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Abstract

State constraints in AI Planning globally restrict the legal
environment states. Standard planning languages make closed-
domain and closed-world assumptions. Here we address open-
world state constraints formalized by planning over a descrip-
tion logic (DL) ontology. Previously, this combination of DL
and planning has been investigated for the light-weight DL
DL-Lite. Here we propose a novel compilation scheme into
standard PDDL with derived predicates, which applies to more
expressive DLs and is based on the rewritability of DL queries
into Datalog with stratified negation. We also provide a new
rewritability result for the DL Horn-ALCHOIQ, which al-
lows us to apply our compilation scheme to quite expressive
ontologies. In contrast, we show that in the slight extension
Horn-SROIQ no such compilation is possible unless the
weak exponential hierarchy collapses. Finally, we show that
our approach can outperform previous work on existing bench-
marks for planning with DL ontologies, and is feasible on new
benchmarks taking advantage of more expressive ontologies.

1 Introduction
AI planning is concerned with sequential decision making
problems where an agent needs to choose actions to achieve
a goal, or to maximize reward (Ghallab, Nau, and Traverso
2004). Such problems are compactly described in a declar-
ative language. Specifically, in the most basic (“classical”)
version of planning, a planning task describes an initial state
of the agent’s environment, a set of actions that can affect
that environment, and a goal formula that is to be satisfied. In
order to reach the goal, actions can be applied whenever their
preconditions are satisfied in the current state. Here we are
interested in state constraints, constraints that should hold
globally, i.e. at every state, in difference to preconditions
which merely need to hold locally. Moreover, standard plan-
ning formalisms (based on variants of the PDDL language
(McDermott et al. 1998; Haslum et al. 2019)) follow closed-
domain and closed-world assumptions, in which absent facts
are assumed to be false and no new objects can be created.
In particular, these assumptions underly state constraints as
can be specified in PDDL3 (Gerevini et al. 2009). Here we
instead target open-domain, open-world reasoning.
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One way to do this is via explicit-input Knowledge and Ac-
tion Bases (eKABs) (Calvanese et al. 2016), where states (sets
of ground atoms) are interpreted using open-world seman-
tics. All states are subject to a background ontology, which
describes high-level concepts and global state constraints.
Together, a state and an ontology describe a multitude of
possible worlds, which leaves room for unknown information
about existing and unknown objects. For example, an ontol-
ogy could express that “everyone operating a machine works
for an engineering department” and “everyone who works
for a department is an employee” without explicitly identify-
ing the department of each person or even stating that they
are employees. Action preconditions contain queries that are
evaluated under open-world semantics, e.g. the query for all
“employees” would return all machine operators among other
people. Finally, action effects add or remove atoms in the
state, e.g. reassign machines or departments. This allows for
a clean separation of what is directly observed (i.e. the state,
which contains, e.g. operational data and sensor data) from
what is indirectly inferred (using the ontology).

Calvanese et al. (2016) investigated eKABs with ontolo-
gies and queries formulated in the description logic DL-Lite,
which is a popular formalism for conceptual modeling (Cal-
vanese et al. 2007b). Queries in this logic enjoy first-order
rewritability, which means that the queries and the ontology
can be compiled into first-order (FO) formulas that are then
evaluated under closed-world semantics. Based on this prop-
erty, the authors described a compilation of DL-Lite eKABs
into classical PDDL planning tasks. Later, this compilation
was further optimized to enable practical planning with DL-
Lite background ontologies (Borgwardt et al. 2021).

The goal of this paper is to extend the expressivity of state
constraints in eKABs from the light-weight DL-Lite to more
powerful description logics (DLs) (Baader et al. 2017). We
mainly consider Horn DLs, which are fragments of Horn-
FOL (Krötzsch, Rudolph, and Hitzler 2013; Jung et al. 2019).
We investigate for which Horn DLs compilations into PDDL
exist. For this purpose, we adapt the notion of compilation
schemes (Nebel 2000; Thiébaux, Hoffmann, and Nebel 2005),
which relate the expressivity of two formalisms. On the one
hand, polynomial compilation schemes show that the expres-
sivity of DL eKABs is not higher than that of PDDL. On the
other hand, although such eKABs could be considered syn-
tactic sugar, they represent powerful tools that allow domain



engineers to add open-world constraints to planning tasks.
Our first contribution is a generic compilation scheme

for any DL and queries that enjoy Datalog¬-rewritability,
which essentially allows us to compile them into a set of
PDDL derived predicates. Using this, we can immediately
employ many existing rewritability results from the DL lit-
erature for AI planning (Ortiz, Rudolph, and Šimkus 2010;
Eiter et al. 2012; Bienvenu and Ortiz 2015). We continue
by describing a novel polynomial Datalog¬-rewriting for
queries in the very expressive DL Horn-ALCHOIQ (Ortiz,
Rudolph, and Šimkus 2011), which allows us to extend the
previous compilability result even further. In contrast to this,
we then show that such a compilation cannot exist (under a
reasonable complexity-theoretic assumption) for the slightly
more expressive DL Horn-SROIQ (Ortiz, Rudolph, and
Šimkus 2011). For this, we follow the idea of a previous
non-compilability result for PDDL with derived predicates
into PDDL without derived predicates (Thiébaux, Hoffmann,
and Nebel 2005). This more or less draws a line between the
standardized ontology languages OWL 1,1 which results in
planning tasks of equal expressivity as PDDL, and OWL 2,2
where queries are strictly more expressive than PDDL.

While polynomial rewritings are nice in theory, they are
often not practical due to a polynomial increase in the ar-
ity of predicates. We therefore conclude the paper with an
experimental evaluation that combines an existing practical
implementation of an (exponential) Datalog¬-rewriting for
Horn-SHIQ (Eiter et al. 2012) with our generic compilation
scheme, compares this against previous approaches for DL-
Lite eKABs on existing benchmarks (Calvanese et al. 2016;
Borgwardt et al. 2021), and also introduces new benchmarks
exploiting the newly increased expressivity.

2 Preliminaries
We first introduce description logics, Datalog¬, planning with
derived predicates and ontologies, and compilations between
these formalisms. As usual, we use the symbol |= with two
different meanings: open-world entailment of formulas from
sets of formulas, where all possible interpretations of arbi-
trary (even infinite) size are considered, and closed-world
satisfaction of a formula in a fixed, finite interpretation. It
should always be clear from the context which one is used.

Description Logics. Description logics are a family of KR
formalisms (Baader et al. 2017) that describe open-world
knowledge using axioms in restricted first-order logic over
unary and binary predicates. Members of this family differ
in their expressivity and complexity. A TBox (ontology) is
a finite set of DL axioms, which can be seen as first-order
sentences. The precise syntax of these axioms depends on
the specific DL that is used, but this is not important for most
of the paper. A state (ABox) is a finite set of ground atoms
p(~c), where p is a predicate and ~c is a sequence of objects
(constants). Since we use standard planning formalisms, we
also allow predicates of arity higher than 2 in states, but

1http://www.w3.org/TR/owl-features/
2http://www.w3.org/TR/owl2-overview/

those cannot occur in TBoxes, so essentially have a closed-
world semantics. For a state s, O(s) is the set of all objects
occurring in s. Two special unary predicates are > and ⊥,
which always evaluate to true and false, respectively.

Queries. A conjunctive query (CQ) is a formula of the
form q(~x) = ∃~y.φ(~x, ~y), where φ is a conjunction of unary
and binary atoms. A union of CQs (UCQ) is a disjunction
of CQs. An instance query (IQ) is a CQ of the form p(x),
where p is unary. The central reasoning problem is to decide
whether s, T , θ |= q, where s is a state, T a TBox, and θ
an assignment of objects from O(s) to the free variables in
the (U)CQ q. In an abuse of notation, we may denote with ⊥
the CQ ∃x.⊥(x). ECQs were introduced to combine open-
world and closed-world reasoning (Calvanese et al. 2007a).
We further extend ECQs by “closed-world atoms” that can
also be of higher arity. ECQs are defined by the grammar
Q ::= p(~x) | [q] | ¬Q | Q∧Q | ∃y.Q, where p is a predicate,
~x are terms, q is a UCQ, and y is a variable. The semantics
of ECQs is defined as follows:
s, T , θ |= p(~x) iff s |= p(θ(~x))
s, T , θ |= [q] iff s, T , θ |= q
s, T , θ |= ¬Q1 iff s, T , θ 6|= Q1

s, T , θ |= Q1 ∧Q2 iff s, T , θ |= Q1 and s, T , θ |= Q2

s, T , θ |= ∃y.Q1 iff ∃o ∈ O(s) : s, T , θ[y 7→ o] |= Q1

There is a difference between the ECQs B(x), which is
answered directly in the (closed-world) model described by s,
and [B(x)], which is evaluated w.r.t. the TBox as well. For
example, if s = {C(a)} and T = {C v B}, then B(x) is
not satisfied by any instantiations, but [B(x)] is.

