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Abstract

Markov decision processes (MDP) are a well-established
model for sequential decision-making in the presence of prob-
abilities. In robust MDP (RMDP), every action is associated
with an uncertainty set of probability distributions, modelling
that transition probabilities are not known precisely. Based
on the known theoretical connection to stochastic games, we
provide a framework for solving RMDPs that is generic, reli-
able, and efficient. It is generic both with respect to the model,
allowing for a wide range of uncertainty sets, including but not
limited to intervals, L1- or L2-balls, and polytopes; and with
respect to the objective, including long-run average reward,
undiscounted total reward, and stochastic shortest path. It is
reliable, as our approach not only converges in the limit, but
provides precision guarantees at any time during the compu-
tation. It is efficient because – in contrast to state-of-the-art
approaches – it avoids explicitly constructing the underlying
stochastic game. Consequently, our prototype implementation
outperforms existing tools by several orders of magnitude and
can solve RMDPs with a million states in under a minute.

Code — https://zenodo.org/records/14385450
Extended version — https://arxiv.org/abs/2412.10185

1 Introduction
Robust Markov decision processes. Markov decision pro-
cesses (MDPs) (Puterman 1994) are the standard model for
sequential decision making and planning in the context of
non-determinism and uncertainty. In brief, an MDP proceeds
as follows: Starting in some state of the modelled system, an
agent chooses an action (resolving non-determinism) and the
MDP continues to a successor state, sampled from a probabil-
ity distribution associated with the state-action pair (resolving
uncertainty). In practice, this uncertainty is often not known
precisely, but rather estimated from data. Robust Markov de-
cision processes (RMDPs) (Nilim and Ghaoui 2005; Iyengar
2005) are an extension of MDPs that lift the assumption of
knowing every transition probability exactly. Instead of one
precise probability distribution per state-action pair, RMDPs
have an uncertainty set consisting of (potentially uncount-
ably) many probability distributions. RMDPs have been used
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in, e.g., healthcare applications (Zhang, Steimle, and Den-
ton 2017). However, existing approaches to solving RMDP
suffer from significant drawbacks, e.g. they are limited to
very specific objectives or classes of uncertainty sets, or do
not provide any guarantees on the correctness of their result.
Alleviating all these problems, we present a framework for
solving RMDPs that is generic, reliable, and efficient.

Generic Uncertainty Sets. In the literature, many vari-
ants of uncertainty sets exist: Firstly, polytopic uncertainty
sets (Chatterjee et al. 2024) generalize simple interval un-
certainty, e.g. (Givan, Leach, and Dean 2000; Tewari and
Bartlett 2007), L1-balls around a given probability dis-
tribution, e.g. (Strehl and Littman 2004; Ho, Petrik, and
Wiesemann 2018), and contamination models (Wang et al.
2024). Definable uncertainty sets (Grand-Clément, Petrik,
and Vieille 2023) are a recent generalization of polytopic un-
certainty. Secondly, non-polytopic (and non-definable) uncer-
tainty sets include the Chi-square (Iyengar 2005), Kullback-
Leibler divergence (Nilim and Ghaoui 2005), and Wasser-
stein distance (Yang 2017) uncertainty sets, and Lp-balls
around a distribution for 1 < p < ∞, all of which state-
of-the-art methods cannot handle in general. In this paper,
we introduce the Constant-Support Assumption, which intu-
itively requires that the successors of an action are certain,
and only the transition probabilities are unknown. It allows
us to capture all the listed non-polytopic variants and more.
Constant-Support uncertainty sets are incomparable to both
polytopic and definable uncertainty sets, i.e. there exists poly-
topic (and definable) uncertainty sets that do not satisfy the
Constant-Support Assumption and vice versa.

Solution algorithms are always restricted to some particu-
lar representation of uncertainty. Considering more general
uncertainty sets comes with several complications, e.g. that
in some cases optimal policies may cease to exist (see Ex. 1).
In this work, we consider a large class of uncertainty sets
by investigating ones that are polytopic or that satisfy the
Constant-Support Assumption.

Generic Objectives. RMDPs mainly have been investi-
gated with discounted or finite-horizon objectives, which put
an emphasis on the immediate performance of the system,
see e.g. the seminal works (Nilim and Ghaoui 2005; Iyengar
2005) or the recent overview (Wang et al. 2024, Sec. 1.2).
While these objectives can be included in our framework,
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they are not the focus of this paper and are only discussed in
the extended version of the paper (Meggendorfer, Weininger,
and Wienhöft 2024, App. B). Recently, several works stud-
ied RMDPs with long-run average reward (LRA) objectives
(Chatterjee et al. 2023; Wang et al. 2024). We discuss these
and their relation to our framework in the related work sec-
tion below. Lastly, the popular objectives of undiscounted
total reward (TR) and stochastic shortest path (SSP) have
only been investigated in the very restricted setting of inter-
val uncertainty sets (Buffet 2005; Wu and Koutsoukos 2008),
while we provide solutions for the more general RMDP set-
ting. The importance of RMDPs with these objectives for
several research fields is discussed in (Badings et al. 2023).

Technical Contribution. To achieve generality, reliability,
and efficiency, we exploit two key ideas. Firstly, RMDPs can
be reduced to stochastic games (SGs), where one player is the
agent of the RMDP, and the other player is the environment,
picking a probability distribution from the uncertainty set.
This connection was mentioned already in (Nilim and Ghaoui
2005; Iyengar 2005) for finite horizon and discounted objec-
tives, and recently was formalized for polytopic uncertainty
sets and LRA objectives (Chatterjee et al. 2024). We extend
this reduction to arbitrary uncertainty sets, as well as to TR
and SSP objectives. Thus, we can apply theoretical results
from SG literature to tackle RMDPs reliably.

Secondly, previous works exploiting this connection ei-
ther do not address how to practically find the decisions of
the other player (Nilim and Ghaoui 2005; Iyengar 2005), or
explicitly construct the induced SG (Chatterjee et al. 2024).
The latter approach is not applicable to general uncertainty
sets, as the SG can be infinite; and for polytopic uncertainty
sets, while finite, the SG requires exponential space. Here,
we show how this explicit construction can be avoided, per-
forming the key steps of the SG solution algorithm implicitly.
This mitigates both drawbacks of the explicit approach.

