Review: The Relational Calculus

What we have learned so far:

- There are many ways to describe databases:
 - named perspective, unnamed perspective, interpretations, ground facts, (hyper)graphs
- There are many ways to describe query languages:
 - relational algebra, domain independent FO queries, safe-range FO queries, active domain FO queries, Codd’s tuple calculus
 - either under named or under unnamed perspective

All of these are largely equivalent: The Relational Calculus

Next question: How hard is it to answer such queries?

How to Measure Complexity of Queries?

- Complexity classes often for decision problems (yes/no answer)
- database queries return many results (no decision problem)
- The size of a query result can be very large
- it would not be fair to measure this as “complexity”
- In practice, database instances are much larger than queries
- can we take this into account?

Query Answering as Decision Problem

We consider the following decision problems:

- **Boolean query entailment**: given a Boolean query q and a database instance I, does $I \models q$ hold?
- **Query of tuple problem**: given an n-ary query q, a database instance I and a tuple $\langle c_1, \ldots, c_n \rangle$, does $\langle c_1, \ldots, c_n \rangle \in M[q](I)$ hold?
- **Query emptiness problem**: given a query q and a database instance I, does $M[q](I) \neq \emptyset$ hold?

\leadsto Computationally equivalent problems (exercise)
The Size of the Input

Combined Complexity
Input: Boolean query \(q \) and database instance \(I \)
Output: Does \(I \models q \) hold?

- estimates complexity in terms of overall input size
- "2KB query/2TB database" = "2TB query/2KB database"
- study worst-case complexity of algorithms for fixed queries:

Data Complexity
Input: database instance \(I \)
Output: Does \(I \models q \) hold? (for fixed \(q \))

- we can also fix the database and vary the query:

Query Complexity
Input: Boolean query \(q \)
Output: Does \(I \models q \) hold? (for fixed \(I \))

Review: Computation and Complexity Theory

The Turing Machine (1)

Computation is usually modelled with **Turing Machines (TMs)**

- "algorithm" = "something implemented on a TM"

A TM is an automaton with (unlimited) working memory:
- It has a finite set of states \(Q \)
- \(Q \) includes a start state \(q_{\text{start}} \) and an accept state \(q_{\text{acc}} \)
- The memory is a tape with numbered cells \(0, 1, 2, \ldots \)
- Each tape cell holds one symbol from the set of tape symbols \(\Gamma \)
- There is a special symbol \(\alpha \) for empty tape cells
- The TM has a transition relation \(\Delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{l, r, s\}) \)
- \(\Delta \) might be a partial function \((Q \times \Gamma) \rightarrow (Q \times \Gamma \times \{l, r, s\}) \)
- \(\Delta \) might be deterministic TM (DTM); otherwise nondeterministic TM

There are many different but equivalent ways of defining TMs.

The Turing Machine (2)

TMs operate step-by-step:
- At every moment, the TM is in one state \(q \in Q \) with its read/write head at a certain tape position \(p \in \mathbb{N} \), and the tape has a certain contents \(\underbrace{r_0 r_1 r_2 \cdots}_{\text{with all } r_i \in \Gamma} \)
- the current configuration of the TM
- The TM starts in state \(q_{\text{start}} \) and at tape position 0.
- Transition \((q, \sigma, q', \sigma', d) \in \Delta \) means:
 - if in state \(q \) and the tape symbol at its current position is \(\sigma \),
 - then change to state \(q' \), write symbol \(\sigma' \) to tape, move head by \(d \) (left/right/stay)
- If there is more than one possible transition, the TM picks one nondeterministically
- The TM halts when there is no possible transition for the current configuration (possibly never)

A computation path (or run) of a TM is a sequence of configurations that can be obtained by some choice of transition.
Languages Accepted by TMs

The (nondeterministic) TM accepts an input \(\sigma_1 \cdots \sigma_n \in (\Gamma \setminus \{\alpha\})^* \) if, when started on the tape \(\sigma_1 \cdots \sigma_m \ldots \),

1. the TM halts on every computation path and
2. there is at least one computation path that halts in the accepting state \(q_{\text{acc}} \in Q \).

Solving Computation Problems with TMs

A decision problem is a language \(L \) of words over \(\Sigma = \Gamma \setminus \{\alpha\} \) if it consists of all inputs for which the answer is "yes".

A TM decides a decision problem \(L \) if it halts on all inputs and accepts exactly the words in \(L \).

