

Sarah Gaggl Logic Programming and Argumentation Group, TU Dresden, Germany

Navigating ASP Solution Spaces

Hanoi, 2nd November 2024

Motivation Combinatorial Search Problems

Figure 1: [Bunt Vektor erstellt von macrovector - de.freepik.com](https://de.freepik.com/vektoren/bunt)

Answer Set Programming (ASP)

knowledge representation

logic programming (\bigcup (non-monotonic) reasoning **ASP**

Declarative problem solving

- planning
- product configuration
- diagnosis

logic program answer sets solution **modeling solving interpreting**

problem

⋮

ASP Modelling and Solving

Navigating ASP Solution Spaces

```
#const n=14.
{q(I, 1..n)} = 1:- I = 1..n.
{q(1..n, J)} = 1:- J = 1..n.:- \{q(D-J,J)\} >=2, D=2..2*n.
:- {q(D+J,J)} > = 2, D=1-n...n-1.
```


Diverse Solutions:

```
Solution: 1
q(1,12) q(2,8) q(3,6) q(4,14) q(5,9) q(6,2) q(7,5)
q(14,1) q(9,11) q(10,7) q(11,10) q(12,4) q(13,13) q(8,3)
Solution: 2
q(1,1) q(2,10) q(3,5) q(4,7) q(5,12) q(6,3) q(7,11)q(8,2) q(9,14) q(10,9) q(11,4) q(12,13) q(13,8) q(14,6)
Solution: 3
q(1,11) q(2,2) q(3,10) q(4,6) q(5,3) q(6,1) q(7,13)q(8,7) q(9,12) q(10,14) q(11,8) q(12,5) q(13,9) q(14,4)
```


```
* zoom in
```

```
* zoom out
```

```
* ...
```
Visual Approach: * zoom in

* zoom out

* ...

Outline

- Preliminaries
- Weighted Faceted Navigation
- Diverse Answer Sets
- Representative Answer Sets
- Visual Approach for Solution Space Exploration
- Conclusion

Preliminaries

Definition (logic program)

A (normal disjunctive) logic program Π over a set of atoms $\{\alpha_0, \ldots, \alpha_n\}$ is a finite set of rules r of the form:

$$
\alpha_0 \,|\, \ldots \,|\, \alpha_k \leftarrow \alpha_{k+1}, \ldots, \alpha_m, \mathop{\sim} \alpha_{m+1}, \ldots, \mathop{\sim} \alpha_n. \text{ where } 0 \leq k \leq m \leq n
$$

Remark: We focus on ground programs without extended rules.

AS(Π) *. . .* **answer sets** (solutions) $2^{\mathcal{AS}(\Pi)}$ \dots solution space $BC(\Pi) = |$ $\bigcup AS(\Pi) \dots$ brave consequences *α* ∈ BC(Π) *. . .* **partial solution** $CC(\Pi) = \bigcap AS(\Pi) \dots$ cautious consequences

Part 1 [Weighted Faceted Navigation](#page-12-0)

 Π : a | b. c | d ← b. e.

 Π : a | b. c | d ← b. e.

Facets: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}\$

ANSWER 1: a, e ANSWER 2: b, c, e ANSWER 3: b, d, e

 Π : a | b. c | d ← b. e. **Facets**: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}\$ **Routes**: Δ^{Π} := { $\langle f_0, \ldots, f_n \rangle | f_i \in \mathcal{F}(\Pi), 0 \leq i \leq n \} \cup \{ \epsilon \}$ ANSWER 1: a, e ANSWER 2: b, c, e ANSWER 3: b, d, e

 Π : a | b. c | d ← b. e.

Facets: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}\$

Routes: Δ^{Π} $\coloneqq \{ \langle f_0, \ldots, f_n \rangle \mid f_i \in \mathcal{F}(\Pi), 0 \leq i \leq n \} \cup \{ \epsilon \}$

ANSWER 1: a, e ANSWER 2: b, c, e ANSWER 3: b, d, e

 Π : a | b. c | d ← b. e.

Facets: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}\$

Routes: Δ^{Π} $\coloneqq \{ \langle f_0, \ldots, f_n \rangle \mid f_i \in \mathcal{F}(\Pi), 0 \leq i \leq n \} \cup \{ \epsilon \}$

ANSWER 1: a, e ANSWER 2: b, c, e ANSWER 3: b, d, e

 Π : a | b. c | d ← b. e.