Reliable Stopping Criterion. Several approaches for solv-
ing RMDPs are based on value iteration (VI), e.g. (Grand-
Clément, Petrik, and Vieille 2023; Wang et al. 2024). How-
ever, these only converge in the limit and cannot bound the
current imprecision. Consequently, in practice they are ter-
minated when the result can still be arbitrarily far off and
unreliable. The problem of obtaining guarantees on the preci-
sion and a stopping criterion has been a major area of research
in the past decade for non-robust systems, see e.g. (Brázdil
et al. 2014; Baier et al. 2017; Haddad and Monmege 2018)
or (Kretínský, Meggendorfer, and Weininger 2023a) for a uni-
fied framework subsuming MDPs and SGs with quantitative
objectives. We extend these new advances to RMDPs.

Efficient through Implicit Updates. While this extension
is straightforward in theory using the explicit reduction to
SGs, we provide an implicit approach, addressing a major
technical challenge. These implicit updates not only avoid
the exponential space requirement, but for many practically
relevant uncertainty sets can be computed in polynomial time.
Our experimental evaluation shows that in practice this results
in several orders of magnitude improvements over approaches
that explicitly construct the induced SG. In particular, we not

only consider small, handcrafted examples from previous
works, but also use MDPs from well-established benchmark
sets (Hartmanns et al. 2019) and complement them with
uncertainty sets, thus demonstrating that our approach scales
to RMDPs with complex structure and millions of states.

Algorithm Overview. Firstly, we provide an efficient im-
plicit algorithm applicable to a wide range of RMDP that
converges in the limit but does not give guarantees on its
result (Alg. 1). For RMDPs satisfying the Constant-Support
Assumption, we provide algorithms with guaranteed stop-
ping criterion that are implicit and thus efficient for TR and
SSP (Alg. 2), and for long-run average reward (Alg. 3 in
(Meggendorfer, Weininger, and Wienhöft 2024, App. F)). For
polytopic RMDPs violating Constant-Support, we provide
an implicit algorithm with stopping criterion for maximizing
TR and SSP (see paragraph “Beyond Constant-Support” at
the end of Section 5). For the other objectives (minimizing
TR and LRA) in polytopic RMDPs, we either offer the afore-
mentioned implicit and convergent Alg. 1 without reliable
stopping criterion, or an algorithm with guaranteed stopping
criterion that is explicit and hence less efficient (building
on Thm. 1). We highlight that if convergence in the limit is
sufficient and no sound stopping criterion is required, Alg. 1
provides the most efficient solution that works for all consid-
ered objectives and uncertainty sets.

Summary. By deepening the understanding of the connec-
tion between RMDPs and SGs and exploiting recent advances
on SG solving, we obtain a generic framework able to deal
with more variants of uncertainty sets and objectives than the
state-of-the-art. At the same time, our approach provides a
correct stopping criterion, ensuring reliability, and, through
implicit computation, is orders of magnitude more efficient
than existing, explicit solution approaches.

Related Work. In (Wang et al. 2023) (journal ver-
sion (Wang et al. 2024)) the authors provide a value iter-
ation (VI) solution to the LRA objective. However, they pro-
vide no stopping criterion and restrict the graph structure
of the RMDPs to be unichain. In (Chatterjee et al. 2024),
the authors provide a complexity analysis and policy iter-
ation algorithm for the same problem. They only consider
polytopic uncertainty sets and explicitly construct the in-
duced SG, resulting in the exponential space requirement.
Finally, (Grand-Clément, Petrik, and Vieille 2023) proposes
value iteration algorithms similar to ours, but leave pro-
viding a stopping criterion as an open question. Moreover,
in their practical implementation, they significantly restrict
the uncertainty sets. When restricting to interval RMDPs,
PRISM (Kwiatkowska, Norman, and Parker 2011) supports
TR objectives and IntervalMDP.jl (Mathiesen, Lahija-
nian, and Laurenti 2024) supports reachability and discounted
rewards, focussing on parallelization. However, both tools
offer no guarantees, employing an unsound stopping criterion.
Our experimental evaluation (Section 6) compares with all
mentioned related works except (Grand-Clément, Petrik, and
Vieille 2023) which does not provide an implementation.
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2 Preliminaries
A probability distribution over a finite or countable set X
is a mapping d : X → [0, 1], such that

∑
x∈X d(x) = 1.

The set of all probability distributions on X is D(X). We
denote the support of a probability distribution p ∈ D(X) by
supp(p) = {x ∈ X | p(x) > 0}.

Markov Decision Process. A (finite-state, discrete-time)
Markov decision process (MDP), e.g. (Puterman 1994), is a
tuple M = (S,A,P, r), where S is a finite set of states; A
is a finite set of actions; P : S × A ⇀ D(S) is a (partial)
transition function mapping state-action pairs to a distribu-
tion over successor states; and r : S × A → N is a reward
function mapping state-action pairs to non-negative rewards
(see (Meggendorfer, Weininger, and Wienhöft 2024, App. A)
for a reduction from commonly occurring reward functions
to natural numbers). We denote by A(s) 6= ∅ the available
actions of a state s where P(s, a) is defined.

The semantics of MDPs are defined by means of policies
which are mappings from finite paths (also called histories)
to distributions over actions, formally (S × A)∗ × S →
D(A). Intuitively, a path in an MDP initially consists only
of some state s, and evolves under a policy π by sampling
an action a according to the distribution π(s), receiving the
reward r(s, a), and transitioning to the next state s′ sampled
according to P(s, a). The process continues in this way ad
infinitum, always using the whole path as input for the policy
(e.g. π(sas′) in the second step). A policy is memoryless if
it only depends on the current state and deterministic if it
assigns probability 1 to a single action.

