Review: Datalog

A rule-based recursive query language

father(alice, bob)
mother(alice, carla)

Parent(x, y) ← father(x, y)
Parent(x, y) ← mother(x, y)

SameGeneration(x, x)
SameGeneration(x, y) ← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

- Datalog is more complex than FO query answering
- Datalog is more expressive than FO query answering
- Semipositive Datalog with a successor ordering captures P
- Datalog containment is undecidable

Remaining question: How can Datalog query answering be implemented?
Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by almost all DBMS

\[\Rightarrow \] many specific implementation and optimisation techniques

How can Datalog queries be answered in practice?

\[\Rightarrow \] techniques for dealing with recursion in DBMS query answering
Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by almost all DBMS
⇒ many specific implementation and optimisation techniques

How can Datalog queries be answered in practice?
⇒ techniques for dealing with recursion in DBMS query answering

There are two major paradigms for answering recursive queries:
 • **Bottom-up**: derive conclusions by applying rules to given facts
 • **Top-down**: search for proofs to infer results given query
We already saw a way to compute Datalog answers bottom-up: the step-wise computation of the consequence operator T_P

Bottom-up computation is known under many names:

- **Forward-chaining** since rules are “chained” from premise to conclusion (common in logic programming)
- **Materialisation** since inferred facts are stored (“materialised”) (common in databases)
- **Saturation** since the input database is “saturated” with inferences (common in theorem proving)
- **Deductive closure** since we “close” the input under entailments (common in formal logic)
Naive Evaluation of Datalog Queries

A direct approach for computing T_P^∞

```plaintext
01 $T_P^0 := \emptyset$
02 $i := 0$
03 repeat:
04     $T_P^{i+1} := \emptyset$
05     for $H \leftarrow B_1 \land \ldots \land B_\ell \in P$
06         for $\theta \in B_1 \land \ldots \land B_\ell(T_P^i)$
07             $T_P^{i+1} := T_P^{i+1} \cup \{H\theta\}$
08     $i := i + 1$
09 until $T_P^{i-1} = T_P^i$
10 return $T_P^i$
```

Notation for line 06/07:

- a substitution θ is a mapping from variables to database elements
- for a formula F, we write $F\theta$ for the formula obtained by replacing each free variable x in F by $\theta(x)$
- for a CQ Q and database I, we write $\theta \in Q(I)$ if $I \models Q\theta$
What’s Wrong with Naive Evaluation?

An example Datalog program:

\[
\begin{align*}
\text{e(1, 2) e(2, 3) e(3, 4) e(4, 5)} \\
(R1) & \quad T(x, y) \leftarrow e(x, y) \\
(R2) & \quad T(x, z) \leftarrow T(x, y) \land T(y, z)
\end{align*}
\]

\[
\begin{align*}
T_P^0 &= \emptyset \\
T_P^1 &= \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\} \\
T_P^2 &= T_P^1 \cup \{T(1, 3), T(2, 4), T(3, 5)\} \\
T_P^3 &= T_P^2 \cup \{T(1, 4), T(2, 5), T(1, 5)\} \\
T_P^4 &= T_P^3 = T_P^\infty
\end{align*}
\]
What’s Wrong with Naive Evaluation?

An example Datalog program:

\[
\begin{align*}
&\text{e}(1, 2) \quad \text{e}(2, 3) \quad \text{e}(3, 4) \quad \text{e}(4, 5) \\
&(R1) \quad \text{T}(x, y) \leftarrow \text{e}(x, y) \\
&(R2) \quad \text{T}(x, z) \leftarrow \text{T}(x, y) \land \text{T}(y, z)
\end{align*}
\]

How many body matches do we need to iterate over?

\[
\begin{align*}
&T^0_P = \emptyset \quad \text{initialisation} \\
&T^1_P = \{\text{T}(1, 2), \text{T}(2, 3), \text{T}(3, 4), \text{T}(4, 5)\} \\
&T^2_P = T^1_P \cup \{\text{T}(1, 3), \text{T}(2, 4), \text{T}(3, 5)\} \\
&T^3_P = T^2_P \cup \{\text{T}(1, 4), \text{T}(2, 5), \text{T}(1, 5)\} \\
&T^4_P = T^3_P = T^\infty_P
\end{align*}
\]

In total, we considered 37 matches to derive 11 facts.
What’s Wrong with Naive Evaluation?