Facets: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}\$

Routes: Δ^{Π} := $\{(f_0, \ldots, f_n) \mid f_i \in \mathcal{F}(\Pi), 0 \leq i \leq n\} \cup \{\epsilon\}$

ANSWER 1: a, e $\overline{ANSWER-2}$ \leftarrow $\overline{b}, \overline{c}, \overline{e}$ $\overbrace{\text{ANSWEB-3:}\to 0,0}$

 Π : a | b. c | d ← b. e.

Facets: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}\$

Routes: Δ^{Π} = $\{(f_0, \ldots, f_n) | f_i \in \mathcal{F}(\Pi), 0 \leq i \leq n\} \cup \{\epsilon\}$

ANSWER 1: a, e ANSWER 2: b, c, e ANSWER $3: b, d, e$

 Π : a | b. c | d ← b. e.

Facets: $\mathcal{F}(\Pi) = \{a, b, c, d, \overline{a}, \overline{b}, \overline{c}, \overline{d}\}\$

Routes: Δ^{Π} $\coloneqq \{ \langle f_0, \ldots, f_n \rangle \mid f_i \in \mathcal{F}(\Pi), 0 \leq i \leq n \} \cup \{ \epsilon \}$

What is the effect of taking a certain navigation step?

Can we somehow characterize sub-spaces beforehand?

[1] Johannes Klaus Fichte, S.A.G., Dominik Rusovac. **Rushing and Strolling among Answer Sets - Navigation Made Easy** Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI 2022), 2022.

What is the effect of taking a certain navigation step?

Can we somehow characterize sub-spaces beforehand?

Let's do some counting!

Quantifying effects of navigation steps

The Weight of a Facet

Definition (weighting function)

We call $\#\colon \{\Pi^\delta\mid \delta\in\Delta^\Pi\}\to\mathbb{N}$ *weighting function*, whenever $\#(\Pi^\delta) > 0$, if $|\mathcal{AS}(\Pi)|\geq 2.$

Definition (weight)

Let $\delta \in \Delta^{\Pi}$, $f \in \mathcal{F}(\Pi)$ and δ' be a redirection of δ w.r.t. f. The *weight* of f w.r.t. #, Π^{δ} and δ' is defined as:

$$
\omega_{\#}(f,\Pi^{\delta},\delta')\coloneqq \begin{cases} \#(\Pi^{\delta})-\#(\Pi^{\delta'}),& \text{ if } \langle \delta,f\rangle \notin \Delta_{\mathrm{s}}^{\Pi} \text{ and } \delta'\neq \epsilon; \\ \#(\Pi^{\delta})-\#(\Pi^{\langle \delta,f\rangle}),& \text{ otherwise.}\end{cases}
$$

The Weight of a Facet

Definition (weight)

Let $\delta \in \Delta^{\Pi}$, $f \in \mathcal{F}(\Pi)$ and δ' be a redirection of δ w.r.t. f. The *weight* of f w.r.t. #, Π^{δ} and δ' is defined as:

$$
\omega_{\#}(f, \Pi^{\delta}, \delta') \coloneqq \begin{cases} \#(\Pi^{\delta}) - \#(\Pi^{\delta'}), & \text{if } \langle \delta, f \rangle \notin \Delta_s^{\Pi} \text{ and } \delta' \neq \epsilon; \\ \#(\Pi^{\delta}) - \#(\Pi^{\langle \delta, f \rangle}), & \text{otherwise.} \end{cases}
$$

Effects:

Natural choice?

Natural choice?

– Absolute Weight: Count Answer Sets with $ω#$ _{AS}

$$
\mathcal{AS}(\Pi) = \{\{a, e\}, \{b, c, e\}, \{b, d, e\}\}\
$$

$$
\omega_{\#AS}(b, \Pi, \epsilon) = 1 \downarrow
$$

$$
\mathcal{AS}(\Pi^{\{b\}}) = \{\{b, c, e\}, \{b, d, e\}\}\
$$

Natural choice?