TMs take time (number of steps) and space (number of cells):

- **Time** \(f(n) \): Problems that can be decided by a DTM in \(O(f(n)) \) steps, where \(f(n) \) is a function of the input length \(n \)
- **Space** \(f(n) \): Problems that can be decided by a DTM using \(O(f(n)) \) tape cells, where \(f(n) \) is a function of the input length \(n \)
- **NTime** \(f(n) \): Problems that can be decided by a TM in at most \(O(f(n)) \) steps on any of its computation paths
- **NSpace** \(f(n) \): Problems that can be decided by a TM using at most \(O(f(n)) \) tape cells on any of its computation paths

Some Common Complexity Classes

- **P** = **PTime** = \(\bigcup_{k \geq 1} \text{Time}(n^k) \)
- **Exp** = **ExpTime** = \(\bigcup_{k \geq 1} \text{Time}(2^{n^k}) \)
- **2Exp** = **2ExpTime** = \(\bigcup_{k \geq 1} \text{Time}(2^{2^{n^k}}) \)
- **ETime** = \(\bigcup_{k \geq 1} \text{Time}(2^{n^k}) \)
- **L** = **LogSpace** = **Space**(\(\log n \))
- **NP** = \(\bigcup_{k \geq 1} \text{NTime}(n^k) \)
- **NExp** = **NExpTime** = \(\bigcup_{k \geq 1} \text{NTime}(2^{n^k}) \)
- **N2Exp** = **N2ExpTime** = \(\bigcup_{k \geq 1} \text{NTime}(2^{2^{n^k}}) \)
- **ExpSpace** = \(\bigcup_{k \geq 1} \text{Space}(2^{n^k}) \)

NP

NP = Problems for which a possible solution can be verified in **P**:

- for every \(w \in L \), there is a certificate \(c_w \in \Sigma^* \), such that
- the length of \(c_w \) is polynomial in the length of \(w \), and
- the language \(\{ w \# c_w | w \in L \} \) is in **P**

Equivalent to definition with nondeterministic TMs:

- \(\Rightarrow \) nondeterministically guess certificate; then run verifier DTM
- \(\Leftarrow \) use accepting polynomial run as certificate; verify TM steps
NP Examples

Examples:
• Sudoku solvability (certificate: filled-out grid)
• Composite (non-prime) number (certificate: factorization)
• Prime number (certificate: see Wikipedia “Primality certificate”)
• Propositional logic satisfiability (certificate: satisfying assignment)
• Graph colourability (certificate: coloured graph)

NP and coNP

Note: Definition of NP is not symmetric
• there does not seem to be any polynomial certificate for Sudoku unsolvability or logic unsatisfiability
• converse of an NP problem is coNP
• similar for NExpTime and N2ExpTime

Other classes are symmetric:
• Deterministic classes (coP = P etc.)
• Space classes mentioned above (esp. coNL = NL)

Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:
• r_i means “vertex i is red”
• g_i means “vertex i is green”
• b_i means “vertex i is blue”

Colouring conditions on vertices:
\[(r_1 \land \neg g_1 \land \neg b_1) \lor (\neg r_1 \land g_1 \land \neg b_1) \lor (\neg r_1 \land \neg g_1 \land b_1)\]
(and so on for all vertices)

Colouring conditions for edges:
\[\neg(r_1 \land r_2) \land \neg(g_1 \land g_2) \land \neg(b_1 \land b_2)\]
(and so on for all edges)

Satisfying truth assignment \(\Leftrightarrow\) valid colouring

Defining Reductions

Definition 3.1: Consider languages \(L_1, L_2 \subseteq \Sigma^*\). A computable function \(f : \Sigma^* \rightarrow \Sigma^*\) is a many-one reduction from \(L_1\) to \(L_2\) if:
\[w \in L_1 \text{ if and only if } f(w) \in L_2\]

\(\Rightarrow\) we can solve problem \(L_1\) by reducing it to problem \(L_2\)
\(\Rightarrow\) only useful if the reduction is much easier than solving \(L_1\) directly
\(\Rightarrow\) polynomial many-one reductions
The Structure of NP

Idea: polynomial many-one reductions define an order on problems

NP-Hardness und NP-Completeness

Theorem 3.2 (Cook 1971; Levin 1973): All problems in NP can be polynomially many-one reduced to the propositional satisfiability problem (SAT).

- NP has a maximal class that contains a practically relevant problem
- If SAT can be solved in P, all problems in NP can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since . . .

Definition 3.3: A language is
- NP-hard if every language in NP is polynomially many-one reducible to it
- NP-complete if it is NP-hard and in NP

Comparing Complexity Classes

Is any NP-complete problem in P?
- If yes, then P = NP
- Nobody knows ~ biggest open problem in computer science
- Similar situations for many complexity classes

Some things that are known:

\[L \subseteq NL \subseteq P \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{ExpTime} \subseteq \text{NExpTime} \]

- None of these is known to be strict
- But we know that P \subseteq ExpTime and NL \subseteq PSpace
- Moreover PSpace = NPSPACE (by Savitch's Theorem)

(see TU Dresden course complexity theory for many more details)

Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems ~ what to use for P and below?