An example Datalog program:

\[
\begin{align*}
&e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \\
&(R1) \quad T(x, y) \leftarrow e(x, y) \\
&(R2) \quad T(x, z) \leftarrow T(x, y) \land T(y, z)
\end{align*}
\]

How many body matches do we need to iterate over?

\[
T^0_P = \emptyset \quad \text{initialisation}
\]

\[
T^1_P = \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\} \quad 4 \text{ matches for (R1)}
\]

\[
T^2_P = T^1_P \cup \{T(1, 3), T(2, 4), T(3, 5)\}
\]

\[
T^3_P = T^2_P \cup \{T(1, 4), T(2, 5), T(1, 5)\}
\]

\[
T^4_P = T^3_P = T^\infty
\]

In total, we considered 37 matches to derive 11 facts.
What’s Wrong with Naive Evaluation?

An example Datalog program:

\[
\begin{align*}
\text{e}(1, 2) & \quad \text{e}(2, 3) \quad \text{e}(3, 4) \quad \text{e}(4, 5) \\
(R1) \quad \text{T}(x, y) & \leftarrow \text{e}(x, y) \\
(R2) \quad \text{T}(x, z) & \leftarrow \text{T}(x, y) \land \text{T}(y, z)
\end{align*}
\]

How many body matches do we need to iterate over?

\[
\begin{align*}
T_P^0 & = \emptyset & \text{initialisation} \\
T_P^1 & = \{\text{T}(1, 2), \text{T}(2, 3), \text{T}(3, 4), \text{T}(4, 5)\} & \text{4 matches for (R1)} \\
T_P^2 & = T_P^1 \cup \{\text{T}(1, 3), \text{T}(2, 4), \text{T}(3, 5)\} & 4 \times (R1) + 3 \times (R2) \\
T_P^3 & = T_P^2 \cup \{\text{T}(1, 4), \text{T}(2, 5), \text{T}(1, 5)\} \\
T_P^4 & = T_P^3 = T_P^\infty
\end{align*}
\]
What’s Wrong with Naive Evaluation?

An example Datalog program:

\[
\begin{align*}
e(1, 2) & \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \\
(R1) & \quad T(x, y) \leftarrow e(x, y) \\
(R2) & \quad T(x, z) \leftarrow T(x, y) \land T(y, z)
\end{align*}
\]

How many body matches do we need to iterate over?

\[
\begin{align*}
T^0_P & = \emptyset \\
\text{initialisation} \\
T^1_P & = \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\} \\
& \quad \text{4 matches for (R1)} \\
T^2_P & = T^1_P \cup \{T(1, 3), T(2, 4), T(3, 5)\} \\
& \quad \text{4 \times (R1) + 3 \times (R2)} \\
T^3_P & = T^2_P \cup \{T(1, 4), T(2, 5), T(1, 5)\} \\
& \quad \text{4 \times (R1) + 8 \times (R2)} \\
T^4_P & = T^3_P = T^\infty
\end{align*}
\]
What’s Wrong with Naive Evaluation?

An example Datalog program:

\[
\begin{align*}
 e(1, 2) & \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \\
(R1) & \quad T(x, y) \leftarrow e(x, y) \\
(R2) & \quad T(x, z) \leftarrow T(x, y) \land T(y, z)
\end{align*}
\]

How many body matches do we need to iterate over?

\[
\begin{align*}
 T_P^0 &= \emptyset & \text{initialisation} \\
 T_P^1 &= \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\} & 4 \text{ matches for } (R1) \\
 T_P^2 &= T_P^1 \cup \{T(1, 3), T(2, 4), T(3, 5)\} & 4 \times (R1) + 3 \times (R2) \\
 T_P^3 &= T_P^2 \cup \{T(1, 4), T(2, 5), T(1, 5)\} & 4 \times (R1) + 8 \times (R2) \\
 T_P^4 &= T_P^3 = T_P^\infty & 4 \times (R1) + 10 \times (R2)
\end{align*}
\]
What’s Wrong with Naive Evaluation?