Robust MDP. A robust MDP (RMDP) M =
(S,A,P, r) (Nilim and Ghaoui 2005) is a generaliza-
tion of MDPs, where instead of a fixed distribution the
transition function yields an uncertainty set P(s, a). More
formally, P : S × A→ 2D(S), where 2X denotes the set of
all subsets of X . We say that an RMDP is closed if P(s, a)
is closed for every state-action pair. We employ the classical
assumption that uncertainty sets are (s,a)-rectangular as in,
e.g. (Nilim and Ghaoui 2005; Chatterjee et al. 2024; Wang
et al. 2024), i.e. the uncertainty sets are independent for each
state-action pair. Intuitively, there is one additional step in
the evolution of an RMDP: Before the successor state is
sampled, the environment chooses a distribution from the
uncertainty set P(s, a) according to an environment policy
τ , i.e. τ(s0a0 . . . snan) ∈ P(sn, an). Formally, a pair of
policies π for the agent and τ for the environment induces a
probability measure Pπ,τM over infinite paths in an RMDPM,
see (Meggendorfer, Weininger, and Wienhöft 2024, App. A)
for details. We denote by Eπ,τM,s the expectation under this
probability measure when using s as initial state.

Objectives. Objectives define a mapping from infinite
paths ρ = s0a0s1a1 · · · to their payoff. We consider undis-
counted total reward (TR) as well as long-run average reward
(LRA) (Puterman 1994, Chps. 7 & 8), where

TR(ρ) =
∑∞

t=0
r(st, at) and

LRA(ρ) = lim infn→∞
1

n

∑n−1

t=0
r(st, at).

(Further details can be found in (Meggendorfer, Weininger,
and Wienhöft 2024, App. A), in particular how stochastic
shortest path (SSP) is a variant of TR.) Using Payoff ∈
{TR, LRA}, the value of a state s in an RMDP M under
policies (π, τ) is

Vπ,τM (s) = Eπ,τM,s[Payoff].

Problem Statement. The optimal value of an RMDPM
is the value under the best possible policy of the agent in
whichever instantiation the environment chooses. We con-
sider both the problems of maximizing or minimizing the
payoff (interpreting rewards as costs when minimizing), de-
fined by
Vmax
M (s) = sup

π
inf
τ

Vπ,τM (s) and Vmin
M (s) = inf

π
sup
τ

Vπ,τM (s)

We often use the shorthands opt ∈ {max,min} and Vopt

to talk about both maximizing and minimizing objectives.
For simplicity, we write opt = max if opt = min and
opt = min if opt = max.

Uncertainty Set Variants. Throughout the paper, we
mostly distinguish two different variants of uncertainty sets:
polytopic and arbitrary.
Definition 1. We say an RMDPM = (S,A,P, r) is poly-
topic if for each state-action pair (s, a) the uncertainty set
P(s, a) ⊆ R|S| is a polytope.

A polytope is the convex hull of finitely many points
R|S| or, equivalently, it is the intersection of a finite fam-
ily of closed half-spaces (Grünbaum 2003). Thus, a poly-
tope classically is given in V-representation (vertex) or H-
representation (half-space). Computing the V-representation
fromH-representation can result in exponentially many ver-
tices, e.g. already when an interval on every probability is
given (Sen, Viswanathan, and Agha 2006, Lem. 6). Many
uncertainty set variants are polytopic, for example L1-balls
around a probability distribution. However, e.g. L2-balls are
not polytopes, which brings us to the second variant: In ar-
bitrary RMDPs, the uncertainty sets are not restricted at all.
For our algorithmic results, we assume that the uncertainty
sets are closed and satisfy the Constant-Support Assumption,
explained in Sec. 3.

RMDPs Semantics. There are several semantics for
RMDP, related to how probability distributions are chosen
from the uncertainty set, see e.g. (Nilim and Ghaoui 2005;
Iyengar 2005). The main questions are (i) “Is the environ-
ment choosing the distribution allowed to use memory (time-
varying) or not (stationary)?”, and (ii) “Is the environment
an ally (best-case) or an antagonist (worst-case)?”. We prove
that for a large class of RMDPs, (i) is irrelevant, as the envi-
ronment has equal power in both cases (see Cors. 1 and 2).
As to (ii), our solutions for the harder worst-case are also
applicable to the best-case (see (Meggendorfer, Weininger,
and Wienhöft 2024, App. A) for further discussion). Note
that if we assume a stochastic environment instead of an ally
or antagonistic environment, the RMDP can be reduced to a
standard MDP by collapsing the stochasticity of the environ-
ment and the system into a single step.
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Turn-based Stochastic Game. Our solution approach uti-
lizes a reduction to turn-based stochastic games (SG). A
finite-action SG (Condon 1992; Chen et al. 2013) is a tuple
G = (S,A,P, r) where all components are as for MDP, but
with an additional partitioning of S into max-states Smax

and min-states Smin . Additionally, we define infinite-action
SGs as SGs where we allow the set of actions A to be infinite.
We distinguish between (finite) max-paths and min-paths de-
pending on whether the last state in the path is a max- or a
min-state. The semantics of a SG are determined by a pair
of policies π, τ , one for each player, with the max-player
deciding the next action for a max-path and the min-player
for min-paths. These induce a probability measure over infi-
nite paths, which is used to compute the expectation of the
given objective. Using Vπ,τG (s) = Eπ,τG,s [Payoff], the value of
an SG G is defined analogously to RMDPs, i.e. Vmax

G (s) =

supπ infτ Vπ,τG (s) and Vmin
G (s) = infπ supτ Vπ,τG (s)

3 Connection Between RMDP and SG
Since the environment in an RMDP acts as an antagonist to
the agent, there is a natural correspondence between RMDP
and SG, as noted in e.g. (Nilim and Ghaoui 2005). Intuitively,
we can add a second player who chooses the instance of
the RMDP. This player then chooses one action from the
uncertainty set at every state. Thus, we alternate between
original MDP state s where the optimizing player chooses
action a, and a new antagonistic state sa where the environ-
ment selects some probability distribution from the uncer-
tainty set, see, e.g., (Iyengar 2005; Nilim and Ghaoui 2005;
Chatterjee et al. 2024). For the formal definition, recall that
opt ∈ {max,min} denotes the optimization direction of the
agent’s objective and opt is the environment’s optimization
direction, i.e. the “inverse” of opt .

Definition 2 (Induced SG for arbitrary RMDP). For an ar-
bitrary RMDPM = (S,A,P, r) with an opt-objective, its
induced SG GM = (SG , AG ,PG , rG) is defined as follows:

• SG = SGopt ∪ SGopt where

– SGopt = S, and

– SG
opt

= {sa | s ∈ S, a ∈ A(s)};

• for agent states s ∈ SGopt , we have

– AG(s) = A(s),
– PG(s, a) = {sa 7→ 1} for a ∈ AG(s), i.e. it surely

transitions to the newly added environment state, and
– rG(s, a) = r(s, a) for a ∈ AG(s);

• for environment states sa ∈ SG
opt

we have

– AG(sa) = P(s, a), i.e. the uncertainty set,
– PG(sa,P) = P for P ∈ AG(sa), and
– rG(sa,P) = rn(s, a) for P ∈ AG(sa), where rn is an

(objective-dependent) neutral reward.