Datalog¬. A Datalog¬ rule is a formula p(~x) ← Φ(~x, ~y)
whose body Φ(~x, ~y) is a conjunction of literals and whose
head p(~x) is an atom. A set of Datalog¬ rulesR is stratified
if the set of its predicates can be partitioned into P1, . . . ,Pn
such that, for all pi ∈ Pi and pi(~x)← Φ(~x, ~y) ∈ R,
• if pj ∈ Pj occurs in Φ(~x, ~y), then j ≤ i, and
• if pj ∈ Pj occurs negated in Φ(~x, ~y), then j < i.

In the following, all sets of Datalog¬ rules are stratified.
Datalog is the restriction of Datalog¬ to positive rule bodies.

All variables in Datalog¬ rules are implicitly universally
quantified. Given a state s and a set of Datalog¬ rulesR, we
denote byR(s) the minimal Herbrand model of s ∪R.
Definition 1. A TBox T and a UCQ q(~x) are Datalog¬-
rewritable if there is a set of Datalog¬ rules RT ,q with a
predicate Pq such that, for all states s and substitutions θ of
~x in O(s), we have s, T , θ |= q(~x) iffRT ,q(s) |= Pq(θ(~x)).

A Datalog¬-rewriting may use additional predicates and
constants, but only needs to be correct for the original sym-
bols. We talk about Datalog-rewritability if the setRT ,q does
not contain negation. A variety of such rewritability results
for DLs exist, for example a very complex (but polynomial-
size) Datalog-rewriting for IQs over Horn-ALCHOIQ
(Ortiz, Rudolph, and Šimkus 2010), a polynomial-size
Datalog-rewriting for IQs in EL++ (Krötzsch 2011), or
an exponential-size Datalog-rewriting for UCQs over Horn-
SHIQ TBoxes implemented in the CLIPPER system3 (Eiter

3https://github.com/ghxiao/clipper



et al. 2012), which is polynomial for the sublogic ELH⊥
(Bienvenu and Ortiz 2015).

Datalog¬-rewritability naturally extends to ECQs Q: take
the disjoint union RT ,Q of all RT ,q for UCQs q occurring
inQ and construct an FO formulaQT by replacing each UCQ
atom [q(~x)] in Q with Pq(~x). Then s, T , θ |= Q(~x) is equiv-
alent toRT ,Q(s) |= QT (θ(~x)) (Calvanese et al. 2007a).

PDDL with Derived Predicates. We recall PDDL 2.1 ex-
tended with derived predicates (Fox and Long 2003; Hoff-
mann and Edelkamp 2005). In this context, states are viewed
under the closed-world assumption and all sets are finite.

Definition 2. A PDDL domain description is a tuple
(P,Pder,A,R), where P,Pder are disjoint sets of predicates;
A is a set of actions; and R is a set of rules. An action is
of the form (~x, pre, eff), with parameters ~x, precondition pre,
and a finite set eff of effects. The precondition is an FO for-
mula over P ∪ Pder with free variables from ~x, and an effect
is of the form (~y, cond, add, del), where ~y are variables, cond
is an FO formula over P∪Pder with free variables from ~x∪~y,
add is a finite set of atoms over P (without Pder) with free
variables from ~x ∪ ~y, and del is a finite set of such negated
atoms. Rules are of the form P (~x) ← φ(~x) with P ∈ Pder

and a first-order formula φ over P ∪Pder. The setR must be
stratified, i.e. fulfill the same condition as sets of Datalog¬
rules when considering the rule bodies φ(~x) in NNF.

A PDDL task is a tuple (∆,O, I, G), where ∆ is a PDDL
domain description; O is a finite set of objects including the
ones in ∆; I is the initial state; and G is the goal, a closed
FO formula over P ∪ Pder and constants from O.

Derived predicates are not allowed to be modified by ac-
tions, i.e. they are only determined by the current state and the
rules. The semantics of rules is defined similarly to Datalog¬,
i.e. for a state s, R(s) is the minimal Herbrand model ob-
tained by exhaustively applying the rules in R, stratum by
stratum, to the facts in s in order to populate the derived pred-
icates Pder. In fact, all such rule setsR can be reformulated
into Datalog¬ rule sets (Abiteboul, Hull, and Vianu 1995;
Thiébaux, Hoffmann, and Nebel 2005). Although the defini-
tion of derived predicates requires the head and body to have
the same free variables, this is compatible with the semantics
of Datalog¬ since additional body variables can be viewed
as implicitly existentially quantified.

For an action a = (~x, pre, eff) and θ : ~x→ O, the ground
action θ(a) has no parameters. A ground action a = (pre, eff)
is applicable in a state s if R(s) |= pre and its applica-
tion yields a new state sJaK that contains a ground atom α
iff (1) there are (~y, cond, add, del) ∈ eff and θ such that
R(s) |= θ(cond) and α ∈ θ(add); or (2) α ∈ s and for all
(~y, cond, add, del) ∈ eff and θ it holds thatR(s) 6|= θ(cond)
or ¬α /∈ θ(del). A plan π is a sequence of ground actions
such that π is applicable in I andR(IJπK) |= G.

eKABs. We recall explicit-input action and knowledge
bases (Calvanese et al. 2016), but slightly adapt the nota-
tion to be consistent with PDDL notation.

Definition 3. An eKAB domain description is a tuple
(P,A, T ), where P is a finite set of predicates; A is a finite

set of DL actions; and T is a TBox over the unary and bi-
nary predicates in P . A DL action is of the form (~x, pre, eff),
where pre is an ECQ over P with free variables from ~x,
and eff consists of DL effect of the form (~y, cond, add, del),
where cond is an ECQ over P with free variables from ~x∪ ~y,
and add and del are as in PDDL.

An eKAB (task) is a tuple (∆,O,O0, I, G), where ∆ is an
eKAB domain description; O is a possibly infinite set of ob-
jects; O0 is a finite subset of O including the objects from ∆;
I is the initial state (overO0), which is consistent with T ; and
G is the goal, a closed ECQ over P and constants from O0.

A ground action a is applicable in s if s |= pre and sJaK∪
T is consistent. The application sJaK contains a fact α iff (1’)
there are (~y, cond, add, del) ∈ eff and θ : ~y → O(s) ∪ O0

such that s, T , θ |= cond and α ∈ θ(add); or (2’) α ∈ s and
for all (~y, cond, add, del) ∈ eff and θ as above it holds that
s, T , θ 6|= cond or ¬α /∈ θ(del). A plan π must be applicable
in I and satisfy IJπK, T |= G. Substitutions for effects range
overO(s)∪O0 since the TBox may contain objects fromO0.
In the following, we assume w.l.o.g. that O0 ⊆ O(s).

Additional Assumptions. Actions can refer to new objects
(parameters ~x that are not in the precondition), and thereby
increase the number of objects in a state. To obtain manage-
able state transition systems, in the literature the assumption
of state-boundedness is often considered for eKAB-like for-
malisms; it requires that there exists a bound b such that
any state reachable from I contains at most b objects (Cal-
vanese et al. 2013; De Giacomo et al. 2014). For a fixed b,
b-boundedness of an eKAB is decidable (De Giacomo et al.
2014). Even if a given eKAB is not state-bounded, one could
instead ask for the existence of a b-bounded plan (Ahmetaj
et al. 2017). An abstraction result implies that any b-bounded
eKAB can be reformulated into one where |O| = |O0|+n+b,
where n is the maximum number of parameters of any ac-
tion (Calvanese et al. 2013, 2016). Any plan of the original
eKAB can still be encoded using this finite set of objects.
Conversely, any abstract plan can be reformulated into a plan
of the original eKAB by replacing the n+ b abstract objects
by fresh objects from the original set O where necessary (i.e.
if those objects did not occur in the previous state). We will
also make this assumption here and assume for simplicity
that O = O0 is finite and denote both sets by O.

Even for a b-bounded eKAB, the TBox T can entail the
existence of objects that are not mentioned in a state s. These
objects are not affected by the bound b, because they are never
explicitly materialized in s. Hence, the reasoning problems
still employ standard DL semantics rather than fixed-domain
reasoning (Gaggl, Rudolph, and Schweizer 2016).