An example Datalog program:

\[
\begin{align*}
&\text{e}(1, 2) \quad \text{e}(2, 3) \quad \text{e}(3, 4) \quad \text{e}(4, 5) \\
&(R1) \quad T(x, y) \leftarrow e(x, y) \\
&(R2) \quad T(x, z) \leftarrow T(x, y) \land T(y, z)
\end{align*}
\]

How many body matches do we need to iterate over?

\[
\begin{align*}
T_0^P &= \emptyset & \text{initialisation} \\
T_1^P &= \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\} & 4 \text{ matches for (R1)} \\
T_2^P &= T_1^P \cup \{T(1, 3), T(2, 4), T(3, 5)\} & 4 \times (R1) + 3 \times (R2) \\
T_3^P &= T_2^P \cup \{T(1, 4), T(2, 5), T(1, 5)\} & 4 \times (R1) + 8 \times (R2) \\
T_4^P &= T_3^P = T_\infty & 4 \times (R1) + 10 \times (R2)
\end{align*}
\]

In total, we considered 37 matches to derive 11 facts
Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match? After all, each fact is added only once . . .
Does it really matter how often we consider a rule match? After all, each fact is added only once . . .

In practice, finding applicable rules takes significant time, even if the conclusion does not need to be added – iteration takes time!

$$\Rightarrow$$ huge potential for optimisation

Observation:
we derive the same conclusions over and over again in each step

Idea: apply rules only to newly derived facts

$$\Rightarrow$$ semi-naive evaluation
Semi-Naive Evaluation

The computation yields sets $T^0_P \subseteq T^1_P \subseteq T^2_P \subseteq \ldots \subseteq T^\infty_P$

- For an IDB predicate R, let R^i be the “predicate” that contains exactly the R-facts in T^i_P
- For $i \leq 1$, let Δ^i_R be the collection of facts $R^i \setminus R^{i-1}$

We can restrict rules to use only some computations.
Semi-Naive Evaluation

The computation yields sets $T^0_p \subseteq T^1_p \subseteq T^2_p \subseteq \ldots \subseteq T^\infty_p$

- For an IDB predicate R, let R^i be the “predicate” that contains exactly the R-facts in T^i_p
- For $i \leq 1$, let Δ^i_R be the collection of facts $R^i \setminus R^{i-1}$

We can restrict rules to use only some computations.

Some options for the computation in step $i + 1$:

\[
T(x, z) \leftarrow T^i(x, y) \land T^i(y, z) \quad \text{same as original rule}
\]

\[
T(x, z) \leftarrow \Delta^i_T(x, y) \land \Delta^i_T(y, z) \quad \text{restrict to new facts}
\]

\[
T(x, z) \leftarrow \Delta^i_T(x, y) \land T^i(y, z) \quad \text{partially restrict to new facts}
\]

\[
T(x, z) \leftarrow T^i(x, y) \land \Delta^i_T(y, z) \quad \text{partially restrict to new facts}
\]

What to choose?
Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

\[e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \]

\[(R1) \quad T(x, y) \leftarrow e(x, y) \]
\[(R2) \quad T(x, z) \leftarrow T(x, y) \land T(y, z) \]

\[T^0_P = \emptyset \]
\[\Delta^1_T = \{T(1, 2), T(2, 3), T(3, 4), T(3, 4), T(4, 5)\} \quad T^1_P = \Delta^1_T \]
\[\Delta^2_T = \{T(1, 3), T(2, 4), T(3, 5)\} \quad T^2_P = T^1_P \cup \Delta^2_T \]
\[\Delta^3_T = \{T(1, 4), T(2, 5), T(1, 5)\} \quad T^3_P = T^2_P \cup \Delta^3_T \]
\[\Delta^4_T = \emptyset \quad T^4_P = T^3_P = T^\infty_P \]
Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

\[e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \]

\[(R1) \quad T(x, y) \leftarrow e(x, y) \]