Intuitively, rn is chosen in such a way that removing all
opt-states does not affect the Payoff of a path, i.e. for a an
infinite path in the SG ρ = s0a0s1a1 . . . with s0 ∈ SGopt we
have Payoff(ρ) = Payoff(s0a0s2a2 . . . s2ka2k . . . ). For TR

objectives, the neutral reward is 0 and for LRA objectives, we
define rn(s

a) = r(s, a) for all sa ∈ SG
opt

.
In general, this reduction results in an infinite-action

SG, since AG(sa) = P(s, a), and the uncertainty set com-
monly contains uncountably many distributions. However,
for RMDPs with polytopic uncertainty sets, we can utilize the
fact that the polytope can be captured by randomizing over
its finitely many corner points. That is, each action inside the
polytope can be simulated by a probabilistic policy randomly
choosing between actions corresponding to corners of the
polytope. This allows for a finite representation:
Definition 3 (Induced SG for polytopic RMDP). For
a polytopic RMDP M = (S,A,P, r) with C(s, a) =
{Ps,a1 , . . . ,Ps,ak } ⊆ P(s, a) denoting the corner points of
the polytopic confidence region for P(s, a), its induced SG
GpolyM = (SG , AG ,PG , rG) can be obtained as in in Def. 2,
only changing the available actions for environment states
sa ∈ SG

opt
as AG(sa) = {as1, . . . , as|C(s,a)|}, i.e. the corner

points of the polytope.
We prove the correctness of both reductions for all consid-
ered objectives, uncertainty sets, and semantics. Our proof
is similar to (Chatterjee et al. 2024, Sec. 3.2); the novelty is
the addition of TR objectives and the formalization of the
infinite-action reduction, where the latter requires several
changes.
Theorem 1 (Connection to SG – Proof in (Meggendorfer,
Weininger, and Wienhöft 2024, App. C)). Let M be an
arbitrary RMDP and GM its induced infinite-action SG
(Def. 2). Then for all s ∈ S and any TR or LRA objective
Vopt
M (s) = Vopt

GM(s). Moreover, ifM is polytopic and G′M its
induced finite-action SG (Def. 3), Vopt

GM(s) = Vopt
G′
M
(s).

Implications of the Polytopic Reduction. Using this ob-
servation, we can immediately generalize (Chatterjee et al.
2024, Cor. 1) to undiscounted reward on polytopic RMDP:
In finite-action SGs, memoryless deterministic policies are
sufficient for optimizing TR objectives in SGs (Bertrand et al.
2023). With Thm. 1, we thus get that there is an optimal
memoryless environment policy in RMDPs that is attained at
the vertices of the polytope.
Corollary 1 (Environment Policy Semantics – Polytopic).
In polytopic RMDPs with TR objectives, both agent and en-
vironment have deterministic memoryless optimal policies.
Thus, stationary and time-varying semantics coincide.

Complications for Arbitrary Uncertainty Sets. Finite-
action SG have many useful properties, e.g. existence of
memoryless deterministic optimal policies. For RMDPs with
arbitrary uncertainty sets, this is not the case in general (see
also (Grand-Clément, Petrik, and Vieille 2023, Prop. 3.2)):
Example 1 (Optimal Policy Need Not Exist). Consider the
RMDP (in fact, a Robust Markov chain) in Fig. 1. The only
action in state sinit has reward 0 and uncertainty set given
by 0 ≤ q = p2. The other states have values V(sgoal) = 1
and V(ssink) = 0. Then the value of sinit is V (sinit) = 0 if
p = 0 and 1

1+p otherwise. This function is discontinuous at
p = 0. When the environment is maximizing (i.e. the agent is
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sinitsgoal ssink

1− p− q

p q

Figure 1: RMDP without optimal environment-policy.

minimizing costs), there is no optimal environment policy; the
supremum over all environment policies is 1, but it cannot be
attained. Even restricting to closed convex uncertainty sets
is not sufficient: Intuitively, convex combinations can only
increase q in relation to p, and thus decrease the value.

Sufficient Assumptions. So far, we have not put any restric-
tions on the uncertainty sets; Thm. 1 does not even require
them to be closed or convex. However, for our approach we
require that optimal policies exist for both agent and envi-
ronment. To this end, we introduce a sufficient assumption,
which will allow us to provide anytime algorithms with a
stopping criterion.
Constant-Support Assumption: For all state-action pairs
(s, a), two distributions in the same uncertainty set P1,P2 ∈
P(s, a) have the same support, i.e. supp(P1) = supp(P2).
Intuitively, this requires knowing all possible successors of
each state-action pair, which is realistic in cases where the
existence of transitions is certain and only their probability is
unknown. In the context of robust systems, where typically
it is known how the system behaves, this a natural assump-
tion and is also called “positive uncertainty” (Chatterjee, Sen,
and Henzinger 2008). In statistical applications, confidence
intervals are derived by sampling an unknown system. Here,
knowledge of the transition structure often is either assumed,
also called “grey-box knowledge” (Ashok, Kretínský, and
Weininger 2019), or can be ensured by gathering enough
samples as many distance-based uncertainty sets, e.g. those
in (Wang et al. 2024, Sec. 5.3), satisfy this assumption either
naturally or for sufficiently small distances, see (Meggen-
dorfer, Weininger, and Wienhöft 2024, App. A). A weaker
assumption is to require only knowledge of the minimum
positive transition probability (Daca et al. 2017). For this, we
prove at the end of (Meggendorfer, Weininger, and Wienhöft
2024, App. C) how it reduces to the Constant-Support case
and in the main body focus only on the latter for readability.
We write closed constant-support RMDP to denote a closed
RMDP satisfying the assumption. Note that polytopic RMDP
and closed constant-support RMDP are incomparable: closed
constant-support RMDP may be non-polytopic and polytopic
RMDP may violate the Constant-Support Assumption.