We also assume that goals of eKAB and PDDL tasks con-
sist of a single (closed-world) atom g(~c). If that is not the
case, we can introduce a new action with the goal formula
G(~x) as precondition that adds g(~x) to the state. The pa-
rameters ~x correspond to the constants ~c in the original goal
formula G(~c). This assumption simplifies some of the formal
definitions, but does not affect our main insights. Without
this assumption, for example, the following definition of do-
main compilation fδ would also need to depend on the goal
formula since we later need to compile all UCQs (also those



in the goal) into derived predicates.

Compilations. To study the relative expressivity of these
formalisms, we adapt the notion of compilation schemes
(Nebel 2000; Thiébaux, Hoffmann, and Nebel 2005).
Definition 4. A compilation scheme f from eKABs to PDDL
is a tuple of functions (fδ, fo, fi, fg) that induces a func-
tion F from eKAB tasks Π = (∆,O, I, G) to PDDL tasks

F (Π) :=
(
fδ(∆),O ∪ fo(∆), fi(O, I), fg(O, G)

)
such that (A) there exists a plan for Π iff there exists a plan
for F (Π); and (B) fi and fg are polynomial-time computable.
If ‖fδ(∆)‖ and ‖fo(∆)‖ are bounded polynomially (expo-
nentially) in ‖∆‖, then f is polynomial (exponential).

If for every plan P solving an instance Π there exists a
plan P ′ solving F (Π) such that ‖P ′‖ ≤ c · ‖P‖n + k for
positive integer constants c, n, k, we say that f preserves plan
size polynomially. If n = 1, it preserves plan size linearly,
and if additionally c = 1, then it preserves plan size exactly.

To be considered of the same expressivity, there should be
a polynomial compilation scheme between two formalisms
that at least preserves plan size polynomially, but ideally ex-
actly. Compilation schemes for specific DLs are restricted
to TBoxes T formulated in the specified DL. For example,
there exists an exponential compilation scheme for DL-Lite
eKABs that rewrites ECQs in-situ into FO conditions (Cal-
vanese et al. 2016). This compilation has been optimized
by Borgwardt et al. (2021) by using derived predicates to
simplify the conditions. In contrast, the compilations we in-
vestigate in the following directly use Datalog¬-rewritings to
compile UCQs into derived predicates.

3 Compiling TBoxes into Derived Predicates
We start by describing a generic compilation that exploits
Datalog¬-rewritability of specific DLs to compile open-world
ECQs into closed-world formulas using derived predicates.

One restriction of PDDL derived predicates is that they
cannot occur in action effects. However, Datalog¬-rewritings
may derive new facts about the predicates occurring in the
state and TBox, which can also occur in action effects. To
circumvent this issue, we observe that query rewriting is only
necessary for evaluating conditions, but does not affect the
states themselves. Therefore, we separate the condition eval-
uation and action effects by using two disjoint signatures of
predicates: we use the Datalog¬-rewriting on a copy s′ of the
state s in which each original predicate P has been replaced
by a copy P ′. This copying process can be simulated by mak-
ing P ′ a derived predicate with the rule P ′(~x) ← P (~x). In
the following, we denote by T ′ the result of replacing each
predicate P in T by P ′, and likewise for ECQs Q.

Another issue is that the rewriting may introduce additional
constants, which are not allowed for instantiating actions,
because that would change their behavior. We simulate this
via two new predicates S and N and a new action aS,N with
precondition ¬S and unconditional effect S and N(o) for all
objects o that are not in the original domain description. All
other action conditions are also extended by S and ¬N(~x) :=∧
x∈~x ¬N(x) for their parameters ~x, to ensure that they can

only be instantiated by the original objects.

Definition 5. Let ((P,A, T ),O, I, G) be a b-bounded eKAB
for which all UCQs as well as ⊥ are Datalog¬-rewritable
w.r.t. T . Let RT ′ be the disjoint union of RT ′,⊥ and all
RT ′,Q′ for ECQs Q in the eKAB. Then the PDDL task ((P ∪
{S,N},P ′,A′,R′),O′, I, G′) is obtained as follows:

• P ′ consists of the predicates occurring inRT ′ ;
• A′ contains aS,N and all actions obtained from A by

replacing preconditions pre by S∧¬N(~x)∧¬P⊥∧pre′T ′

and effect conditions cond by cond′T ′ ;
• R′ = RT ′ ∪ {P ′(~x)← P (~x) | P ∈ P};
• O′ = O ∪O(RT ′); and
• G′ = S ∧ ¬P⊥ ∧G.

The goal does not need to be rewritten w.r.t. T since we
assumed that it is a single (closed-world) atom.

Theorem 1. Def. 5 is a compilation scheme from Datalog¬-
rewritable eKABs to PDDL that preserves plan size exactly.

Proof. The new goal G′ can be computed in polynomial
time since we only add S ∧ ¬P⊥. Moreover, aS,N and the
set of rulesRT ′ depend only on the objects and conditions
occurring in the original eKAB domain description. We show
that all plans of either planning task are also plans for the
other (modulo the initializing action aS,N ).

Consistency of s ∪ T is equivalent to RT ′,⊥(s′) 6|= P⊥,
where s′ is obtained from s by replacing each P with P ′.
Hence, the rules P ′(~x) ← P (~x) and the conjuncts ¬P⊥ in
all conditions ensure that all states reached while executing a
plan for the PDDL task are consistent with T . This includes
the initial state since I is consistent with T by assumption.

Similarly, for any ECQ Q, we have R′(s) |= Q′T ′(θ(~x))
iff s′, T ′, θ |= Q′(~x), which is equivalent to s, T , θ |= Q(~x).
Due to aS,N , the substitutions for instantiating action and
effect conditions range over the same objects in both tasks.
Hence, both formalisms allow equivalent action applications
in each state and can reach a goal state by the same plans.

For example, this immediately implies that eKABs with
Horn-SHIQ TBoxes have exponential compilations into
PDDL with derived predicates (without negation) and for
ELH⊥ and DL-Lite we even obtain polynomial compila-
tions (Eiter et al. 2012; Bienvenu and Ortiz 2015). The latter
also holds for Horn-SHOIQ if all conditions are restricted
to EIQs (Ortiz, Rudolph, and Šimkus 2010). In general, our
construction applies to any ontology language where UCQs
(or IQs) are Datalog¬-rewritable, and to any specific TBoxes
and queries that happen to be Datalog¬-rewritable.

4 A Polynomial Rewriting for
Horn-ALCHOIQ

To extend the compilability results, we develop a polynomial-
size rewriting for UCQs over Horn-ALCHOIQ into
Datalog¬. It is based on a query answering approach devel-
oped by Carral, Dragoste, and Krötzsch (2018) and encodes
the relevant definitions from their paper into DatalogS,¬ rules,
which extend Datalog¬ by set terms that denote sets of ob-
jects. We then adapt a known polynomial translation to obtain
a set of Datalog¬ rules (Ortiz, Rudolph, and Šimkus 2010).



The full details can be found in the appendix, but we de-
scribe the main ideas here. The rewriting starts by translating
the Horn-ALCHOIQ axioms of the given TBox T into Dat-
alog rules (Carral, Dragoste, and Krötzsch 2018). However,
since the resulting rule set is exponential, we here refor-
mulate it into polynomially many DatalogS,¬ rules, loosely
following ideas from Ortiz, Rudolph, and Šimkus (2010).
The original approach uses exponentially many constants tX ,
where X is a set of unary predicates, to describe anonymous
objects that satisfyX . In DatalogS,¬, these individuals can di-
rectly be described by sets {X} that can be used as arguments
to predicates. For example, our rewriting introduces a new
predicate role(r,X, Y ) to express that the objects represented
byX and Y are connected by the binary predicate r, which is
now viewed as an additional element of O. Using such addi-
tional predicates, the translation of the original Datalog rules
by Carral, Dragoste, and Krötzsch (2018) is straightforward.

The remainder of the rewriting encodes the filtration phase
from that paper into several strata of DatalogS,¬ rules. We use
bespoke predicates to encode the constructions of expanded
states and graphs in Definitions 7 and 8 in (Carral, Dragoste,
and Krötzsch 2018), e.g. to compute a partial expansion of
the input state to obtain more query matches and an acyclicity
check over a dependency graph between query variables to fil-
ter out spurious matches. After a translation from DatalogS,¬

into Datalog¬ (Ortiz, Rudolph, and Šimkus 2010), correct-
ness of the rewriting follows mostly from Theorem 3 in the
paper by Carral, Dragoste, and Krötzsch (2018).

Theorem 2. UCQs over Horn-ALCHOIQ TBoxes are
Datalog¬-rewritable with rewritings of polynomial size.

