Reasoning with Attributed Description Logics

Markus Krötzsch Maximilian Marx Ana Ozaki Veronika Thost

Center for Advancing Electronics Dresden (cfaed), TU Dresden

30th International Workshop on Description Logics

Full paper: https://iccl.inf.tu-dresden.de/web/Inproceedings3154

Why Attributed DLs?

Liz Taylor & Richard Burton in Wikidata:

Why Attributed DLs?

Liz Taylor & Richard Burton in Wikidata:

- edges may occur with multiple distinct annotations
- ▶ annotations: finite attribute-value sets, attached to concept & role names

Why Attributed DLs?

Liz Taylor & Richard Burton in Wikidata:

- edges may occur with multiple distinct annotations
- ▶ annotations: finite attribute-value sets, attached to concept & role names
- e.g., spouse is symmetric, so inverses should coincide on start & end

X: [] (spouse@ $X \sqsubseteq$ spouse⁻@[start : X.start, end : X.end])

Specifiers: constraining annotations

▶ two flavours of annotations: open & closed specifiers

consider spouse(taylor, burton)@[start : 1964, end : 1974]

▶ simplification: instead of C@[], write C

Axioms may use variables in annotation positions:

all variables are universally quantified

 $spouse@X \sqsubseteq spouse^-@X$

Axioms may use variables in annotation positions:

all variables are universally quantified

 $spouse@X \sqsubseteq spouse^-@X$

variables may be constrained by using a specifier

 $X: \lfloor \text{start} : 1964 \rfloor$ (spouse @ $X \sqsubseteq \text{spouse}^{-}@X$)

Axioms may use variables in annotation positions:

all variables are universally quantified

 $spouse@X \sqsubseteq spouse^-@X$

variables may be constrained by using a specifier

 $X: [\text{start}: 1964] \quad (\text{spouse} @X \sqsubseteq \text{spouse}^{-} @X)$

annotations may refer to assignments in other annotations

 $X: [\mathsf{start}: 1964], Y: [\mathsf{start}: X.\mathsf{start}, \mathsf{end}: Y.\mathsf{end}]$ $(\mathsf{spouse}@X \sqsubseteq \mathsf{spouse}^{-}@X)$

Axioms may use variables in annotation positions:

all variables are universally quantified

 $spouse@X \sqsubseteq spouse^-@X$

variables may be constrained by using a specifier

 $X: \lfloor \text{start} : 1964 \rfloor$ (spouse@ $X \sqsubseteq \text{spouse}^{-}@X$)

annotations may refer to assignments in other annotations

 $X: [\mathsf{start}: 1964], Y: [\mathsf{start}: X.\mathsf{start}, \mathsf{end}: Y.\mathsf{end}]$ $(\mathsf{spouse}@X \sqsubseteq \mathsf{spouse}^{-}@X)$

note: cyclic references are allowed

Complexity of Reasoning in Attributed DLs

DL	ground	restricted	unrestricted
EL@	РТіме	РТіме/PSpace-hard*	ExpTime
ALCH@	ExpTime	ЕхрТіме	2ExpTime
SROIQ@	N2ExpTime	N2EхрТіме	N2ExpTime
EL _{@+}	РТіме	ЕхрТіме	undecidable
ALCH _{@+}	ExpTime	2ЕхрТіме	undecidable

except for PSPACE-hardness, bounds are tight

- Nominals require special handling (bounds on domain size)
- SROIQ_@ results from M. Krötzsch, M. Marx, A. Ozaki and V. Thost.
 'Attributed Description Logics: Ontologies for Knowledge Graphs'. In: Proc. 16th Int. Semantic Web Conf. (ISWC'17). to appear. Springer, 2017

Reasoning for ground KBs

Introduce fresh concept/role names for each annotated concept/role

yields polynomially larger KB in underlying, classical DL:

spouse(taylor, burton)@[start : 1964, end : 1974] (1)

 $spouse@[start: 1964] \sqsubseteq spouse^{-}@[start: 1964]$ (2)

Reasoning for ground KBs

Introduce fresh concept/role names for each annotated concept/role

- yields polynomially larger KB in underlying, classical DL:
 - spouse(taylor, burton)@[start : 1964, end : 1974] (1)
 - $spouse@[start: 1964] \sqsubseteq spouse^{-}@[start: 1964]$ (2)
 - $\begin{array}{c} \rightsquigarrow \qquad \text{spouse}_{[\text{start: 1964, end: 1974}]}(\text{taylor, burton}) \\ \qquad \qquad \text{spouse}_{[\text{start: 1964}]} \sqsubseteq \text{spouse}_{[\text{start: 1964}]} \end{array}$
- ▶ interactions between open & closed specifiers: (1), (2) entails

spouse(burton, taylor)@[start : 1964],

but we do not get $spouse_{[start:1964]}(burton, taylor)$

Reasoning for ground KBs

Introduce fresh concept/role names for each annotated concept/role

- yields polynomially larger KB in underlying, classical DL:
 - spouse(taylor, burton)@[start : 1964, end : 1974] (1)
 - $spouse@[start: 1964] \sqsubseteq spouse^{-}@[start: 1964]$ (2)
- ▶ interactions between open & closed specifiers: (1), (2) entails

spouse(burton, taylor)@[start : 1964],

but we do not get $spouse_{\lfloor start: 1964 \rfloor}(burton, taylor)$

► axiomatise these inclusions: $spouse_{start:1964, end:1974} \sqsubseteq spouse_{start:1964}$