Theorem 2 (Optimal Policies under Constant-Support). In
every closed constant-support RMDP, optimal policies ex-
ist, formally supπ infτ Vπ,τM (s) = maxπminτ Vπ,τM (s), and
analogously for minimization objectives. Moreover, these
policies are memoryless deterministic.

Proof Sketch. Full Proof in (Meggendorfer, Weininger, and
Wienhöft 2024, App. C). We first show value functions are
continuous with respect to changes of the probabilities in the
RMDP except for cases like Ex. 1 where the support of the

transition changes the set of reachable states (Meggendorfer,
Weininger, and Wienhöft 2024, Lem. 5). Intuitively, small
changes to the probabilities can only have limited impact on
the behaviour of an MDP, unless the change in probabilities
adds or removes transitions, thereby potentially changing
the fundamental long-term behaviour of the MDP, such as
certain states being (un-)reachable from others. Thus, if the
support for all distributions is constant, all value functions
are continuous w.r.t the environment policy τ . Since all uncer-
tainty sets (i.e. the sets of possible values of τ ) are closed, the
value function must admit optimal policies, as every continu-
ous function attains its optimum on a closed domain. Then,
existence of memoryless and deterministic optimal policies
follow from basic observations on the objectives (Meggen-
dorfer, Weininger, and Wienhöft 2024, Lem. 4).

Corollary 2 (Environment Policy Semantics – Arbitrary). In
closed constant-support RMDPs, stationary and time-varying
semantics coincide.

4 Implicit Bellman Updates
We now discuss how to solve RMDPs with value iteration
(VI) in an implicit way. This means that we avoid constructing
the induced SG explicitly, and the algorithm works directly
on the RMDP. The motivation for this is twofold: Firstly, in
polytopic RMDPs (given inH-representation), the induced
finite SG (and thus any approach solving it explicitly) re-
quires exponential space. Secondly and more importantly, in
general the induced SG has an uncountably infinite number
of actions, and thus cannot be constructed explicitly at all.

Bellman Updates in SGs. VI centrally relies on the Bell-
man update. For example, for SGs with TR objective, we
start from a lower bound L0 on the value (e.g. L0(s) = 0 for
all states s) and iteratively apply the update

Li+1(s) = opta∈A(s)r(s, a) +
∑

s′∈S
P(s, a)(s′) · Li(s′),

(1)
where opt = max if s ∈ Smax and opt = min other-
wise (Chen et al. 2013). Intuitively, this performs one step
in the SG, back-propagating all rewards. In the limit, this se-
quence of estimates converges for TR objectives (Chen et al.
2013). Moreover, 1

i Li converges to the LRA value (Kretínský,
Meggendorfer, and Weininger 2023b, Lem. 8).

Bellman Updates in RMDPs – Robust VI. Observe that
in the induced SG, for any action that the agent chooses, the
game surely transitions to the environment state correspond-
ing to the chosen state-action pair, and it is the environment’s
turn to pick the uncertainty set. We can aggregate these two
steps to one update in the RMDP by

Li+1(s) = opta∈A(s)

(
r(s, a) +

optP(s,a)∈P(s,a)
∑

s′∈S
P(s, a)(s′) · Li(s′)

)
(2)

Theorem 3 (Robust VI convergence – Proof in (Meggen-
dorfer, Weininger, and Wienhöft 2024, App. D)). Let M
be a polytopic or closed constant-support RMDP. For a TR
objective, the sequence Li obtained from Eq. (2) converges
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to the value in the limit, i.e. for all s ∈ S it holds that
limi→∞ Li(s) = Vopt

M (s). Similarly, for an LRA objective,
limi→∞

Li(s)
i = Vopt

M (s).

Eq. (2) generalizes robust VI for discounted reward as in,
e.g. (Nilim and Ghaoui 2005). Unlike (Wang et al. 2024), we
impose no restrictions on the structure of the RMDP. A result
similar to this theorem is (Grand-Clément, Petrik, and Vieille
2023, Thm. 5.2), which shows convergence for RMDPs with
“definable” uncertainty and LRA objective.

Implicit Updates. By itself, Eq. (2) is only of theoretical
value for now, as P(s, a) might be uncountably infinite. The
key to an effective algorithm is the ability to evaluate the inner
expression in Eq. (2). This only requires optimizing a linear
function over the uncertainty set (generalizing the already
quite generic “definable” assumption (Grand-Clément, Petrik,
and Vieille 2023, Def. 4.11)). Moreover, this optimization
can be performed efficiently for many uncertainty sets, of
which we provide a (non-exhaustive) list.

Lemma 1 (Efficiency of the Implicit Update). Let P(s, a) be
an uncertainty set given as (i) polytope inH-representation
or (ii) V-representation, or (iii) (weighted) Lp-norm-balls
around a probability distribution where p ∈ N ∪ {∞}. Then,

optP(s,a)∈P(s,a)
∑

s′∈S
P(s, a)(s′) · Li(s′)

can be evaluated with a number of operations that is polyno-
mial w.r.t. |S| and the representation of P(s, a).

Proof Sketch. Full Proof in (Meggendorfer, Weininger, and
Wienhöft 2024, App. D). Case (i) reduces to a polynomially
sized linear program, which is PTIME (Karmarkar 1984). For
(ii), iterating over all vertices takes linear time. For L1- and
L∞-balls it suffices to order the successors according to Li
and maximize their probability in this order. For general Lp-
balls we compute the surface point where the gradient of the
objective function is orthogonal to its surface. We note that
when considering interval constraints (a special case of (iii)),
this coincides with the technique of ordering-maximization
(Givan, Leach, and Dean 2000; Lahijanian, Andersson, and
Belta 2015), which is also employed by IntervalMDP.jl
(Mathiesen, Lahijanian, and Laurenti 2024).

Thus, for a large class of RMDPs (with any of the listed
uncertainty sets and LRA or TR objectives), every single step
of VI is fast. Further, while the overall number of steps for
VI can be exponential, typically a much smaller number of
iterations suffices (Hartmanns et al. 2023), suggesting that
implicit Bellman updates yields an efficient VI approach.
Together, this gives rise to a generic implicit value iteration
algorithm, presented in Alg. 1. Thm. 3 directly yields that the
computed Li converge to the true value in the limit and Lem. 1
shows that the updates in Line 4 can be performed effectively
and efficiently. However, note that such a (one-sided) VI does
not yet give us a stopping criterion. In particular, while the
rule in Line 5 usually works well in practice, it does not
guarantee that the computed values are close to the true value.
Obtaining such a guarantee is the topic of the next section.