– Absolute Weight: Count Answer Sets with $ω_{#AS}$

Counting answer sets is hard \odot [3]

$$
\mathcal{AS}(\Pi) = \{ \{a, e\}, \{b, c, e\}, \{b, d, e\} \}
$$

$$
\omega_{\#AS}(b, \Pi, \epsilon) = 1 \downarrow
$$

$$
\mathcal{AS}(\Pi^{\{b\}}) = \{ \{b, c, e\}, \{b, d, e\} \}
$$

[2] Johannes K Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. **Answer set solving with bounded treewidth revisited.** In LPNMR 2017.

Natural choice?

– Absolute Weight: Count Answer Sets with $ω_{#AS}$

Counting answer sets is hard \odot [3]

Relative Weights: cheaper methods to quantify effects

– Count Supported Models with $ω_{\#s}$

```
AS(\Pi) = \{\{a, e\}, \{b, c, e\}, \{b, d, e\}\}\\mathcal{AS}(\Pi^{\{b\}}) = \{\{b,c,e\},\{b,d,e\}\}\\omega_{\# \mathcal{S}}(\mathbf{b}, \Pi, \epsilon) = 1
```
[2] Johannes K Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. **Answer set solving with bounded treewidth revisited.** In LPNMR 2017.

Natural choice?

– Absolute Weight: Count Answer Sets with $ω#$ _{AS}

Counting answer sets is hard / [**fichte2017answer**]

Relative Weights: cheaper methods to quantify effects

- Count Supported Models with *ω*#^S
- $-$ Count Facets with $\omega_{\#_{\tau}}$

```
AS(\Pi) = \{\{a, e\}, \{b, c, e\}, \{b, d, e\}\}\\mathcal{AS}(\Pi^{\text{(b)}}) = \{\{\text{b}, \text{c}, \text{e}\}, \{\text{b}, \text{d}, \text{e}\}\}\\omega_{\# \mathcal{F}}(b,\Pi,\epsilon) = 4
```

```
\mathcal{AS}(\Pi) = \{\{a, e\}, \{b, c, e\}, \{b, d, e\}\}\\mathcal{AS}(\Pi^{\langle \overline{c} \rangle}) = \{\{\text{a},\text{e}\},\{\text{b},\text{d},\text{e}\}\}\,\omega_{\# \mathcal{F}}(\overline{\text{c}}, \Pi, \epsilon) = 2
```
[2] Johannes K Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. **Answer set solving with bounded treewidth revisited.** In LPNMR 2017.

Rushing and Strolling among Answer Sets

Definition (strictly goal-oriented navigation mode)

The *stricly goal-oriented* navigation mode $\nu_{\rm sgo}^{\#}$: $\Delta_{\rm s}^{\Pi} \times \mathcal{F}(\Pi) \to 2^{\mathcal{AS}(\Pi)}$ is defined by:

 $\nu_{\rm sgo}^{\#}(\delta, f) \coloneqq \Bigg\{$ $\mathcal{AS}(\Pi^{\langle\delta,\mathrm{f}\rangle}), \text{ if } \mathrm{f} \in \max_{\omega_{\#}}(\Pi^{\delta});$ $\mathcal{AS}(\Pi^{\delta}),$ otherwise.

Definition (explore navigation mode)

The *explore* navigation mode $\nu^\#_{\rm expl}$: $\Delta^{\Pi}_{\rm s} \times \mathcal{F}(\Pi) \to 2^{\mathcal{AS}(\Pi)}$ is defined by:

$$
\nu_{\text{expl}}^{\#}(\delta,f)\coloneqq \begin{cases} \mathcal{AS}(\Pi^{\{\delta,f\}}), & \text{if } f\in\min_{\omega_{\#}}(\Pi^{\delta}); \\ \mathcal{AS}(\Pi^{\delta}), & \text{otherwise}. \end{cases}
$$

Quantitative Arguments

	\overline{c}		5		$\mathbf{1}$		9	
8			\overline{c}		3			6
	3			$\boldsymbol{6}$			7	
6	6	$\overline{1}$		\overline{a}	2 6			
5	4			\overline{a}		8	$\mathbf{1}$	9
				2 5	2 5	$\overline{7}$		
	$\overline{9}$			3			8	
\overline{a}			8		4			7
	$\mathbf{1}$		9		7		6	

How to solve this Sudoku as quick as possible?