By Theorem 1, we thus obtain a polynomial compila-
tion scheme for Horn-ALCHOIQ eKABs into PDDL that
preserves plan size exactly. Admittedly, this construction is
rather complex, but theoretically very interesting, in particu-
lar in light of the next section.

5 Non-Compilability for Expressive eKABs
As a counterpoint to the previous section, we now prove that
polynomial compilations cannot exist for Horn-SROIQ,
not even if we allow the plan size to increase polynomi-
ally. Horn-SROIQ differs from Horn-ALCHOIQ only
in allowing one additional type of axiom, called complex
role inclusions. The following result is inspired by a similar
non-compilability result for PDDL with derived predicates
(Thiébaux, Hoffmann, and Nebel 2005). We start with some
observations about the complexity of the involved problems.
The polynomial-step planning problem is to decide whether
a given planning task has a plan of length polynomial (for
some given polynomial), and the 1-step planning problem is
the special case where the polynomial is 1.

Theorem 3. The polynomial-step planning problem for
PDDL is EXPTIME-complete.

Proof. Hardness follows from the complexity of the 1-
step planning problem for PDDL with derived predicates
(Thiébaux, Hoffmann, and Nebel 2005, Theorem 1). Mem-
bership can be seen as follows. In exponential time, we can

enumerate all plans of polynomial length (for a fixed poly-
nomial). For each such plan, we can check whether each
ground action was applicable, which facts were generated or
deleted, and whether the goal is satisfied in the end. The most
complex part of this check is the evaluation of the derived
predicates after each action, which can be done in exponential
time (Dantsin et al. 2001).

Theorem 4. The 1-step planning problem for Horn-SROIQ
eKABs is 2EXPTIME-complete.

Proof. Hardness follows from the complexity of reasoning in
Horn-SROIQ (Ortiz, Rudolph, and Šimkus 2010). Member-
ship holds since we can enumerate all candidate 1-step plans
in PSPACE, the CQs in preconditions and the goal can be
evaluated in 2EXPTIME (Ortiz, Rudolph, and Šimkus 2011)
and the remaining parts of the ECQs can be evaluated in
PSPACE (Abiteboul, Hull, and Vianu 1995).

While these complexity results already indicate that rea-
soning in Horn-SROIQ is more powerful than (polynomial)
planning in PDDL with derived predicates, they tell us noth-
ing about the relative expressivity of these two formalisms.
There could still exist a polynomial-size compilation scheme
from the former to the latter that preserves plan size polynomi-
ally, because the compilation can use arbitrary computational
resources as long as the result is of polynomial size.

To prove that such a compilation indeed cannot exist, we
follow Thiébaux, Hoffmann, and Nebel (2005) by using the
notion of advice-taking Turing machines (Karp and Lipton
1982). Such machines are equipped with an advice oracle a,
which is a function from positive integers to bit strings. On
input w, the machine receives the advice a(‖w‖) and then
starts its computation as usual. The advice depends only on
the length of the input, but not on its contents. An advice
oracle is polynomial if the length of a(‖w‖) is bounded poly-
nomially in ‖w‖. EXPTIME/poly (non-uniform EXPTIME) is
the class of problems that can be decided by Turing machines
with polynomial advice and exponential time bound.

The following result shows that a polynomial compilation
scheme from Horn-SROIQ eKABs to PDDL would imply
that the weak exponential hierarchy collapses completely.
The latter is considered to be unlikely; in particular, it would
mean that one can eliminate any bounded quantifier prefix
in second-order logic and Presburger arithmetic (Gottlob,
Leone, and Veith 1995; Haase 2014).
Theorem 5. Unless EXPTIMENP = EXPTIME, there is no
polynomial compilation scheme from Horn-SROIQ eKABs
to PDDL preserving plan size polynomially.

Proof sketch. Let M be a universal Turing machine with
double-exponential time bound that can simulate all other
such TMs. In the appendix, we show how to construct a fam-
ily of Horn-SROIQ eKAB domain descriptions ∆n such
that M accepts a word w of length n iff (∆n,O, Iw, g) has
a plan of length 1. Here, O contains only the two objects o
and e, Iw is a state that can be computed from w in polyno-
mial time, and g is a nullary predicate. This construction is
based on the 2EXPTIME-hardness proof for Horn-SROIQ
(Ortiz, Rudolph, and Šimkus 2010).



Assume now that there is a compilation scheme f =
(fδ, fo, fi, fg) from Horn-SROIQ eKABs to PDDL pre-
serving plan size polynomially. This scheme could be used
as an advice oracle as follows. Let M ′ be a TM with double-
exponential time bound. Then M ′ accepts w′ iff M accepts
w = M ′#w′ (in some fixed encoding). Let n be the size
of w. The compilation of ∆n to a PDDL domain descrip-
tion ∆′n = fδ(∆n) as well as fo(∆n) can be used as polyno-
mial advice for a Turing machine that, on input w, computes
O = {o, e}, Iw, and (∆′n,O∪fo(∆n), fi(O, Iw), fg(O, g)),
which can be done in polynomial time. It then decides
polynomial-step plan existence for this PDDL task, which
can be done in EXPTIME by Theorem 3 and is equivalent
to deciding whether M ′ accepts w′ by Definition 5. Over-
all, this implies that EXPTIMENP ⊆ 2EXPTIME is included
in EXPTIME/poly, and therefore EXPTIMENP = EXPTIME
(Buhrman and Homer 1992), which contradicts the assump-
tion of the theorem.

Corollary 1. Unless EXPTIMENP = EXPTIME, in general
there can be no polynomial Datalog¬-rewritings for IQs over
Horn-SROIQ TBoxes.

Proof. By Theorem 1, such a rewriting would yield a poly-
nomial compilation from Horn-SROIQ eKABs to PDDL
preserving plan size exactly, which contradicts the assump-
tion by Theorem 5.

We obtain a similar result also for the non-Horn DLs SH
and ALCI, because for them similar 2EXPTIME-hardness
proofs can be adapted (Lutz 2008; Eiter et al. 2009a).

Theorem 6. Unless EXPTIMENP = EXPTIME, there is no
polynomial compilation scheme from SH or ALCI eKABs
to PDDL preserving plan size polynomially.

6 Experiments
While polynomial compilations are nice in theory, they have
one major drawback: the size of the rules and in particular
the arity of the new predicates grows polynomially with the
input (Carral and Krötzsch 2020). In contrast, the existing
exponential compilation from Horn-SHIQ to Datalog uses
rules of constant size and in many cases does not exhibit
an exponential blowup (Eiter et al. 2012). Moreover, from
a pragmatic perspective, it is the only Datalog rewriting for
CQs over Horn-DLs that has been implemented so far, in the
CLIPPER system. We thus implemented our compilation from
Section 3 using CLIPPER to answer the following questions:
1) Is the compilation feasible, i.e. can the generated classi-
cal planning tasks be handled by state-of-the-art planners?
2) How does our compilation perform against existing eKAB
compilations?

For the experiments, we use the Fast Downward (FD)
planning system (Helmert 2006) version 20.06 (the newest
version as of August 2021), the main implementation plat-
form for classical planning today. We ran FD with a dual-
queue greedy best-first search using the hFF heuristic, a com-
monly used baseline in the planning literature. All experi-
ments were run on a computer with an Intel Core i5-4590
CPU@3.30GHz, and run time and memory cutoffs of 600s
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Figure 1: Comparison of the Robot (dashed) and RobotConj
(solid) domains w.r.t. domain description size, compilation
and planning times.

and 8GBs, respectively. The benchmarks and the compiler
are available online.4

Implementation. We encode Horn-SHIQ eKAB tasks as
ontology files accompanied by PDDL files whose syntax has
been extended to allow conjunctive queries. The ontology file
uses Turtle syntax, which can be processed by any off-the-
shelf ontology tool. Our compiler reads the CQ-PDDL and
ontology files, and generates a classical planning task in stan-
dard PDDL format. The Datalog rewriting is generated with
CLIPPER (Eiter et al. 2012). The compilation additionally
normalizes complex conditions via a Tseitin-like transforma-
tion (Tseitin 1983), which has been shown to be effective
before (Borgwardt et al. 2021).

Benchmarks. Our benchmark collection consists of 125
instances adapted from existing DL-Lite eKAB benchmarks
(Calvanese et al. 2016; Borgwardt et al. 2021), and 110 newly
created instances. A detailed description can be found in the
appendix. We manually translated the existing eKAB do-
mains (Cats, Elevator, Robot, TaskAssign, TPSA, VTA, and
VTA-Roles) into the format described above. Modifications
almost exclusively pertained to extracting the ontology from
the eKAB description into a separate Turtle file and moving
so-called condition-action rules (Calvanese et al. 2016) into
action preconditions. The translated instances are equivalent
to the originals.

