

Exercise 4 – Algebraic Properties of Bisimilarity

Let $Names$ be a set of names and derive the set of actions by $\text{Act} = Names \cup \overline{Names} \cup \{\tau\}$ ($\tau \notin Names \cup \overline{Names}$). The process calculus $\text{CCS}(\text{Act}, \mathcal{K}, \mathcal{T}_{\mathcal{K}})$ is the smallest set of processes Pr derived from the following grammar.

$$P ::= \mathbf{0} \mid \mu.P \mid P \mid P \mid P + P \mid \nu a P \mid K$$

where $\mu \in \text{Act}$, $a \in Names$, and $K \in \mathcal{K}$. The semantics of $\text{CCS}(\text{Act}, \mathcal{K}, \mathcal{T}_{\mathcal{K}})$ is given as the smallest transition relation $\rightarrow \subseteq \text{Pr} \times \text{Act} \times \text{Pr}$ satisfying the rules below and $\mathcal{T}_{\mathcal{K}}$ (i.e., $\mathcal{T}_{\mathcal{K}} \subseteq \rightarrow$).

$$\begin{array}{c} \text{PRE} \frac{}{\mu.P \xrightarrow{\mu} P} \\ \text{SUM}_L \frac{P \xrightarrow{\mu} P'}{P + Q \xrightarrow{\mu} P'} \quad \text{SUM}_R \frac{Q \xrightarrow{\mu} Q'}{P + Q \xrightarrow{\mu} Q'} \quad \text{RES} \frac{P \xrightarrow{\mu} P'}{\nu a P \xrightarrow{\mu} \nu a P'} \mu \notin \{a, \bar{a}\} \\ \text{PAR}_L \frac{P \xrightarrow{\mu} P'}{P \mid Q \xrightarrow{\mu} P' \mid Q} \quad \text{PAR}_R \frac{Q \xrightarrow{\mu} Q'}{P \mid Q \xrightarrow{\mu} P \mid Q'} \quad \text{COMM} \frac{P \xrightarrow{\mu} P' \quad Q \xrightarrow{\bar{\mu}} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q'} \tau \notin \{\mu, \bar{\mu}\} \end{array}$$

Task 1. – Some Algebraic Properties of Bisimilarity

The language $\text{CCS}(\text{Act}, \emptyset, \emptyset)$ is often referred to as *finCCS*.

- Show that \mid is not idempotent.
- Given an example process P with $P \not\simeq \mathbf{0}$ for which $P \mid P \simeq P$ holds. Can P be a *finCCS* process?
- Does it hold that $\mu.(P + Q) \simeq \mu.P + \mu.Q$? What about $(P + Q) \mid R \simeq (P \mid R) + (Q \mid R)$?

Task 2. – The Relabeling Operator

Milner introduced the additional process operator of relabeling to CCS. A function $f : \text{Act} \rightarrow \text{Act}$ is called a relabeling if $f(\bar{a}) = \overline{f(a)}$ and $f(\tau) = \tau$. Process $P \in \text{CCS}$ under relabeling f is the process $P[f]$ and its semantics is given by the following rule.

$$\text{REL} \frac{P \xrightarrow{\mu} P'}{P[f] \xrightarrow{f(\mu)} P'[f]}$$

In contrast, a name substitution $\sigma : Names \rightarrow Names$ applied to process P replaces every occurrence of name $a \in Names$ by $\sigma(a)$. Consequently, $\sigma(\bar{a}) = \overline{\sigma(a)}$.

- Show that \simeq is preserved by relabeling.
- Show that $(P + Q)[f] = P[f] + Q[f]$.
- Is it true that $(P \mid Q)[f] \simeq P[f] \mid Q[f]$? If not, impose conditions on f so that the property holds.
- Same question for $(\nu a P)[f] \simeq \nu a P[f]$.

e) Consider relabeling function $f = \{b \mapsto a\}$ (identity on all other actions; note, $f(\bar{b}) = \bar{a}$) and name substitution $\sigma = \{b \mapsto a\}$. Show that for process $P \stackrel{\text{def}}{=} a \mid \bar{b}$, $P[f]$ is not bisimilar to $P\sigma = a \mid \bar{a}$.

f) Show that bisimilarity is not preserved by substitution. Therefore, find two *finCCS* processes being with no restriction, becoming different under name substitution.

Task 3. – CSP-like Parallel Composition

Let $A \subseteq \text{Names}$. Process $P \parallel_A Q$ is defined as

$$P \parallel_A Q \stackrel{\text{def}}{=} \nu a (P \mid Q)$$

where a is the sequence of all names in A .

a) Show that \parallel_A is commutative but not associative.

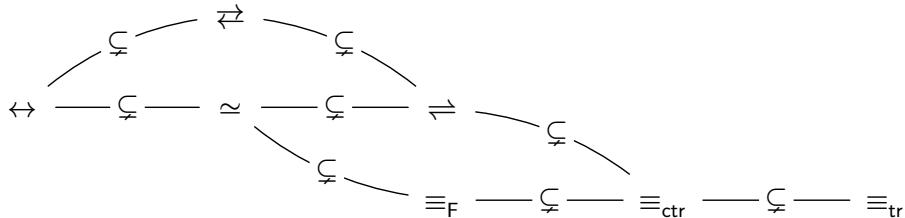


Figure 1: Our Linear-Time Branching-Time Spectrum

Task 4. – Congruence Properties in the Spectrum

Reconsider our spectrum in Figure 1 for compositionality and check, which of the equivalences is a congruence for CCS.