Which moves (queens) have the least $(1/4)/$ most $(3/4)$ impact?

fasb – **F**aceted **A**nswer **S**et **B**rowser

REPL on top of clingo solver implementing: $\nu_{\rm go}$, $\nu_{\rm sgo}^{\#}$, $\nu_{\rm exp1}^{\#}$ for $\#\in\{\#_{\mathcal{AS}},\#\mathcal{F}\}$ <https://github.com/drwadu/fasb>

<https://drwadu.github.io/web-fasb.github.io/>

Concluding on Weighted Faceted Navigation

- Concept is rather easy to understand
- Answer set counting is hard
	- IASCAR [3]
	- Quantum faceted navigation [4]
- Facet counting is easier (practical feasability) [5]

[3] Johannes Klaus Fichte, S.A.G., Markus Hecher, Dominik Rusovac. **IASCAR: Incremental Answer Set Counting by Anytime Refinement** Theory and Practice of Logic Programming, 24(3):505-532, May 2024. [4] Riccardo Romanello, Davide Della Giustina, Stefano Pessotto, Carla Piazza. **Speeding up Answer Set Programming by Quantum Computing** QUASAR '24: Proceedings of the 2024 Workshop on Quantum Search and Information Retrieval Pages 1 - 8, 2024. [5] Dominik Rusovac, Markus Hecher, Martin Gebser, S.A.G., Johannes K. Fichte. **Navigating and Querying Answer Sets: How Hard Is It Really and Why?** Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024).

Part 2 [Diverse Answer Sets](#page-35-0)

Divers Answer Sets

- n k-DIVERSE SOLUTIONS
- n = ∣S∣, S ... collection of AS
- ∆(S) ≥ k
- $\Delta : 2^{AS} \rightarrow \mathbb{N}^0$

[6] Thomas Eiter, Esra Erdem, Halit Erdogan, Michael Fink: Finding similar/diverse solutions in answer set programming. Theory Pract. Log. Program. 13(3): 303-359 (2013)

Divers Answer Sets

- n k-DIVERSE SOLUTIONS
- n = ∣S∣, S ... collection of AS
- ∆(S) ≥ k
- $\Delta : 2^{AS} \rightarrow \mathbb{N}^0$
- default ∆: minimal pairwise hamming distance

[6] Thomas Eiter, Esra Erdem, Halit Erdogan, Michael Fink: Finding similar/diverse solutions in answer set programming. Theory Pract. Log. Program. 13(3): 303-359 (2013)

Divers Answer Sets

- n k-DIVERSE SOLUTIONS
- n = ∣S∣, S ... collection of AS
- ∆(S) ≥ k
- $\Delta : 2^{AS} \rightarrow \mathbb{N}^0$
- default ∆: minimal pairwise hamming distance

[6] Thomas Eiter, Esra Erdem, Halit Erdogan, Michael Fink: Finding similar/diverse solutions in answer set programming. Theory Pract. Log. Program. 13(3): 303-359 (2013)

Divers Answer Sets

- n k-DIVERSE SOLUTIONS
- n = ∣S∣, S ... collection of AS
- ∆(S) ≥ k
- $\Delta : 2^{AS} \rightarrow \mathbb{N}^0$
- default ∆: minimal pairwise hamming distance

[6] Thomas Eiter, Esra Erdem, Halit Erdogan, Michael Fink: Finding similar/diverse solutions in answer set programming. Theory Pract. Log. Program. 13(3): 303-359 (2013)

Divers Answer Sets

- n k-DIVERSE SOLUTIONS
- n = ∣S∣, S ... collection of AS
- ∆(S) ≥ k
- $\Delta : 2^{AS} \rightarrow \mathbb{N}^0$
- default ∆: minimal pairwise hamming distance

Methods:

- enumeration and postprocessing
- parallel solving
- iterative solving

[6] Thomas Eiter, Esra Erdem, Halit Erdogan, Michael Fink: Finding similar/diverse solutions in answer set programming. Theory Pract. Log. Program. 13(3): 303-359 (2013)

[7] Elisa Böhl, S.A.G. **Tunas - Fishing for Diverse Answer Sets: A Multi-Shot Trade up Strategy**; LPNMR 2022.

[7] Elisa Böhl, S.A.G. **Tunas - Fishing for Diverse Answer Sets: A Multi-Shot Trade up Strategy**; LPNMR 2022.