Since Horn-SHIQ is more expressive than DL-Lite, we
also created 3 new domains (Drones, Queens, and RobotConj)
in which we make use of conjunctions, qualified existential
restrictions occurring with negative polarity, and symmetric
and transitive relations, all of which are not supported by DL-
Lite (Baader et al. 2017). Drones describes a complex 2D
drone navigation problem, in which drones need to be moved
to avoid critical situations; the latter are described in the
ontology using axioms with qualified existential restrictions

4https://gitlab.perspicuous-computing.science/a.kovtunova/pd
dl-horndl



# solved # compiled planning time compilation time
Domain # Cal16 Bor21 Horn Cal16 Bor21 Horn Cal16 Bor21 Horn Cal16 Bor21 Horn
Cats 20 14 20 20 20 20 20 63.46 0.13 0.03 0.16 0.22 0.65
Elevator 20 20 20 20 20 20 20 0.36 0.30 0.03 0.60 0.73 0.66
Robot 20 4 12 20 12 12 20 15.05 10.10 0.11 138.52 138.55 0.75
TaskAssign 20 3 20 20 20 20 20 0.81 0.12 0.06 2.87 39.21 0.66
TPSA 15 14 5 15 15 5 15 2.01 2.42 0.30 0.84 25.37 0.59
VTA 15 15 13 15 15 15 15 23.06 371.56 16.91 0.33 1.21 0.65
VTA-Roles 15 15 5 15 15 5 15 2.25 11.61 1.36 0.59 95.53 0.66∑

125 85 95 125 117 97 125 19.99 77.33 3.59 18.01 31.84 0.66
Drones 24 20 24 101.42 0.69
Queens 30 15 30 21.66 0.69
RobotConj 56 56 56 8.14 2.77∑

110 91 110 30.87 1.75

Table 1: Per-domain aggregated statistics: “# solved” number of instances solved by the planner; “# compiled” number of
instances for which the compilers could generate the PDDL input files for the planner; “planning time” average planner run time
over the commonly solved instances; “compilation time” average time of generating the PDDL files.

and symmetric relations. Queens generalizes the eight queens
puzzle to board sizes n ∈ {5, . . . , 10} and numbers of queens
m ∈ {n−4, . . . , n}. Queens are initially placed randomly on
the board and need to be moved to a configuration where no
queen threatens another. The ontology contains a symmetric,
transitive relation to describe legal moves. RobotConj is a
redesign of Robot that moves some of the complexity from
actions into the ontology. The original Robot benchmark
encodes static knowledge about 2D grid cell adjacency in
the action descriptions, which can be encoded much more
naturally in the ontology using conjunctions. Note that the
original Robot benchmark consists of 20 instances (grid sizes
3 × 3 up to 22 × 22), whereas for the new RobotConj we
included 56 instances (up to 200× 200) since they could be
easily handled by our compiler.

Scalability Study. We use Robot and RobotConj to ana-
lyze how our compilation performs as a function of domain
description size (including the ontology). Figure 1 depicts
the results for 56 instances of each domain, obtained by scal-
ing the grid from 3× 3 to 200× 200. In both domains, the
file size is directly proportional to size of the grid. Even the
largest tested instance could be compiled and solved in less
than 90 seconds, attesting the feasibility of our approach.
The increased complexity of RobotConj’s ontology does not
affect the performance. On the contrary, both compilation
and planning for RobotConj are actually consistently faster
than for Robot, due to the simplified actions.

Comparison to DL-Lite Compilations. We compare to
Cal16, the original DL-Lite eKAB compiler (Calvanese et al.
2016), and to Bor21, its recently introduced optimization
using derived predicates to compile away complex formulas
(Borgwardt et al. 2021). We refer to our compilation by Horn.
Table 1 gives a summary of the results. Cal16 and Bor21
were only run on the original DL-Lite eKAB benchmarks.

Considering the DL-Lite benchmark part, Horn has similar
or better performance than Cal16 and Bor21. In Robot, the
Cal16 compilation (and hence also Bor21) could only pro-
cess the 12 smallest instances (up to grid size 14×14), exceed-
ing the 600 seconds time limit thereafter. While Cal16 and

Bor21 both show a blow-up in compilation time in some do-
mains, our new Horn compiler could process all instances in
less than 1 second on average. The compilation time of Horn
is almost consistently larger than 0.6 seconds, which can be
attributed to the fixed overhead of calling CLIPPER. While
the compilation time of Horn is very competitive with the
previous DL-Lite compilers, the planner’s performance statis-
tics really substantiate this advantage. Regarding planning
time and the number of solved instances, Horn significantly
outperforms both alternatives on the DL-Lite benchmarks.

The more complex ontologies in the Horn-SHIQ bench-
mark part did not pose a challenge to Horn. All instances
could still be translated within 3 seconds on average. The con-
structed instances of Drones and Queens are however much
more challenging from a planning perspective. Contrary to
the DL-Lite benchmarks before, average planning runtime is
higher, and some instances could not be solved in time. The
difficulty of the instances was chosen intentionally, with the
purpose of creating challenging problems for future work.

7 Conclusion
We have shown that adding Horn-DL background ontologies
often does not increase the expressivity of PDDL planning
tasks. This is due to Datalog¬-rewritability, which allows
us to reduce open-world to closed-world reasoning. How-
ever, adding more axiom types (Horn-SROIQ) or using
non-Horn DLs (SH or ALCI) increases the expressivity
beyond PDDL, unless the weak exponential hierarchy col-
lapses. An evaluation of our generic compilation approach
using the CLIPPER system demonstrates the feasibility of us-
ing Datalog¬-rewritings, even compared to more specialized
compilation schemes for the smaller logic DL-Lite. More-
over, we have contributed additional benchmarks to showcase
the increased expressivity of our proposed approach.

In future work, we will investigate the existence of a poly-
nomial compilation scheme for Horn-SHOIQ, whose ex-
pressivity lies between that of Horn-ALCHOIQ and Horn-
SROIQ. We also want to investigate planning formalisms
with different effect semantics, e.g. the one described by



De Giacomo et al. (2021).
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A Proof of Theorem 2
We first describe the logic Horn-ALCHOIQ in more detail. We use classical DL terms here, i.e. unary predicates are called
concept names, binary predicates are role names, objects/constants are individual names and states are ABoxes. We assume that
all axioms in Horn-ALCHOIQ TBoxes are in normal form (Carral, Dragoste, and Krötzsch 2018), i.e. they have one of the
following shapes, where C,C1, . . . , Cn, D are concept names, r, s are role names, and a is an individual name:

(i) C1 u · · · u Cn v D
(ii) C v ∃r.D

(iii) ∃r.C v D
(iv) C v ≤ 1r.D

(v) C v {a}
(vi) r v s

(vii) {a} v C
We added the last axiom type here since our goal is a TBox rewriting that is independent of the ABox, i.e. we need to distinguish
the TBox axiom {a} v C from the (equivalent) ABox fact C(a). A first-order interpretation I satisfies these axioms if it satisfies
the sentences

(i) ∀x.C1(x) ∧ · · · ∧ Cn(x)→ D(x),
(ii) ∀x.C(x)→ ∃y.r(x, y) ∧D(y),

(iii) ∀x, y.r(x, y) ∧ C(y)→ D(x),
(iv) ∀x, y, z.C(x) ∧ r(x, y) ∧D(y) ∧ r(x, z) ∧D(z)→ y = z,
(v) ∀x.C(x)→ x = a,

(vi) ∀x, y.r(x, y)→ s(x, y), or
(vii) C(a),

respectively. Additionally, there is a bijective and irreflexive function ·− on the set of role names such that r−− = r and
∀x, y.r(x, y)↔ (r−)(y, x) is required to hold in all models of a TBox, for all role names r (r− is called the inverse of r).

Following Ortiz, Rudolph, and Šimkus (2010), we will use DatalogS,¬ rules to encode reasoning in Horn-ALCHOIQ.
DatalogS,¬ extends Datalog¬ rules by introducing fixed set sorts 2C , where C is a set of constants. Set terms of sort 2C are
built inductively from the constructors {c1, . . . , cn} and t1 ∪ t2, where c1, . . . , cn ∈ C and t1, t2 are set terms of this sort. Every
predicate has an associated sort function that assigns to each position a unique sort, i.e. either the (normal) element sort, or one of
the fixed set sorts. This means that the positions of this predicates always accept only terms of the associated sort. The semantics
of the resulting (stratified) DatalogS,¬ rules is intuitive (Ortiz, Rudolph, and Šimkus 2010).