Dealing with non-ground KBs

Transform KB into a ground KB:

instantiate each axiom for every possible annotation

spouse(taylor, burton)@[start : 1964] spouse@ $X \sqsubseteq$ spouse $@X \sqsubseteq$ spouse@X spouse(taylor, burton)@[start : 1974]

Dealing with non-ground KBs

Transform KB into a ground KB:

instantiate each axiom for every possible annotation

spouse(taylor, burton)@[start : 1964] spouse@ $X \sqsubseteq$ spouse $@X \sqsubseteq$ spouse@X spouse(taylor, burton)@[start : 1974]

• unfortunately, the grounding is exponential in the size of KB:

C(a)@[] C(a)@[b:b] $C@X \sqcap C@Y \sqcap C@Z \sqsubseteq C@X$

syntactic restrictions ensure a polynomial grounding

Regaining Tractability for $\mathcal{EL}_{@}$

Sufficient conditions for polynomial grounding:

- (A) number of variables per axiom is bounded,
- (B) number of 'dots' X.a is bounded, and
- (C) no merging with 'dots': if a : X.b occurs in some annotation S, then there is no further assignment for a in S

Regaining Tractability for $\mathcal{EL}_{@}$

Sufficient conditions for polynomial grounding:

- (A) number of variables per axiom is bounded,
- (B) number of 'dots' X.a is bounded, and
- (C) no merging with 'dots': if a : X.b occurs in some annotation S, then there is no further assignment for a in S
 - violating any condition yields intractability for $\mathcal{EL}_{@}$
 - violating (C) results in PSPACE-hardness

Regaining Tractability for $\mathcal{EL}_{@}$

Sufficient conditions for polynomial grounding:

- (A) number of variables per axiom is bounded,
- (B) number of 'dots' X.a is bounded, and
- (C) no merging with 'dots': if a : X.b occurs in some annotation S, then there is no further assignment for a in S
 - violating any condition yields intractability for $\mathcal{EL}_{@}$
 - violating (C) results in PSPACE-hardness
 - ▶ reasoning for $ALCH_{@}$ KBs satisfying the conditions is ExpTime-complete

An Undecidable Case

Without restrictions, Attributed DLs with + are undecidable:

- ▶ interaction of *X*.*a* and + admits an encoding of Existential Rules in quantifier-free attributed *EL*
- forbidding either X.a or + is sufficient to recover decidability
- ▶ practically, *X*.*a* is more relevant

An Undecidable Case

Without restrictions, Attributed DLs with + are undecidable:

- interaction of *X*.*a* and + admits an encoding of Existential Rules in quantifier-free attributed \mathcal{EL}
- forbidding either X.a or + is sufficient to recover decidability
- ▶ practically, *X*.*a* is more relevant, but + adds expressive power:

 $educatedAt@[degree:+] \sqsubseteq obtainedDegreeFrom$

 decidability results for Existential Rules suggest that a weaker condition may suffice for decidability

An Undecidable Case

Without restrictions, Attributed DLs with + are undecidable:

- interaction of *X*.*a* and + admits an encoding of Existential Rules in quantifier-free attributed \mathcal{EL}
- forbidding either X.a or + is sufficient to recover decidability
- ▶ practically, *X*.*a* is more relevant, but + adds expressive power:

educatedAt@[degree : +] \sqsubseteq obtainedDegreeFrom

- decidability results for Existential Rules suggest that a weaker condition may suffice for decidability
- Corollary: Attributed DLs (without +) capture Datalog

Summary & Outlook

- Summary:
 - we add annotations (sets of attribute-value pairs) to concept and role names
 - specifiers allow to constrain variables in axioms
 - 'ground and rename' reasoning approach
 - attributed reasoning is exponentially harder
 - syntactic conditions ensure that we avoid this blowup

Summary & Outlook

- Summary:
 - we add annotations (sets of attribute-value pairs) to concept and role names
 - specifiers allow to constrain variables in axioms
 - 'ground and rename' reasoning approach
 - attributed reasoning is exponentially harder
 - syntactic conditions ensure that we avoid this blowup
- Future Work:
 - data complexities
 - extension to further DL constructs $(\mathcal{EL}_{@}^{++}?)$
 - annotation-aware reasoning algorithms