Algorithm 1 Best-Effort Implicit Value Iteration for RMDP
Input: Polytopic or closed constant-support RMDPM and
precision hint ε > 0
Output: Lower bounds on the optimal total reward value
Vopt
M
1: L0(·)← 0, i← 0
2: while true do
3: for all s ∈ S do
4: Li+1(s)← opta∈A(s)

(
r(s, a) +

optP(s,a)∈P(s,a)
∑
s′∈S P(s, a)(s′)·Li(s′)

)
5: if maxs∈S Li+1(s)− Li(s) < ε then
6: return Li+1

7: i← i+ 1

5 Implicit Anytime Value Iteration
The approach of Sec. 4 converges in the limit (similar to
(Grand-Clément, Petrik, and Vieille 2023; Wang et al. 2024)),
however we cannot bound the distance between Li and Vopt

M
for any concrete i. In other words, we do not know how
close we are to the true value at any time and thus cannot
give any guarantees upon stopping the VI. This absence of
a stopping criterion is explicitly noted as an open question
in (Grand-Clément, Petrik, and Vieille 2023, Sec. 5.2). Even
for non-robust systems, efficient stopping criteria were a ma-
jor challenge. One prominent solution is bounded value itera-
tion (BVI), see e.g. (Kretínský, Meggendorfer, and Weininger
2023a). The main idea is to compute an additional sequence
of upper bounds Ui that over-approximates the value and
converges to it in the limit, yielding an anytime algorithm.
Our goal is to obtain such an algorithm for RMDP.

Definition 4 (Anytime Algorithm with Stopping Criterion).
An anytime algorithm (with stopping criterion) for RMDPs
maintains two sequences Li,Ui such that for all states s
(i) for every iteration i ∈ N, Li(s) ≤ Vopt

M (s) ≤ Ui(s), and
(ii) limi→∞ Ui(s)− Li(s) = 0.

Intuitively, an anytime algorithm is correct at every step
and guarantees a precision of Ui(s)− Li(s); moreover, even-
tually the algorithm terminates for every precision ε > 0.
Using Thm. 1, we can obtain an explicit anytime algorithm
for polytopic RMDPs, namely by constructing the induced
finite-action SG and applying the algorithms of (Kretínský,
Meggendorfer, and Weininger 2023a).

Key Contribution. To obtain an algorithm that is efficient
and applicable for arbitrary uncertainty sets, we now pro-
pose an implicit anytime algorithm. For ease of presentation,
the descriptions in this section focus on closed constant-
support RMDPs with TR objective. We later provide an in-
tuition how to extend the results to LRA objectives and non-
constant support RMDPs (details are provided in (Meggen-
dorfer, Weininger, and Wienhöft 2024, Apps. E and F)).

Challenges. Obtaining converging upper bounds is not as
simple as for lower bounds. In particular, just applying Bell-
man updates to upper bounds does not necessarily converge.
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p q s

stay : 0
stay : 0

stay : 0

exit : 1 pq s

stay : 0stay : 0

exit : 1

Figure 2: An MDP where value iteration from above does
not converge (left) and the collapsed MDP (right).

Example 2 (Non-Convergence of Upper Bounds). Consider
the RMDP (even MDP) in Fig. 2 (left) and assume BVI starts
with an upper bound of U0(p) = U0(q) = t > 1. The
correct value is Vmax

M = 1, since p has the value of q, and
q can pick action exit to obtain a reward of 1 and enter
the sink s, from which point onward no further rewards are
collected. However, the Bellman update in q chooses the
action stay that maximizes the upper bound, keeping it at t.
Thus, U(p) = U(q) = t is a spurious fixpoint of the Bellman
updates for all t > 1, and BVI does not converge from above.

Convergence by Collapsing End Components. The core
problem are so-called end components (ECs), e.g. (De Alfaro
1997, Chp. 3.3), which are cyclic parts of the state space
where the agent can remain arbitrarily long without obtaining
any reward. The solution introduced in (Brázdil et al. 2014;
Haddad and Monmege 2018) is to collapse these ECs, i.e.
to replace them with a single representative and remove all
internal behaviour. In the example, the states p and q can
be aggregated into a single state while removing the stay
actions, as depicted in Fig. 2 (right). The modified MDP has
the same value (where all collapsed states have the value of
their representative) and in it, Bellman updates have a unique
fixpoint so that BVI converges. Since in constant-support
RMDPs the environment cannot affect the set of successor
states, ECs are solely under the agents control and we can lift
the solution of collapsing from MDP to RMDP.
Lemma 2 (Collapsing – Proof in (Meggendorfer, Weininger,
and Wienhöft 2024, App. E)). LetM be a closed constant-
support RMDP with a TR objective. We can construct a lin-
early sized RMDP M′ = COLLAPSE(M) in polynomial
time, such that Vopt

M = Vopt
M′ and inM′, the Bellman updates

have a unique fixpoint.

Initializing Upper Bounds. Classical BVI requires an (a-
priori) upper bound U that for all states over-approximates
their value. Such a bound can be obtained in two steps, which
we only briefly outline in the interest of space. First, we iden-
tify states with infinite value, which can be done by graph
analysis, extending methods for SG (Chen et al. 2013) to
work implicitly in RMDPs. The remaining states with finite
value almost surely reach a sink state where no further re-
ward is obtained. Their value can be bounded by extending a
standard approach to our setting, see e.g. (Kretínský, Meggen-
dorfer, and Weininger 2023b, App. B). In essence, in closed
constant-support RMDPs we have a positive lower bound
on all transition probabilities with which we can conserva-
tively bound the expected number of steps until a sink state
is reached and assume that until then the maximal single-step

Algorithm 2 Bounded Value Iteration for RMDP
Input: closed constant-support RMDPM and desired preci-
sion ε > 0
Output: ε-precise lower and upper bounds L and U on the
optimal total reward value Vopt

M
1: M′ ← COLLAPSE(M)
2: L0,U0 ← INIT_TR(M′)
3: i← 0
4: while U(si)− L(si) > ε do
5: for all s ∈ S′ do
6: Li+1(s)← opta∈A(s)r(s, a) +

optP(s,a)∈P(s,a)
∑
s′∈S P(s, a)(s′) · Li(s′)

7: Ui+1(s)← opta∈A(s)r(s, a) +

optP(s,a)∈P(s,a)
∑
s′∈S P(s, a)(s′) · Ui(s′)

8: i← i+ 1
9: return (Li,Ui)

reward is obtained. We call this procedure INIT_TR and for-
mally describe it in (Meggendorfer, Weininger, and Wienhöft
2024, App. E).