To make it easier to compare with the existing constructions (Ortiz, Rudolph, and Šimkus 2010; Carral, Dragoste, and Krötzsch
2018), in the following we write DatalogS,¬ rules with→ instead of←. We also use rules with conjunctions of atoms in the
head (instead of only one atom).

Encoding Instance Queries
In the following, let T be a Horn-ALCHOIQ TBox in normal form, and C/R/I denote the sets of concept names/role
names/individual names in T . In addition to the individuals in I, the construction by Carral, Dragoste, and Krötzsch (2018) uses
artificial individuals of the form tX , where X is a set of concept names, and new predicates R that represent a set of role names
that have to be satisfied at the same time. We represent such R and X using sets of the sorts 2R and 2C∪I, respectively. The
latter includes named individuals since we want to treat named and anonymous individuals using the same predicates. However,
named individuals a will only appear as singleton sets {a}. Formally, we are not allowed to treat individuals from the ABox in
this way, because then the set sorts (which need to be fixed) would depend on the ABox. We nevertheless do this in the following
and at the end of this section describe how to translate these DatalogS,¬ rules into Datalog¬ rules that are ABox-independent.

Instead of an atom C(x) (Carral, Dragoste, and Krötzsch 2018), we now use atoms of the form concept(C,X), where C ∈ C
is treated as a new constant and X is a set as described above (i.e. either a set of concept names or a singleton set containing an
individual name). Likewise, role atoms r(x, y) and R(x, y) are transformed into role(r,X, Y ) and roles(R,X, Y ), respectively.
Additionally, we distinguish sets X ⊆ C from sets {a} with a ∈ I by the predicate anon, which is populated by the following
rules, for all C ∈ C:

anon({C}) (1)
anon(X)→ anon(X ∪ {C}) (2)

We also compute the set of inverse roles of a set R, for all r ∈ R (Ortiz, Rudolph, and Šimkus 2010):

inv({r}, {r−}) (3)

inv(R,R−)→ inv(R ∪ {r}, R− ∪ {r−}) (4)



Additionally, the original rewriting uses atoms of the form n(x) and x ≈ y, which we simply adapt to n(X) and X ≈ Y , where
X,Y are as described above. We also add a predicate ind, which identifies all individual names from the ABox in order to
identify query answers in the end. This predicate represents a subset of the predicate n, which will also contain anonymous
individuals X that are inferred to represent a unique element in every interpretation.

The original Datalog rewriting starts with several auxiliary rules, which we translate below into their modified DatalogS,¬
form, for all C ∈ C and r ∈ R (Carral, Dragoste, and Krötzsch 2018, Figure 2):

concept(C,X)→ concept(>, X) (5)
role(r,X, Y )→ concept(>, X) ∧ concept(>, Y ) (6)

roles(R,X, Y ) ∧ n(Y ) ∧ inv(R,R−)→ roles(R−, Y,X) (7)
roles(R,X, Y ) ∧ r ∈ R→ role(r,X, Y ) (8)

C(x)→ concept(C, {x}) ∧ ind({x}) (9)
r(x, y)→ role(r, {x}, {y}) ∧ ind({x}) ∧ ind({y}) (10)
ind(X)→ n(X) (11)
X ≈ Y → Y ≈ X (12)

X ≈ Y ∧ Y ≈ Z → X ≈ Z (13)
concept(C,X) ∧X ≈ Y → concept(C, Y ) (14)

n(X) ∧X ≈ Y → n(Y ) (15)
roles(R,X, Y ) ∧X ≈ Z → roles(R,Z, Y ) (16)
roles(R,X, Y ) ∧ Y ≈ Z → roles(R,X,Z) (17)

Rules (9) and (10) were further modified from their originals to convert the ABox predicates into our DatalogS,¬ syntax in an
ABox-independent way. In a slight abuse of notation, on the left-hand side of Rule (9), C is treated as a concept name, and on
the right-hand side C is treated as a constant (similarly for Rule (10)).

The axioms of the TBox T are translated into the following DatalogS,¬ rules (Carral, Dragoste, and Krötzsch 2018, Figures 3
and 4). For every axiom of the form (i):

concept(C1, X) ∧ · · · ∧ concept(Cn, X)→ concept(D,X) (18)

For axioms of the form (ii):

concept(C,X)→ role(r,X, {D}) (19)

For axiom type (iii):

role(r,X, Y ) ∧ concept(C, Y )→ concept(D,X) (20)

concept(C,X) ∧ roles(R−, X, Y ) ∧ r ∈ R ∧ inv(R,R−) ∧ anon(Y )→ roles(R−, X, Y ∪ {D}) (21)

Axiom type (iv) requires more complex rules:

concept(D,Y ) ∧ role(r−, Y,X) ∧
concept(C,X) ∧ role(r,X,Z) ∧ concept(D,Z) ∧ n(Z)→ Y ≈ Z (22)

concept(C,X) ∧ r ∈ R ∧ roles(R,X, Y ) ∧ concept(D,Y ) ∧
anon(Y ) ∧ r ∈ S ∧ roles(S,X,Z) ∧ concept(D,Z) ∧ anon(Z)→ roles(R ∪ S,X, Y ∪ Z) (23)

concept(C,X) ∧ r ∈ R ∧ inv(R,R−) ∧ concept(D,Y ) ∧ roles(R−, Y,X) ∧
r ∈ S ∧ inv(S, S−) ∧ anon(Z) ∧ E ∈ Z ∧ roles(S,X,Z) ∧ concept(D,Z)→ concept(E, Y ) ∧

roles(R− ∪ S−, Y,X) (24)

concept(D,Y ) ∧ role(r−, Y,X) ∧ concept(C,X) ∧ n(X)→ n(Y ) (25)

In addition, we need the following rule that completes the translation of axioms of types (ii)–(iv) by adding the newly created
anonymous individuals to the required concepts:

role(r,X, Y ) ∧ C ∈ Y → concept(C, Y ) (26)

For axiom type (v):

concept(C,X)→ {a} ≈ X ∧ n({a}) (27)



For axiom type (vi), we use the predicate sup that connects each role name to the set of all its super-roles (Rule 29 is instantiated
for every s v t ∈ T or s− v t− ∈ T ):

→ sup(r, {r}) (28)
sup(r, S) ∧ s ∈ S → sup(r, S ∪ {t}) (29)

role(r,X, Y ) ∧ sup(r, S)→ roles(S,X, Y ) (30)

role(r−, X, Y ) ∧ sup(r, S) ∧ inv(S, S−)→ roles(S−, X, Y ) (31)

Finally, axiom type (vii) can be handled like a concept assertion:

→ concept(C, {a}) ∧ n({a}) (32)

So far, the rules did not use negation and can be seen as the first stratum of the final rule set. This part is already a rewriting of
any instance query over the TBox signature, i.e. concept(C, {a}) is contained in the least Herbrand model of these rules and an
ABox iff C(a) is entailed by the original TBox over the ABox (Carral, Dragoste, and Krötzsch 2018, Lemma 4). To be able to
answer arbitrary UCQs, we also need to encode the so-called filtration phase (Carral, Dragoste, and Krötzsch 2018).

Building a Canonical Model
The next stratum encodes Definition 7 from Carral, Dragoste, and Krötzsch (2018) by using negated atoms over the predicate n.
The goal of this part is to derive a dependency relation role.(r,X, Y ) that encodes the order in which individuals are created
during the construction of a model of the ontology. Extended individuals of the form tiR,X are used in this relation, where R ⊆ R,
X ⊆ C and i ∈ {0, 1, 2} (Carral, Dragoste, and Krötzsch 2018). Therefore, the sets X,Y in role.(r,X, Y ) are now considered
to be subsets of R∪C∪ I∪{0, 1, 2}, where again individuals can only occur in singleton sets {a}, and at most one index 0, 1, 2
can be present in any given set. In addition to role., the following rules also compute extensions role′ and concept′ of role and
concept, respectively, to the new individuals. Together, these three predicates describe a kind of canonical model (called CO)
over which UCQs will be answered.