\[(R2) \quad T(x, z) \leftarrow T(x, y) \land T(y, z) \]

\[\Delta^1_T = \{ T(1, 2), T(2, 3), T(3, 4), T(3, 4), T(4, 5) \} \]

\[T^0_P = \emptyset \]

\[\Delta^2_T = \{ T(1, 3), T(2, 4), T(3, 5) \} \]

\[T^1_P = \Delta^1_T \]

\[\Delta^3_T = \{ T(1, 4), T(2, 5), T(1, 5) \} \]

\[T^2_P = T^1_P \cup \Delta^2_T \]

\[\Delta^4_T = \emptyset \]

\[T^3_P = T^2_P \cup \Delta^3_T \]

\[T^4_P = T^3_P = T^\infty_P \]

To derive \(T(1, 4) \) in \(\Delta^3_T \), we need to combine
\(T(1, 3) \in \Delta^2_T \) with \(T(3, 4) \in \Delta^1_T \) or \(T(1, 2) \in \Delta^1_T \) with \(T(2, 4) \in \Delta^2_T \)
Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

\[e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \]

(R1) \[T(x, y) \leftarrow e(x, y) \]

(R2) \[T(x, z) \leftarrow T(x, y) \land T(y, z) \]

\[\Delta^1_T = \{T(1, 2), T(2, 3), T(3, 4), T(3, 4), T(4, 5)\} \]

\[\Delta^2_T = \{T(1, 3), T(2, 4), T(3, 5)\} \]

\[\Delta^3_T = \{T(1, 4), T(2, 5), T(1, 5)\} \]

\[\Delta^4_T = \emptyset \]

\[T^0_P = \emptyset \]

\[T^1_P = \Delta^1_T \]

\[T^2_P = T^1_P \cup \Delta^2_T \]

\[T^3_P = T^2_P \cup \Delta^3_T \]

\[T^4_P = T^3_P = T^\infty_P \]

To derive \(T(1, 4) \) in \(\Delta^3_T \), we need to combine

\(T(1, 3) \in \Delta^2_T \) with \(T(3, 4) \in \Delta^1_T \) or \(T(1, 2) \in \Delta^1_T \) with \(T(2, 4) \in \Delta^2_T \)

\[\leadsto \] rule \(T(x, z) \leftarrow \Delta^i_T(x, y) \land \Delta^i_T(y, z) \) is not enough
Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived IDB atom

For example program:

```
e(1, 2)  e(2, 3)  e(3, 4)  e(4, 5)

(R1)  T(x, y) ← e(x, y)
(R2.1) T(x, z) ← Δ^i_T(x, y) ∧ T^i(y, z)
(R2.2) T(x, z) ← T^i(x, y) ∧ Δ^i_T(y, z)
```
Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived IDB atom

For example program:

\[e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \]

\[(R1) \quad T(x, y) \leftarrow e(x, y) \]

\[(R2.1) \quad T(x, z) \leftarrow \Delta_T^i(x, y) \land T^i(y, z) \]

\[(R2.2) \quad T(x, z) \leftarrow T^i(x, y) \land \Delta_T^i(y, z) \]

There is still redundancy here: the matches for \(T(x, z) \leftarrow \Delta_T^i(x, y) \land \Delta_T^i(y, z) \) are covered by both \((R2.1)\) and \((R2.2)\)
Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived IDB atom

For example program:

\[
\begin{align*}
e(1, 2) & \quad e(2, 3) & \quad e(3, 4) & \quad e(4, 5) \\
(R1) & \quad T(x, y) \leftarrow e(x, y) \\
(R2.1) & \quad T(x, z) \leftarrow \Delta^i_T(x, y) \land T^i(y, z) \\
(R2.2) & \quad T(x, z) \leftarrow T^i(x, y) \land \Delta^i_T(y, z)
\end{align*}
\]

There is still redundancy here: the matches for \(T(x, z) \leftarrow \Delta^i_T(x, y) \land \Delta^i_T(y, z)\) are covered by both \((R2.1)\) and \((R2.2)\)

