,1LTL and ψi,2LTL. Observe that a word w is a model of ϕ iff it
satisfies ϕ0 and for each conjunct ϕi we can pick a witness position pi from w such
that w, pi |= ψi,1LTL ∧ P./ki%ψ

i,2
LTL. Moreover, the percentage constraints inside

such formulae speak only about the prefix w<pi
. Thus, knowing the position pi

and the number of positions before pi satisfying ψi,2LTL, the percentage constraint
inside ϕi can be imposed globally rather than locally. It suggests the use of Parikh
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automata: the LTL part of ϕ can be checked by the appropriate automaton A
(due to the correspondence that for an LTL formula over finite words one can
build a finite-state automaton recognising the models of such a formula [19]) and
the global constraints, speaking about the satisfaction of percentage operators,
can be ensured with a set of linear inequalities E .

Our plan is as follows: we decorate the intended models w with additional
information on witnesses, such that the witness position pi for ϕi will be labelled
by wi (and there will be a unique such position in a model), all positions before
pi will be labelled by bi and, among them, we distinguish with a letter si some
special positions, i.e. those satisfying ψi,2LTL. More formally, for each ϕi we produce
an LTL formula ϕ′i according to the following rules:

– there is a unique position pi such that w, pi |= wi (selecting a witness for ϕi),
– for all j < pi we have w, j |= bi (the positions before pi are labelled with bi),
– w |= G (si → [bi ∧ ψi,2LTL]) (distribution of the special positions among bi) and
– w, pi |= ψi,1LTL (a precondition for ϕi).

Let ϕ′ := ϕ0 ∧
∧n
i=1 ϕ

′
i ∧
∧n
i=1 F (pi ∧ P./ki%si). Note that w |= ϕ′ implies

w |= ϕ. Moreover, any model w |= ϕ can be labelled with letters bi, si, wi such
that the decorated word satisfies ϕ′. Let ϕ′′ := ϕ0 ∧

∧n
i=1 ϕ

′
i and let E be the

system of n inequalities with Ei = 100 · xbi
./ ki · xsi

. Now observe that any
model of ϕ′ satisfies E (i.e. the value assigned to xa is the total number of
positions labelled with a), due to the satisfaction of counting operators, and vice
versa: every word w |= ϕ′′ satisfying E is a model of ϕ′′. It gives us a sufficient
characterisation of models of ϕ. Let A be a finite automaton recognising the
models of ϕ′′, then a Parikh automaton P = (A, E), as we already discussed, is
non-empty if and only if ϕ has a model. Since checking non-emptiness of P is
decidable, we can conclude that LTL% is decidable. ut

A rough complexity analysis yields an NExpTime upper bound on the prob-
lem: the automaton P that we constructed is exponential in ϕ (translating ϕ
to DNF does not increase the complexity since we only guess one conjunct,
which is of polynomial size in ϕ). Moreover, checking non-emptiness can be
done non-deterministically in time polynomial in the size of the automaton.
The NExpTime bound is not optimal: we conjuncture that the problem is
PSpace-complete. We believe that by employing techniques similar to [7], one
can construct P and check its non-emptiness on the fly, which should result in
the PSpace upper bound.

For the model-checking problem, we observe that determining whether some
trace of a Kripke structure K = (S, I,R, l) satisfies ϕ is equivalent to checking the
satisfiability of formula ϕK∧ϕ, where ϕK is a formula describing all the traces of
K. Such a formula can be constructed in a standard manner. For simplicity, we
treat S as a set of auxiliary letters, and consider the conjunction of (1)

∨
s∈I s, (2)

G (X> →
∨

(s,s′)∈R(s ∧X s′)) and (3)
∧
s∈S G (s→

∧
p∈`(s) p), expressing that

the trace starts with an initial state, consecutive positions describe consecutive
states and that the trace is labelled by the appropriate letters. Thus, the model-
checking problem can be reduced in polynomial time to the satisfiability problem.
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8 Two-Variable First-Order Logic with Majority
The Two-Variable First-Order Logic on words (FO2[<]) is a robust fragment
of First-Order Logic FO interpreted on finite words. It involves quantification
over variables x and y (ranging over the words’ positions) and it admits a linear
order predicate < (interpreted as a natural order on positions) and the equality
predicate =. Henceforth we assume the usual semantics of FO2[<] (cf. [16]).

In this section, we investigate the logic FO2
M[<], namely the extension of

FO2[<] with the so-called Majority quantifier M. Such quantifier was intensively
studied due to its close connection with circuit complexity and algebra, see
e.g. [22,5,6]. Intuitively, the formula Mx.ϕ specifies that at least half of all the
positions in a model, after substituting x with them, satisfy ϕ. Formally w |=
Mx.ϕ holds, if and only if |w|2 ≤ |{p | w, p |= ϕ[x/p]}|. We stress that the
formula Mx.ϕ may contain free occurrences of the variable y.