[7] Elisa Böhl, S.A.G. **Tunas - Fishing for Diverse Answer Sets: A Multi-Shot Trade up Strategy**; LPNMR 2022.

[7] Elisa Böhl, S.A.G. **Tunas - Fishing for Diverse Answer Sets: A Multi-Shot Trade up Strategy**; LPNMR 2022.

[7] Elisa Böhl, S.A.G. **Tunas - Fishing for Diverse Answer Sets: A Multi-Shot Trade up Strategy**; LPNMR 2022.

[7] Elisa Böhl, S.A.G. **Tunas - Fishing for Diverse Answer Sets: A Multi-Shot Trade up Strategy**; LPNMR 2022.

Problem Definition

[7] Elisa Böhl, S.A.G. **Tunas - Fishing for Diverse Answer Sets: A Multi-Shot Trade up Strategy**; LPNMR 2022.

[7] Elisa Böhl, S.A.G. **Tunas - Fishing for Diverse Answer Sets: A Multi-Shot Trade up Strategy**; LPNMR 2022.

[7] Elisa Böhl, S.A.G. **Tunas - Fishing for Diverse Answer Sets: A Multi-Shot Trade up Strategy**; LPNMR 2022.

Problem Definition

- ∣S ′ ∣ > ∣S∣
- $|S \setminus S'| \le m$
- ∆(S ′) ≥ k
- NP-complete

[7] Elisa Böhl, S.A.G. **Tunas - Fishing for Diverse Answer Sets: A Multi-Shot Trade up Strategy**; LPNMR 2022.

Tunas - Trade Up Navigation for Answer Sets

Tunas - Elaborations

Concluding on Diverse Answer Sets

- Diverse collections give a nice overview on the solutionspace
- Multi-shot ASP is good choice to iteratively improve collections
- User needs to specify diversity measure (and provide it as ASP encoding)

Part 3 [Representative Answer Sets](#page-54-0)

 $AS(\Pi_0)$:

 $T = \{at(\Pi_0)\}\$

$AS(\Pi_0)$:

$T = \{at(\Pi_0)\}\$

 $- S = {s_1, s_2, s_4, s_5}$ is sound over T,

$AS(\Pi_0)$:

$$
s_1 = {\blacksquare, \blacktriangle} \ns_2 = {\lozenge, \blacktriangle} \ns_3 = {\blacktriangleright, \blacktriangleright} \ns_4 = {\blacksquare, \blacktriangleright} \ns_5 = {\blacktriangleright, \blacktriangleright, \blacktriangleright} \ns_6 = {\lozenge, \blacktriangleright, \blacktriangleright}
$$

$$
T=\{at(\Pi_0)\}
$$

- $S = {s_1, s_2, s_4, s_5}$ is sound over T,
- S is not a packing over T as atoms \triangle and \blacksquare appear twice.

$AS(\Pi_0)$:

$$
s_1 = {\blacksquare, \blacktriangle} \ns_2 = {\lozenge, \blacktriangle} \ns_3 = {\blacklozenge, \blacktriangleright} \ns_4 = {\blacksquare, \blacktriangleright} \ns_5 = {\blacktriangleright, \blacktriangleright, \blacktriangleright} \ns_6 = {\lozenge, \blacktriangleright, \blacktriangleright}
$$

 $T = \{at(\Pi_0)\}\$

- $S = {s_1, s_2, s_4, s_5}$ is sound over T,
- S is not a packing over T as atoms \triangle and \blacksquare appear twice.
- $-$ By removing s_1 from S, we obtain a perfect collection over T.

Representative Collections [8]

- collection S: set of answer sets; target atoms T
- Soundness: all target atoms covered; T ⊆ ⋃S
- $-$ Diversity: self information / Shannon entropy 1 , $p_S(a_i) = \frac{m_i}{\sum_{j=1}^n m_j}$, with m_i frequency of atom a_i :

$$
H[T|_S] \coloneqq \sum_{a \in T} p_S(a) \log_2 \frac{1}{p_S(a)}
$$

$$
\mathrm{D}(\mathrm{T}|_{\mathrm{S}}) \coloneqq 2^{\mathrm{H}[\mathrm{T}|_{\mathrm{S}}]} \in [0,|\mathrm{T}|]
$$