\(\sim\) replace \((R2.2)\) by the following rule:

\[
(R2.2') \quad T(x, z) \leftarrow T^{i-1}(x, y) \land \Delta^i_T(y, z)
\]

EDB atoms do not change, so their \(\Delta\) would be \(\emptyset\)

\(\sim\) ignore such rules after the first iteration
Semi-Naive Evaluation: Example

\[e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \]

\[(R1) \quad T(x, y) \leftarrow e(x, y)\]

\[(R2.1) \quad T(x, z) \leftarrow \Delta^i_T(x, y) \land T^i(y, z)\]

\[(R2.2') \quad T(x, z) \leftarrow T^{i-1}(x, y) \land \Delta^i_T(y, z)\]

\[T_P^0 = \emptyset\]

\[T_P^1 = \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\}\]

\[T_P^2 = T_P^1 \cup \{T(1, 3), T(2, 4), T(3, 5)\}\]

\[T_P^3 = T_P^2 \cup \{T(1, 4), T(2, 5), T(1, 5)\}\]

\[T_P^4 = T_P^3 = T_P^\infty\]
Semi-Naive Evaluation: Example

\[e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \]

\[(R1) \quad T(x, y) \leftarrow e(x, y)\]

\[(R2.1) \quad T(x, z) \leftarrow \Delta^i_T(x, y) \land T^i(y, z)\]

\[(R2.2') \quad T(x, z) \leftarrow T^{i-1}(x, y) \land \Delta^i_T(y, z)\]

How many body matches do we need to iterate over?

\[T^0_p = \emptyset \quad \text{initialisation} \]

\[T^1_p = \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\} \]

\[T^2_p = T^1_p \cup \{T(1, 3), T(2, 4), T(3, 5)\} \]

\[T^3_p = T^2_p \cup \{T(1, 4), T(2, 5), T(1, 5)\} \]

\[T^4_p = T^3_p = T_p^\infty \]

In total, we considered 14 matches to derive 11 facts.
Semi-Naive Evaluation: Example

\[\begin{align*}
\{ e(1, 2), e(2, 3), e(3, 4), e(4, 5) \} \\
(R1) & \quad T(x, y) \leftarrow e(x, y) \\
(R2.1) & \quad T(x, z) \leftarrow \Delta^i_T(x, y) \land T^i(y, z) \\
(R2.2') & \quad T(x, z) \leftarrow T^{i-1}(x, y) \land \Delta^i_T(y, z)
\end{align*} \]

How many body matches do we need to iterate over?

\[
T^0_P = \emptyset \quad \text{initialisation}
\]
\[
T^1_P = \{ T(1, 2), T(2, 3), T(3, 4), T(4, 5) \} \quad 4 \times (R1)
\]
\[
T^2_P = T^1_P \cup \{ T(1, 3), T(2, 4), T(3, 5) \}
\]
\[
T^3_P = T^2_P \cup \{ T(1, 4), T(2, 5), T(1, 5) \}
\]
\[
T^4_P = T^3_P = T^\infty_P
\]

In total, we considered 14 matches to derive 11 facts.
Semi-Naive Evaluation: Example

\[e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \]

\[(R1) \quad T(x, y) \leftarrow e(x, y) \]
\[(R2.1) \quad T(x, z) \leftarrow \Delta^i_T(x, y) \land T^i(y, z) \]
\[(R2.2') \quad T(x, z) \leftarrow T^{i-1}(x, y) \land \Delta^i_T(y, z) \]

How many body matches do we need to iterate over?

\[
\begin{align*}
T^0_P &= \emptyset & \text{initialisation} \\
T^1_P &= \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\} & 4 \times (R1) \\
T^2_P &= T^1_P \cup \{T(1, 3), T(2, 4), T(3, 5)\} & 3 \times (R2.1) \\
T^3_P &= T^2_P \cup \{T(1, 4), T(2, 5), T(1, 5)\} \\
T^4_P &= T^3_P = T^\infty
\end{align*}
\]
Semi-Naive Evaluation: Example

\(T(x, y) \leftarrow e(x, y) \)
\(T(x, z) \leftarrow \Delta^i_T(x, y) \land T^i(y, z) \)
\(T(x, z) \leftarrow T^{i-1}(x, y) \land \Delta^i_T(y, z) \)