As a prerequisite, we need to introduce an intermediate stratum to define a total order � on sets of the form R ∪X . For this
purpose, we consider an enumeration r1, . . . , rn, Cn+1, . . . , Cn+m of all role and concept names and use the following rules to
define the lexicographic order � based on the auxiliary relations ≺i and ≈i, i ∈ {1, . . . , n+m} (all using infix notation):

∅ ≈1 ∅ (33)
∅ ≺1 {r1} (34)
{r1} ≈1 {r1} (35)

X ≺1 Y → X ≺2 Y (36)
X ≈1 Y → X ≈2 Y (37)
X ≈1 Y → X ≺2 Y ∪ {r2} (38)
X ≈1 Y → X ∪ {r2} ≈2 Y ∪ {r2} (39)

...
X ≈n+m Y → X � Y (40)
X ≺n+m Y → X � Y (41)

The following rules, which use the negations of � and n from the previous strata, correspond to Definition 7 from Carral,
Dragoste, and Krötzsch (2018), where j = (i+ 1) mod 3:

n(X) ∧ role(r,X, Y ) ∧ n(Y )→ role.(r,X, Y ) ∧ role.(r
−, Y,X) (42)

n(X) ∧ roles(R,X, Y ) ∧ anon(Y ) ∧ ¬n(Y ) ∧ r ∈ R→ role.(r,X,R ∪ Y ∪ {0}) (43)
role.(r,X,R ∪ Y ∪ {i}) ∧ roles(S, Y, Z) ∧ anon(Z) ∧ ¬n(Z) ∧

s ∈ S ∧R ∪ Y � S ∪ Z → role.(s,R ∪ Y ∪ {i}, S ∪ Z ∪ {j}) (44)
role.(r,X,R ∪ Y ∪ {i}) ∧ roles(S, Y, Z) ∧ anon(Z) ∧ ¬n(Z) ∧

s ∈ S ∧R ∪ Y 6� S ∪ Z → role.(s,R ∪ Y ∪ {i}, S ∪ Z ∪ {i}) (45)
role.(s,X,R ∪ Y ∪ {i}) ∧ role(r, Y, Z) ∧ n(Z)→ role.(r,R ∪ Y ∪ {i}, Z) ∧ (46)

role.(r
−, Z,R ∪ Y ∪ {i}) (47)

role.(s,X, Y ) ∧ concept(C, Y )→ concept′(C, Y ) (48)

role.(s,X,R ∪ Y ∪ {i}) ∧ concept(C, Y )→ concept′(C,R ∪ Y ∪ {i}) (49)

role.(r,X, Y )→ role′(r,X, Y ) ∧ role′(r−, Y,X) (50)



The least Herbrand model of these rules (restricted to role., concept′, and role′) corresponds to the set CO (Carral, Dragoste, and
Krötzsch 2018). Conditions of the type “tiR,Y is in CO” are translated into body atoms like role.(r,X,R ∪ Y ∪ {i}) since these
new individuals are only introduced into CO inside of role.-facts.

Encoding the Filtration
Finally, we encode Definition 8 from Carral, Dragoste, and Krötzsch (2018), which constructs a family of graphs that use the
variables of a given CQ as vertices, and their edges encode possible matches of the CQ into CO. Some of these matches have to
be filtered out since they lead to spurious answers. We assume that the input CQ q is of the form ∃v1, . . . , v`.φ(v1, . . . , vk), i.e.
v`+1, . . . , vk are the free variables (UCQs can be treated by encoding each component CQ individually and then merging the
results in a single predicate). By φ(V1, . . . , Vk) we denote the result of replacing each concept atomC(vi) in φ by concept′(C, Vi)
and similarly r(vi, vj) by role′(r, Vi, Vj), where each Vi is viewed as a set variable over R ∪C ∪ {i} and denotes a possible
mapping of vi into CO. We use the indices 1, . . . , k to refer to the vertices in the graphs that are constructed, and atoms of the
form edge(i, j, V1, . . . , Vk) to denote an edge from i to j (which depends on a specific instantiation of all variables by individuals
in CO).

The following are the rules corresponding to the first part of Definition 8 from Carral, Dragoste, and Krötzsch (2018), for all
role atoms r(vi, vj) in φ:

φ(V1, . . . , Vk) ∧ role.(r, Vi, Vj) ∧ ¬role.(r
−, Vj , Vi)→ edge(i, j, V1, . . . , Vk) (51)

φ(V1, . . . , Vk) ∧ role.(r
−, Vj , Vi) ∧ ¬role.(r, Vi, Vj)→ edge(j, i, V1, . . . , Vk) (52)

Now, for all i, j ∈ {1, . . . , k}, we apply the following rules to collapse this graph according to Definition 8 from Carral, Dragoste,
and Krötzsch (2018):

edge(i, j, V1, . . . , Vk) ∧ edge(m, j, V1, . . . , Vk)→ equal(i,m, V1, . . . , Vk) (53)
edge(i, j, V1, . . . , Vk) ∧ edge(m,n, V1, . . . , Vk) ∧ equal(j, n, V1, . . . , Vk)→ equal(i,m, V1, . . . , Vk) (54)

We now need to check whether the resulting graph is a rooted directed forest, i.e. contains no cycles and no “diamonds” that
reconnect different branches:

edge(i, j, V1, . . . , Vk)→ reach(i, j, V1, . . . , Vk) (55)
reach(i, j, V1, . . . , Vk) ∧ equal(j,m, V1, . . . , Vk)→ reach(i,m, V1, . . . , Vk) (56)
reach(i, j, V1, . . . , Vk) ∧ equal(i,m, V1, . . . , Vk)→ reach(m, j, V1, . . . , Vk) (57)
reach(i, j, V1, . . . , Vk) ∧ edge(j,m, V1, . . . , Vk)→ reach(i,m, V1, . . . , Vk) (58)

reach(i, i, V1, . . . , Vk)→ bad(V1, . . . , Vk) (59)
edge(i, j, V1, . . . , Vk) ∧ edge(i,m, V1, . . . , Vk) ∧ ¬equal(j,m, V1, . . . , Vk) ∧

reach(j, n, V1, . . . , Vk) ∧ reach(m,n, V1, . . . , Vk)→ bad(V1, . . . , Vk) (60)

Finally, we can use the predicate bad to filter out spurious matches and return the actual answers to q in the predicate Pq:

φ(V1, . . . , Vk) ∧ ¬bad(V1, . . . , Vk)→ P ′q(V`+1, . . . , Vk) (61)

P ′q(V`+1, . . . , Vk) ∧ ind(V`+1) ∧ · · · ∧ ind(Vk) ∧ a`+1 ∈ V`+1 ∧ · · · ∧ ak ∈ Vk → Pq(a`+1, . . . , ak) (62)

From DatalogS,¬ to Datalog¬

To simulate set terms in plain Datalog¬, we adapt an existing construction, which did not deal with negation or ABox-independent
rule sets (Ortiz, Rudolph, and Šimkus 2010). First, each set union t1 ∪ t2 over the domain S is replaced with a fresh variable X
and the ternary atom US(t1, t2, X) is added to the body of the rule in which this term occurs. New rules are added to simulate
the set union with this predicate (see below). Then, sets X ⊆ S are represented as bit vectors of length |S| and set variables as
vectors of variables, and all atoms are replaced accordingly. This gets rid of all set expressions while increasing the arity of the
predicates polynomially.

The main problem we face here is that we used singleton sets {a} to refer to individual names a from the ABox, which
means that the set sort 2C∪I was treated as if it contained all these individual names, although our translation cannot depend
on the ABox (see Definition 1). To avoid this issue, we modify the bit vector encoding above to directly represent constants
by themselves. For this, recall that individual names a can only occur in singleton sets {a}, because sets X are only extended
if they belong to anon (see, e.g. Rules (21), (23), or (43)). Thus, we can represent each instantiated set X , which is either of
the form {a} or a subset of C, as a vector (a, 0, . . . , 0) or (0, b1, . . . , bm), respectively, where m = |C| and bi = 1 iff the i-th
concept name of C is in X (according to some fixed enumeration of C). The new constants 0 and 1 are used to represent bit
values. Correspondingly, set variables X are split into vectors (x0, x1, . . . , xm), where x0 holds the individual name (if any) and



x1, . . . , xm represent a subset of C. The encoding works similarly for sets of the sorts 2R, 2R∪C, and 2R∪C∪I∪{0,1,2} that are
employed in the rewriting above. For example, the Datalog¬ versions of Rules (9) and (19) are

C(x)→ concept(C, x, 0, . . . , 0) ∧ ind(x, 0, . . . , 0), and (63)
concept(C, x0, . . . , xm)→ role(r, x0, . . . , xm, 0, b1, . . . , bm), (64)

respectively, where bi = 1 iff D is the i-th concept name in C.
Apart from the new predicates like UC∪I, this encoding clearly preserves the stratification of the original rule set. The

following additional rules are used to define UC∪I, and similarly for the other set sorts:

→ max(0, 0, 0) (65)
→ max(1, 0, 1) (66)
→ max(0, 1, 1) (67)
→ max(1, 1, 1) (68)

max(x1, y1, z1) ∧ · · · ∧max(xm, ym, zm)→ UC∪I(0, x1, . . . , xm, 0, y1, . . . , ym, 0, z1, . . . , zm), (69)

This suffices to define the set union since we never need to compute unions involving singleton sets {a} with a ∈ I. These
additional rules can be included in the first stratum since max and US do not occur in any other rule heads.