Lemma 3 (INIT_TR – Proof in (Meggendorfer, Weininger,
and Wienhöft 2024, App. E)). LetM be a polytopic or closed
constant-support RMDP. There exists a procedure INIT_TR
that forM and a TR objective computes functions L,U such
that (i) all states s with infinite value have L(s) = U(s) =∞
and (ii) all states s with finite value have L(s) = 0 and
U(s) = t, where t ∈ Q is an upper bound on the maximum
finite expected total reward.

In practice, optimistic value iteration (OVI) (Hartmanns
and Kaminski 2020; Azeem et al. 2022) has proven to be
more efficient. Instead of fixing upper bounds a-priori, we
adaptively guess and verify them, using effectively the same
building blocks. The details of OVI are rather involved and
we avoid discussion to not distract from the key results. For
scalability, our implementation uses this approach.

Algorithm. Alg. 2 shows the overall BVI algorithm for TR
objectives. First, it collapses ECs to ensure that Bellman up-
dates have a unique fixpoint and computes the initial bounds.
Then the main loop applies implicit Bellman updates Eq. (2).
Since by Lem. 3 the initial bounds are correct and by Lem. 2
Bellman updates have a unique fixpoint, the lower and upper
bounds eventually become arbitrarily close.

Long-Run Average Reward. For closed constant-support
RMDPs with LRA objectives, a very similar construc-
tion is possible based on (Ashok et al. 2017). We modify
the COLLAPSE procedure as follows (see (Meggendorfer,
Weininger, and Wienhöft 2024, App. E) for the formal de-
scription): When replacing an EC, add an action to its repre-
sentative that leads to a sink state and as reward obtains the
value of staying in the EC forever. Thus, playing this action
in the modified RMDP corresponds to playing optimally in
the EC of the original RMDP, and thus preserves the values.
In this way, we can reduce LRA objectives to TR objectives
and then apply Alg. 2.
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Theorem 4 (Implicit Anytime Algorithm with Stopping Cri-
terion – Proof in (Meggendorfer, Weininger, and Wienhöft
2024, App. E)). For every closed constant-support RMDP
M with TR objective and precision ε > 0, Alg. 2 is an any-
time algorithm (Def. 4). For LRA objectives, its modification
(see (Meggendorfer, Weininger, and Wienhöft 2024, App. E))
is an anytime algorithm. Both algorithms work implicitly, i.e.
without constructing the induced SG.

Beyond Constant-Support. In RMDPs where the environ-
ment can affect the successors of an action, the solution of col-
lapsing is not applicable anymore. In particular, states in an
EC may have different values, as the environment can “lock”
the agent in subpart of the EC. This was the key complication
for developing stopping criteria for SGs, see e.g. (Kretínský,
Meggendorfer, and Weininger 2023a, Sec. III-B), necessitat-
ing additional analysis of the ECs. Moreover, we aim to do so
implicitly, adding another layer of complexity. In (Meggen-
dorfer, Weininger, and Wienhöft 2024, App. F) we provide
implicit anytime algorithms for SSP and maximizing TR and
explain the complications for LRA and minimizing TR, for
which we may need to resort to an exponential blowup by
enumerating possible supports. We conjecture that this can
be avoided but leave this question for future work.

Optimal Policies. Often, we are not only interested in the
value of an RMDP, but also optimal policies. These can be de-
rived without computational overhead for both the agent and
the environment: Using the connection between RMDP and
SG, we can apply (Kretínský, Meggendorfer, and Weininger
2023a, Lem. 1). Intuitively, during every Bellman update, we
remember the optimal action for every state. Then, when the
algorithm terminates, these actions form an optimal policy.

6 Experimental Evaluation
We implemented a prototype in Java, based on PET (Meggen-
dorfer and Weininger 2024). For linear optimization, we
use the (pure Java) library oj! Algorithms. We ran our
experiments on a machine with standard hardware (AMD
Ryzen 5 CPU, 16GB RAM) running Linux Mint OS and
using OpenJDK 21 as JRE. Our tool, its source code, all
models, and instructions to replicate all results can be found
at (Meggendorfer 2024).

Features. For uncertainty sets, our prototype supports
(i) linear constraints, i.e. H-representation of polytopes,
(ii) rectangular constraints, i.e. lower and upper bounds for
probabilities, and (iii) norm-based constraints, i.e. giving
a centre point q together with a radius r and including all
probabilities with L1, L2, or L∞ distances at most r from
q. (Note that both L1 and L∞ constraints are a special case
of linear constraints, but L1 constraints can be exponentially
more succinct.)

In terms of models, our tool supports three formats. Firstly,
a simple, explicit format in JSON (described in the artefact).
Secondly, we can consider a robust variant of PRISM mod-
els (Kwiatkowska, Norman, and Parker 2011), obtained by
adding L1, L2, or L∞ balls of a given radius on each action.
Finally, our tool supports interval models in PRISM language
(i.e. rectangular constraints).

For properties, our tool supports maximizing and mini-
mizing LRA, TR, and SSP. For LRA and minimizing TR,
Constant-Support is required (due to the discussion above).

Models. We consider several sources of models. Firstly, we
handcrafted ten models where we could manually derive the
correct value to validate our tool, in particular covering many
corner-cases. Since these models are small, we do not include
them for performance evaluation. Secondly, we use models
from (Chatterjee et al. 2024) and their scaled up versions. Fi-
nally, we modified several standard models from (Hartmanns
et al. 2019) by adding rectangular constraints on selected
transitions or adding Lp balls around all transitions. All con-
sidered (and further) models are included in the artefact.