How many body matches do we need to iterate over?

\[
\begin{align*}
T^0_P &= \emptyset & \text{initialisation} \\
T^1_P &= \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\} & 4 \times (R1) \\
T^2_P &= T^1_P \cup \{T(1, 3), T(2, 4), T(3, 5)\} & 3 \times (R2.1) \\
T^3_P &= T^2_P \cup \{T(1, 4), T(2, 5), T(1, 5)\} & 3 \times (R2.1), 2 \times (R2.2') \\
T^4_P &= T^3_P = T^\infty_P
\end{align*}
\]
Semi-Naive Evaluation: Example

\[
\begin{align*}
\text{e}(1, 2) & \quad \text{e}(2, 3) & \quad \text{e}(3, 4) & \quad \text{e}(4, 5) \\
(R1) & \quad \text{T}(x, y) \leftarrow \text{e}(x, y) \\
(R2.1) & \quad \text{T}(x, z) \leftarrow \Delta^i_T(x, y) \land T^i(y, z) \\
(R2.2') & \quad \text{T}(x, z) \leftarrow T^{i-1}(x, y) \land \Delta^i_T(y, z)
\end{align*}
\]

How many body matches do we need to iterate over?

\[
\begin{align*}
T^0_P & = \emptyset & \text{initialisation} \\
T^1_P & = \{\text{T}(1, 2), \text{T}(2, 3), \text{T}(3, 4), \text{T}(4, 5)\} & 4 \times (R1) \\
T^2_P & = T^1_P \cup \{\text{T}(1, 3), \text{T}(2, 4), \text{T}(3, 5)\} & 3 \times (R2.1) \\
T^3_P & = T^2_P \cup \{\text{T}(1, 4), \text{T}(2, 5), \text{T}(1, 5)\} & 3 \times (R2.1), 2 \times (R2.2') \\
T^4_P & = T^3_P = T^\infty_P & 1 \times (R2.1), 1 \times (R2.2')
\end{align*}
\]
Semi-Naive Evaluation: Example

\[e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \]

\[(R1) \quad T(x, y) \leftarrow e(x, y)\]

\[(R2.1) \quad T(x, z) \leftarrow \Delta^i_T(x, y) \land T^i(y, z)\]

\[(R2.2') \quad T(x, z) \leftarrow T^{i-1}(x, y) \land \Delta^i_T(y, z)\]

How many body matches do we need to iterate over?

\[T^0_P = \emptyset \quad \text{initialisation} \]

\[T^1_P = \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\} \quad 4 \times (R1) \]

\[T^2_P = T^1_P \cup \{T(1, 3), T(2, 4), T(3, 5)\} \quad 3 \times (R2.1) \]

\[T^3_P = T^2_P \cup \{T(1, 4), T(2, 5), T(1, 5)\} \quad 3 \times (R2.1), 2 \times (R2.2') \]

\[T^4_P = T^3_P = T^\infty_P \quad 1 \times (R2.1), 1 \times (R2.2') \]

In total, we considered 14 matches to derive 11 facts
Semi-Naive Evaluation: Full Definition

In general, a rule of the form

\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land I_1(\vec{z}_1) \land I_2(\vec{z}_2) \land \ldots \land I_m(\vec{z}_m) \]

is transformed into \(m \) rules

\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land \Delta^i_1(\vec{z}_1) \land I_1^i(\vec{z}_2) \land \ldots \land I_m^i(\vec{z}_m) \]

\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land I_1^{i-1}(\vec{z}_1) \land \Delta^i_2(\vec{z}_2) \land \ldots \land I_m^i(\vec{z}_m) \]

\[\ldots \]

\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land I_1^{i-1}(\vec{z}_1) \land I_2^{i-1}(\vec{z}_2) \land \ldots \land \Delta^i_m(\vec{z}_m) \]

Advantages and disadvantages:

- Huge improvement over naive evaluation
- Some redundant computations remain (see example)
- Some overhead for implementation (store level of entailments)
Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Next question:
- How can we implement Datalog in practice?