This finishes the presentation of the Datalog¬ rewriting for any UCQ over a Horn-ALCHOIQ TBox. Its correctness follows
mainly from an existing result (Carral, Dragoste, and Krötzsch 2018, Theorem 3) since we only translated the relevant definitions
into DatalogS,¬ rules. It can also be verified that the resulting set of Datalog¬ rules is of polynomial size.

B Proof of Theorem 5
We show how to construct the eKAB task (∆n,O, Iw, g) such that M accepts a word w of length n iff there is a plan of length 1.
The construction is based on the 2EXPTIME-hardness proof for Horn-SROIQ (Ortiz, Rudolph, and Šimkus 2010) and uses only
a single action with precondition [∃x.B(x)] and unconditional effect g. We do not repeat all details of the original construction
here, but only adapt the relevant parts. The proof encodes the Turing machine M and an input word w into a TBox T using the
two objects o and e such that M accepts w iff at least one unary predicate Hqf (representing a final state of the TM) is empty in
every model of T . The original proof then goes on to add axioms Hqf v ⊥ to force T to become unsatisfiable in such a case.
Since we require the initial state to be consistent with the TBox, we instead use the axioms Hqf v B, which allows us to query
for ∃x.B(x) instead of checking unsatisfiability.

We further adapt the original reduction by extracting from T the description of the input word w into a state Iw. For
w = w0 . . . wn−1, T contains the following axioms to encode the input tape (notation is slightly adjusted to avoid clashes):

{o} v I1 uHq0 (70)
Ij v Awj

u ∀h.Ij+1 (0 ≤ j < n) (71)

Ij v Hr (1 ≤ j < n) (72)
In v A� (73)
In v ∀h.In (74)

The object o indicates the starting point of the tape, and the unary predicates Ij identify the first n cells, which are connected via
the binary predicate h. The predicates Awj indicate the presence of the input symbols in these cells. The predicates Hq0 and Hr

indicate the presence and absence of the head, respectively. Finally, all cells to the right of the input word are labeled with a
blank symbol � by using the auxiliary predicate In. We leave the axioms (72)–(74) in the TBox, but replace (70)–(71) by the
following axioms (75)–(76) and assertions for Iw (77)–(78):

Sj,a v ∀hj .Ij uAa (0 ≤ j < n, a ∈ Σ) (75)
In−1 v ∀hn.In (76)

Hq0(o) (77)
Sj,wj (o) (0 ≤ j < n) (78)

Here, ∀hj stands for j nested restrictions of the form ∀h, and Sj,a indicates the presence of the symbol a of the TM alphabet Σ
at cell j. In this way, the final TBox Tn only depends on the length n of the input word w, but not on w itself. The final domain
description is ∆n = (Pn,An, Tn), where Pn contains all symbols from Tn as well as g, and An consists of the single action
described above.



C Proof of Theorem 6
The proof follows the same arguments as for Theorem 5, the only difference being how the domain description ∆n and state Iw
are obtained. For CQ entailment in ALCI, we adapt a reduction from a (universal) AEXPSPACE Turing machine (Lutz 2007).
The single action we use in the reduction will have a precondition [qw], where qw is the CQ from that reduction, which, despite
its name, does not depend on the input word w = w0 . . . wn−1, but only on the length n. Again, the only adaption we have to
do is to extract the part of the TBox encoding the input word into a state Iw. Consider the relevant axioms (again with slightly
adapted notation), where 0 ≤ j < n (Lutz 2007):(

R u I
)
(o) (79)

I v ∀sn+2.
(
(Gh u (pos = j))→ wj

)
(80)

I v ∀sn+2.
(
(Gh u (pos = 0))→ q0

)
(81)

I v ∀sn+2.
(
(Gh u (pos ≥ n))→ b

)
(82)

Here, R u I describes the starting point of the initial configuration and its sn+2-successors marked with Gh identify the
exponentially many tape cells. The counter pos identifies particular cells, wj describes the tape content, q0 the initial state, and b
the blank symbol. We use a similar trick as before to split (80) into ABox facts and TBox axioms that do not depend on the input
word w, but only on its length (for all 0 ≤ j < n, a ∈ Σ):

Sj,a v ∀sn+2.
(
(Gh u (pos = j))→ a

)
(83)

Sj,wj
(o) (84)

The state Iw now consists of all facts (84) as well as (79), and all other axioms are part of Tn. The remaining arguments are the
same as in the proof of Theorem 5.

The reduction for CQ entailment over SH TBoxes (Eiter et al. 2009b) is very similar to the previous case, except that the
predicates R and Gh are not used, sn+2 is replaced by rn+1, wj is replaced by ∀r.(Eh → wj), and similarly for q0 and b (many
other details not relevant here are different as well). Hence, we can use very similar adaptations.

D Benchmark Description
Our collection of benchmarks consists of a total of 235 instances adapted from the publicly available DL-Lite eKAB benchmark
collection (Borgwardt et al. 2021) as well as newly developed high expressivity domains. The benchmarks and the compiler are
available in the supplementary material. Each problem instance has two representations: the Horn-SHIQ eKAB task encoding
with an ontology written in Turtle5 and its compilation into PDDL.

Adapted DL-Lite eKAB benchmarks: We translated the original benchmarks into equivalent representations in our Horn-
SHIQ eKAB task encoding. Detailed descriptions of these domains are available online. In short,
• in Robot (Calvanese et al. 2016), a robot is positioned on a grid without knowing its position and the goal is to reach a target

cell. The ontology describes relations between rows and columns.
• The goal of TaskAssign, inspired by (Calvanese et al. 2016), is to hire two electronic engineers for a company, while the

ontology describes relations between different job positions.
• The Elevator and Cats benchmarks are inspired by standard planning benchmarks. In the Cats domain, there is a set of

packages that contain either cats or bombs and the task is to disarm all bombs. An elevator in the Elevator benchmark can
move up and down between floors to serve passengers according to their origins and destinations.

• Both the VTA and TPSA benchmarks are adaptations from older work on semantic web-service composition (Hoffmann et al.
2008). VTA-Roles is a more complex variant of VTA.

High Expressivity Domains:
• Drones models a complex 2D drone navigation problem, in which drones need to be moved while avoiding certain situations;

the latter is given by ontology reasoning, involving Horn concept inclusions with qualified existential restrictions occurring
negatively and symmetric roles. Grid cells are occupied with different objects like Humans or Trees or weather conditions
like LowVisibility or Rain. There is a set of Drones randomly placed on the board. Depending on the distances to other
objects, a Drone can enter a critical state (defined by the ontology). The goal is to move the drones such that no two drones
in a critical state are next to each other. In the benchmark, instances vary in the board size and the number of drones. We have
chosen the instances such that some of them remain hard for the planner to solve. The compilation itself is always very fast.

• Queens generalizes the eight queens puzzle from chess to variable numbers of board sizes, n ∈ {5, . . . , 10}, and queens,
m ∈ {n− 4, . . . , n}. In the initial state, queens are placed randomly and the ontology contains a symmetric, transitive role to
describe which queen movements are legal. Similarly to Drones, the planner must find a sequence of legal moves such that no
two queens threaten each other.
5https://www.w3.org/TR/turtle/



• RobotConj is a redesign of Robot, moving complexity from action descriptions into the ontology. The original Robot
benchmark encoded static knowledge about 2D-grid cell adjacency in the action descriptions, which via the use of Horn
clauses can be encoded much more naturally directly in the ontology. More precisely, in a slightly simplified notation, the
action MoveDown contains the two redundant conditional effects

(when (and (AboveOf1 ?x) (BelowOf2 ?x)) (85)
(Row0 ?x)),

which one can read as “if the robot is above or in row 1 and below row 2, then move the robot to row 0”, and

(when (Row1 ?x)) (86)
(Row0 ?x)),

i.e. “if the robot position is in row 1, then move the robot to row 0”. However, encoding the static knowledge that AboveOf1
and BelowOf2 imply Row1 is beyond DL-Lite. Moreover, the actions MoveUp, MoveLeft, and MoveRight have similar
redundant effects. For RobotConj we have simplified these descriptions by using axioms like AboveOf1uBelowOf2 v Row1,
which allows us to get rid of (85).