Definition 3.4: A LogSpace transducer is a deterministic TM with three tapes:
- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

Such a TM needs a slightly different form of transitions:
- transition function input: state, input tape symbol, working tape symbol
- transition function output: state, working tape write symbol, input tape move, working tape move, output tape symbol or α to not write anything to the output

(see TU Dresden course complexity theory for many more details)
The Power of LogSpace

LogSpace transducers can still do a few things:

- store a constant number of counters and increment/decrement the counters
- store a constant number of pointers to the input tape, and locate/read items that start at this address from the input tape
- access/process/compare items from the input tape bit by bit

Example 3.5: Adding and subtracting binary numbers, detecting palindromes, comparing lists, searching items in a list, sorting lists, ... can all be done in L.

Joining Two Tables in LogSpace

Input: two relations R and S, represented as a list of tuples

- Use two pointers \(p_R \) and \(p_S \) pointing to tuples in R and S, respectively
- Outer loop: iterate \(p_R \) over all tuples of R
- Inner loop for each position of \(p_R \): iterate \(p_S \) over all tuples of S
 - Use another two loops that iterate over the columns of R and S
 - Compare attribute names bit by bit
 - For matching attribute names, compare the respective tuple values bit by bit
- If all joined columns agree, copy the relevant parts of tuples \(p_R \) and \(p_S \) to the output (bit by bit)

Output: \(R \bowtie S \)

\(\bowtie \) Fixed number of pointers and counters
(making this fully formal is still a bit of work; e.g., an additional counter is needed to move the input read head to the target of a pointer (seek))

LogSpace reductions

LogSpace functions: The output of a LogSpace transducer is the contents of its output tape when it halts \(\leadsto \) a partial function \(\Sigma^* \rightarrow \Sigma^* \)

Note: the composition of two LogSpace functions is LogSpace (exercise)

Definition 3.6: A many-one reduction \(f \) from \(\mathcal{L}_1 \) to \(\mathcal{L}_2 \) is a LogSpace reduction if it is implemented by some LogSpace transducer.

\(\leadsto \) can be used to define hardness for classes P and NL

From L to NL

NL: Problems whose solution can be verified in L

Example: Reachability

- Input: a directed graph \(G \) and two nodes \(s \) and \(t \) of \(G \)
- Output: accept if there is a directed path from \(s \) to \(t \) in \(G \)

Algorithm sketch:

- Store the id of the current node and a counter for the path length
- Start with \(s \) as current node
- In each step, increment the counter and move from the current node to one of its direct successors (nondeterministic)
- When reaching \(t \), accept
- When the step counter is larger than the total number of nodes, reject
Beyond Logarithmic Space

Propositional satisfiability can be solved in linear space:
\[\leadsto\] iterate over possible truth assignments and check each in turn

More generally: all problems in NP can be solved in PSpace
\[\leadsto\] try all conceivable polynomial certificates and verify each in turn

What is a “typical” (that is, hard) problem in PSpace?
\[\leadsto\] Simple two-player games, and other uses of alternating quantifiers

Example: Playing “Geography”

A children’s game:
- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city loses.

A mathematicians’ game:
- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node loses.

Question: given a certain graph and start node, can Player 1 enforce a win (i.e., does he have a winning strategy)?
\[\leadsto\] PSpace-complete problem

Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:
\[\bigodot_1 X_1 . \bigodot_2 X_2 . \cdots . \bigodot_n X_n . \varphi \big[X_1 , \ldots , X_n \big] \]

where \(\bigodot_i \in \{ \exists , \forall \} \) are quantifiers, \(X_i \) are propositional logic variables, and \(\varphi \) is a propositional logic formula with variables \(X_1 , \ldots , X_n \) and constants \(\top \) (true) and \(\bot \) (false)

Semantics:
- Propositional formulae without variables (only constants \(\top \) and \(\bot \)) are evaluated as usual
- \(\exists X_1 . \varphi \big[X_1 \big] \) is true if either \(\varphi \big[X_1 / \top \big] \) or \(\varphi \big[X_1 / \bot \big] \) are
- \(\forall X_1 . \varphi \big[X_1 \big] \) is true if both \(\varphi \big[X_1 / \top \big] \) and \(\varphi \big[X_1 / \bot \big] \) are

Question: Is a given QBF formula true?
\[\leadsto\] PSpace-complete problem

A Note on Space and Time

How many different configurations does a TM have in space \((f(n)) \)?
\[|Q| \cdot f(n) \cdot |\Gamma|^{f(n)}\]
\[\leadsto\] No halting run can be longer than this
\[\leadsto\] A time-bounded TM can explore all configurations in time proportional to this

Applications:
- \(L \subseteq P \)
- \(\text{PSpace} \subseteq \text{ExpTime} \)
Summary and Outlook

The complexity of query languages can be measured in different ways

Relevant complexity classes are based on restricting space and time:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq \text{PSpace} \subseteq \text{ExpTime} \]

Problems are compared using many-one reductions

\(\leadsto \) see TU Dresden course Complexity Theory for further details and deeper insights

Open questions:

- Now how hard is it to answer FO queries? (next lecture)
- We saw that joins are in LogSpace – is this tight?
- How can we study the expressiveness of query languages?