Previous Approaches. For (Grand-Clément, Petrik, and
Vieille 2023; Wang et al. 2024), neither code nor case stud-
ies are available online. We consider the implementation of
(Chatterjee et al. 2024), denoted RPPI, which also imple-
ments the approaches of (Wang et al. 2023), called RVI and
RRVI. We mention a few caveats: Our tool is implemented
in Java, while the implementation of (Chatterjee et al. 2024)
is written in Python and uses stormpy (Python binding
for the model checker Storm (Hensel et al. 2022)), which
might be a source of performance differences. Moreover, our
input formats are fundamentally different: The approach of
(Chatterjee et al. 2024) only supports linear constraints and
assumes that the vertices of the constraint set is explicitly
given, i.e. in V-representation. In contrast, we support many
different representations. Naturally, the performance of an
algorithm depends on the appropriate input representation,
and one could argue that choosing different input formats is
giving an unfair advantage. However, constraint sets given by
Lp-balls or rectangular constraints are the typical use-case
for RMDP. In particular, the implementation of (Chatterjee
et al. 2024) explicitly generates the V-representation from
L1-balls or rectangular constraints. As such, we represent
our model instances in this implicit way.

As a further competitor, PRISM (Kwiatkowska, Norman,
and Parker 2011), a state-of-the-art probabilistic model
checker, supports TR objectives. They also use a value itera-
tion based approach, however it does not provide guarantees
and only works on models with rectangular constraints and
Constant-Support. On the considered models our results co-
incided with those of PRISM, giving further indication for
the correctness of our approach and implementation.

Guarantees and Runtime. We remark that RVI and RRVI
as well as PRISM do not give a practical stopping criterion.
For the former two, the implementation from (Chatterjee et al.
2024) aids them by stopping once the iterates are sufficiently
close to the correct value, while PRISM stops once the iter-
ates do not changes much between steps. Notably, PRISM’s
heuristic can indeed lead to stopping early and wrongly, see
(Haddad and Monmege 2018). In contrast, our approach pro-
duces converging lower and upper bounds and thus also pro-
vides a correct stopping criterion. Computing both bounds
until achieving precision of ε (10−6 in our experiments) nat-
urally requires more effort than just working with one side
and stopping at the correct time via an oracle or heuristics:
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Model Ours RVI RRVI RPPI

cont-50 <1 223 <1 30
cont-75 <1 700 <1 70
cont-100 <1 M/O
cont-125 1 M/O

lake-10-U <1 – T/O 7
lake-10-M <1 – – 26
lake-15-U <1 – T/O 136
lake-15-M 2 – – T/O

lake-100-U 6 – T/O T/O
lake-100-M 12 – – T/O

Table 1: Comparison of our approach for maximizing LRA to
the approaches implemented in (Chatterjee et al. 2024) on the
models used in that paper. We report solving times (excluding
model building / parsing) in seconds. A dash indicates the
approach does not support a particular model. T/O denotes a
timeout of 15 minutes, M/O a memory-out crash. lake-n
are their frozenlake models of size n× n, the suffix U or M
indicates the unichain or multichain variant. cont-n are the
contamination models with n states.

Firstly, BVI needs to perform twice as many operations in
each step (updating lower and upper bound). Secondly, the
lower bound may already (unknowingly) have converged to
the correct value (leading to PRISM stopping), yet the upper
bound may still require further updates until convergence.
Intuitively, PRISM’s approach “only” proves that a certain
lower bound is achievable, while BVI additionally proves
that nothing better is possible.

Experimental Results
Table 1 shows that our approach massively outperforms
RVI, RRVI, and RRPI by several orders of magnitude. In
particular, it seems that the runtime of their approaches
grow significantly faster than ours. For example, going
from lake-10-M to lake-15-M increases the runtime
of RPPI by a factor of about 50, while ours only increases
by a factor of ≈5. We believe this is partly due to imple-
mentation inefficiencies, but more importantly due the expo-
nential space requirement of constructing the induced SG
explicitly. In particular, just building the game structure
for lake-100-U in their implementation takes 200s, and
crashes with a memory-out on cont-100.

In Table 2, we compare to the approach of PRISM. Our
approach has runtimes in the same order of magnitude, with
differences likely due to implementation details. However, re-
call that by design our tool needs to work more, as it provides
guarantees. Thus, these results demonstrate that additionally
obtaining guarantees via our approach does not drastically
increase the runtime and scales to significantly sized models.

Finally, we also evaluated our tool on robust variants
of large, established models by adding L1- and L2-norm
balls. As there are no competing tools, we delegate details to
(Meggendorfer, Weininger, and Wienhöft 2024, App. G) in
the interest of space. In brief, we observed that our approach

Model |S| |A| Ours PRISM

firewire 46,878 92,144 78 111
frozenlake 22,500 90,000 52 25
lake_swarm 20,736 82,944 60 68

brp 217,155 217,155 88 40

Table 2: Comparison of our approach to PRISM. Columns
|S| and |A| denote the number of states and actions in the
model, respectively. We report solving times in seconds as
in Table 1. The models are obtained by adding rectangular
constraints to existing ones. Moreover, all experiments use
a TR objective (as PRISM only supports these for RMDP).
Note that our tool gives guarantees and PRISM does not, thus
higher runtimes are to be expected (see previous discussion).

can efficiently handle complicated uncertainty sets such as
L2-balls – out of reach for state-of-the-art tools, and it can
solve models with over a million states in under a minute.

IntervalMDP.jl. Finally, for completeness we also
tried evaluating IntervalMDP.jl (Mathiesen, Lahija-
nian, and Laurenti 2024) on the models considered in Ta-
ble 2. However, the tool ran out of memory for each model
already when loading the model (even before specifying an
objective). We conjecture that this is due to the tool working
with the (large) explicit representation and not the PRISM
language directly. However, we again emphasize that their fo-
cus is quite different, and as such we cannot draw meaningful
conclusions.

7 Conclusion
We have generalized the connection between RMDPs and
SGs to include arbitrary uncertainty sets and total reward
objectives, we have shown that and how Bellman updates
can be performed implicitly and efficiently, and we have
provided anytime algorithms with stopping criteria. Together,
we have presented a framework for solving RMDPs that is
generic, reliable and efficient. In the future, we aim to to
investigate what form solutions can take when lifting the
Constant-Support Assumption.
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