 1 T. Leinster, 'Entropy and diversity: the axiomatic approach', Cambridge university press, 2021

Representative Collections [8]

- collection S: set of answer sets; target atoms T
- Soundness: all target atoms covered; T ⊆ ⋃S
- $-$ Diversity: self information / Shannon entropy 1 , $p_S(a_i) = \frac{m_i}{\sum_{j=1}^n m_j}$, with m_i frequency of atom a_i :

$$
H[T|_S] \coloneqq \sum_{a \in T} p_S(a) \log_2 \frac{1}{p_S(a)}
$$

$$
D(T|_S) \coloneqq 2^{H[T|_S]} \in [0,|T|]
$$

– normalisation into representativeness:

$$
\mathrm{R}(\mathrm{T}|_{\mathrm{S}})\coloneqq\frac{\mathrm{D}(\mathrm{T}|_{\mathrm{S}})}{|\mathrm{T}|}\in[0,1]
$$

[8] Elisa Böhl, S.A.G. Dominik Rusovac. Representative Answer Sets: Collecting Something of Everything. Proceedings of the 26th European Conference on Artificial Intelligence (ECAI 2023), 271–278, September 2023.

 1 T. Leinster, 'Entropy and diversity: the axiomatic approach', Cambridge university press, 2021

Example

$$
s_{1} = \{ \blacksquare, \blacktriangle \} \qquad s_{2} = \{ \lozenge, \blacktriangle \} \qquad s_{3} = \{ \blacklozenge, \blacktriangleright \} \qquad s_{4} = \{ \blacksquare, \blacktriangleright \} \qquad s_{5} = \{ \blacktriangleright, \blacktriangleright, \blacktriangleright \} \qquad s_{6} = \{ \lozenge, \blacktriangleright, \blacktriangleright \} \qquad s_{7} = \{ \text{at}(\Pi_{0}) \}, S = \{ s_{1}, s_{2}, s_{4}, s_{5} \}
$$
\n
$$
S|_{T}^{m} = \{ \blacktriangleright, \blacksquare, \blacktriangleleft, \blacktriangleright, \blacktriangleleft, \lambda_{1}^{m}, \blacktriangleright, \lambda_{1}^{n} \} \} \qquad \text{ps(a)}: \frac{1}{9}, \frac{2}{9}, \frac{1}{9}, \frac{2}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9} \}
$$
\n
$$
\text{Entropy} \quad H[T|_{S}] = \sum_{a \in T} ps(a) \log_{2} \frac{1}{p_{S}(a)} \qquad \text{if } \lambda_{2} \geq 7.165
$$
\n
$$
\text{Diversity} \quad D(T|_{S}) = 2^{H[T|_{S}]} \qquad \text{if } \lambda_{6} \leq 573
$$
\n
$$
\text{Representativeness} \quad R(T|_{S}) = \frac{D(T|_{S})}{|T|} \qquad \text{if } \lambda_{6} \leq 0.94
$$

Example cont.

$$
s_1 = \{ \blacksquare, \blacktriangle \} \ns_2 = \{ \lozenge, \blacktriangle \} \ns_3 = \{ \lozenge, \blacktriangleright, \blacktriangleright \} \ns_4 = \{ \blacksquare, \blacktriangleright \} \ns_5 = \{ \blacktriangle, \blacktriangleright, \blacktriangleright \} \ns_6 = \{ \lozenge, \blacktriangleright, \blacktriangleright \} \ns_7 = \{ \lozenge, \blacktriangleright, \blacktriangleright \} \ns_8 = \{ \lozenge, \blacktriangleright, \blacktriangleright \} \ns_9 = \{ \lozenge, \blacktriangleright, \blacktriangleright \} \ns_1 = \{ \lozenge, \blacktriangleright, \blacktriangleright \} \ns_2 = \{ \lozenge, \blacktriangleright, \blacktriangleright \} \ns_3 = \{ \lozenge, \blacktriangleright, \blacktriangleright \} \ns_4 = \{ \lozenge, \blacktriangleright, \blacktriangleright, \blacktriangleright \} \ns_5 = \{ \lozenge, \blacktriangleright, \blacktriangleright, \blacktriangleright \} \ns_6 = \{ \lozenge, \blacktriangleright, \blacktriangleright, \blacktriangleright \} \ns_7 = \{ \lozenge, \blacktriangleright, \blacktriangleright,
$$

$$
T = \{at(\Pi_0)\}, S' = \{s_2, s_4, s_5\}
$$

\n
$$
S|_T^m = \{\blacklozenge^1, \blacksquare^1, \blacklozenge^1, \blacktriangle^1, \blacktriangleright^1, \blacksquare^1, \blacktriangleright^1\}
$$