Note that the Majority quantifier shares similarities to the PM operator, but
in contrast to PM, the M quantifier counts globally. We take advantage of such
similarities and by reusing the technique developed in the previous sections, we
show that the satisfiability problem for FO2

M[<] is also undecidable. We stress
that our result significantly sharpens an existing undecidability result for FO with
Majority from [23] (since in our case the number of variables is limited) as well
as for FO2[<, succ] with Presburger Arithmetics from [25] (since our counting
mechanism is limited and the successor relation succ is disallowed).

Proof plan There are three possible approaches to proving the undecidability
of FO2

M[<]. The first one is to reproduce all the results for LTLF,PM, which
is rather uninspiring. The second one is to define a translation from LTLF,PM
to FO2

M[<] that produces an equisatisfiable formula. But because of models of
odd length, this involves a lot of case study. Here we present a third approach,
which, we believe, gives the best insight: we show a translation from LTLF,PM to
FO2

M[<] that works for LTLF,PM formulae whose all models are shadowy. Since
we only use such models in the undecidability proof of LTLF,PM, this shows the
undecidability of FO2

M[<].

Shadowy models We first focus on defining shadowy words in FO2
M[<]. Before

we start, let us introduce a bunch of useful macros in order to simplify the
forthcoming formulae. Their names coincide with their intuitive meaning and
their semantics.

– Halfx.ϕ := Mx.ϕ ∧Mx.¬ϕ,
– first(x) := ¬∃y y < x, second(x) := ∃y y < x ∧ ∀y y < x→ first(y),
– last(x) := ¬∃y y > x, sectolast(x) := ∃y y > x ∧ ∀y y > x→ last(y)

Lemma 9. There is an FO2
M[<] formula ψFO

shadowy defining shadowy words.

Proof. Let ϕlem9
base be a formula defining the language of all (non-empty) words,

where the letters wht and shdw label disjoint positions in the way that the first
position satisfies wht and the total number of shdw and wht coincide. It can be
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written, e.g. with ∀x(wht(x)↔ ¬shdw(x))∧∃x(first(x)∧wht(x))∧Halfx.wht(x)∧
Halfx.shdw(x). To define shadowy words, it would be sufficient to specify that
no neighbouring positions carry the same letter among {wht, shdw }. This can
be done with, rather complicated at the first glance, formulae:

ϕforbid
wht·wht(x) := wht(x)→ Halfy. ([y < x ∧ wht(y)] ∨ [x < y ∧ shdw(y)]) ,

ϕforbid
shdw·shdw(x) := shdw(x)→Halfy. ([(y<x ∨ x=y) ∧ shdw(y)]∨[x<y ∧ wht(y)]) .

Finally, let ψFO
shadowy := ϕlem9

base ∧ ∀x.
(
ϕforbid

wht·wht(x) ∧ ϕforbid
shdw·shdw(x)

)
.

Showing that shadowness implies the satisfaction of ψFO
shadowy can be done by

routine induction. For the opposite direction, takew |= ψFO
shadowy. Sincew |= ϕlem9

base
the only possibility for w to not be shadowy is to have two consecutive positions
p, p+1 carrying the same letter. W.l.o.g assume they are both white. Let w be
the number of white positions to the left of p and let s be the number of shadows
to the right of p. By applying ϕforbid

wht·wht to p we infer that w + s = 1
2 |w|. On the

other hand, by applying ϕforbid
wht·wht to p+1 it follows that (w+1)+s = 1

2 |w|, which
contradicts the previous equation. Hence, w is shadowy. ut

Translation It is a classical result from [16] that FO2[<] can express LTLF.
We define a translation trv(ϕ) from LTLF,PM to FO2

M[<], parametrised by a
variable v (where v is either x or y and v̄ denotes the different variable from
v), inductively. We write v ≤ v̄ rather than v < v̄ ∨ v = v̄ for simplicity. For
LTLF cases, we follow [16]: trv(a) := a(v), for a fresh unary predicate a for
each a ∈ AP, trv(¬ϕ) := ¬trv(ϕ), trv(ϕ ∧ ϕ′) := trv(ϕ) ∧ trv(ϕ′), trv(Fϕ) :=
∃v̄ (v ≤ v̄) ∧ trv̄(ϕ). For PM , we propose trv(PMϕ) := Mv̄((v̄ < v ∧ trv̄(ϕ)) ∨
(v̄ ≥ v ∧ wht(v̄))). Finally, for a given LTLF,PM formula ϕ, let tr(ϕ) stand for
ψFO

shadowy ∧ ∃x.(first(x) ∧ trx(ϕ)).
The following lemma shows the correctness of the presented translation.

Lemma 10. An LTLF,PM formula ϕ has a shadowy model iff tr(ϕ) has a model.
Since the formulae used in our undecidability proof for LTLF,PM have only
shadowy models, by Lemma 10 we conclude that FO2

M[<] is also undecidable.
Theorem 6. The satisfiability problem for FO2

M[<] is undecidable.

9 Conclusions
We have provided a simple proof showing that adding different percentage op-
erators to LTLF yields undecidability. We showed that our technique can be
applied to an extension of first-order logic on words, and we hope that our work
will turn useful in showing undecidability for other extensions of temporal logics.
Decidability results for logics with percentage operators in restricted contexts
were also provided.
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