\n
$$
ps(a) : \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}
$$
 (uniform distribution)

Entropy	$H[T _S]$	$= \sum_{a \in T} p_S(a) \log_2 \frac{1}{p_S(a)}$	$= 7\frac{1}{7} \log_2 7 = \log_2 7$
Diversity	$D(T _S)$	$= 2^{H[T _S]}$	$= 2^{\log_2 7} = 7$
Representatives	$R(T _S)$	$= \frac{D(T _S)}{ T }$	$= \frac{7}{7} = 1$

Obtaining Representative Collections

- Approach: Faceted Answer Set Navigation
	- activating a facet: propagation of a truth value
	- counting facets enables to measure uncertainty
- Algorithms: Greedy for diversity (D) and soundness (S)

Algorithm: D-Greedy

Algorithm: D-Greedy

Algorithm: S-Greedy

Algorithm: S-Greedy

end) – S-Greedy – S-Greedy-Sieve (search on route $V_{i=1}$ t_i)

Concluding on Representative Collections

- Experiments showed, if quality of outcome matters, the more complex heuristics pay off $(D-Greedy-all-max₊)$
- Otherwise, less complex methods (S-Greedy-Sieve) are much faster → hybrid approach
- Entropy a reasonable measure for diversity of solutions

Part 4 [Visual Approach for Solution Space](#page-69-0) [Exploration](#page-69-0)

NEXAS: A Visual Tool for Navigating and Exploring Argumentation Solution Spaces [9]

[9] Raimund Dachselt, S.A.G., Markus Krötzsch, Julián Méndez, Dominik Rusovac, Mei Yang. **NEXAS: A Visual Tool for Navigating and Exploring Argumentation Solution Spaces**; COMMA 2022. <https://imld.de/nexas>

Visualization of AF Extensions

Use Case 1: Compare two semantics

Use Case 1: Compare two semantics

Use Case 2: Very large solution space

Only compute particular sub-space of the whole solution space, where some arguments are either contained in all extensions or in none.

Use Case 3: Navigate towards desired solution sub-space

Show for which arguments one can zoom-in (arguments that are credulously but not skeptically accepted)

- **DG-1: Intuitive and Familiar Representations.** We aim to foster intuitive understanding of the views by using traditional representations of the AF components while also encoding relevant information that the users can obtain insights from.
- **DG-2: Highlight Component Relations.** A major challenge is to understand how components affect others. Thus, we aim to make these relations visible through linked interactions to foster understanding of the underlying framework.
- **DG-3: Maintainable and Customizable.** The system design must be flexible and allow incorporation of further components in future iterations.
- **DG-4: Support Several Tasks and Workflows.** We aim to support tasks with disjoint purposes and thus the available interactions must reflect such purposes.
- **DG-5: Ready-to-use.** We aim to minimize setup complexity of the tool to account for various user environments.

Technical Design

Visualization Design

<https://imld.de/nexas>

Argument View

Argument View

Extension View

Correlation View

Faceted Navigation

Faceted Navigation

Sum up on Visualization

- Visual approach clearly supports solution space exploration
- Limits are in the representation of large solution spaces, if dimentional reduction should be used
- General: visual representation of large collections of sets is challenging

Summary & Future Work

Summary:

- Weighted faceted navigation allows to quantitatively explore the solution space
- Iterative reworking strategies to comupte diverse answer sets
- Representative answer sets based on the concept of entropy
- Visual exploration of solution space

Future Work:

- Generalize to solution space navigation (not only for ASP relevant)
- Concrete applications
- Generalize visualization approach for answer sets

Thanks to all Collaborators

Elisa Böhl Dominik Rusovac

Raimund Dachselt Johannes Fichte Markus Krötzsch Julián Méndez

Thanks to our sponsors: BMBF (Grant 01IS20056_NAVAS), DFG (Grant TRR 248), FWF (Grant Y698)

