
THE PROBLEM OF BUREAUCRACY AND IDENTITY OF PROOFS FROM THE
PERSPECTIVE OF DEEP INFERENCE
Alessio Guglielmi (TU Dresden and University of Bath)
17.6.2005

Abstract

Deep inference offers possibilities for getting rid of much
bureaucracy in deductive systems, and, correspondingly, to come up
with interesting notions of proof identity. We face now the problem
of designing formalisms which are intrinsically bureaucracy-free.
Since we have a design problem, it is important to elaborate
definitions that will remain useful for many years to come. I
propose a discussion of several proposals. The discussion will
hopefully be also a good way of introducing deep inference to those
who don’t know it.

In my talk I will explain in detail and with examples all the
notions quickly sketched below. It is apparently extremely simple
stuff, but there are subtle issues that only experienced proof
theorists might appreciate; I will try to address them. The proposed
solutions are currently discussed on the mailing list Frogs. By the
time of the workshop, in addition to my proposed definitions, I will
have also the opinions of the participants to the discussions.

Bureaucracy and Identity

Bureaucracy and identity of proofs are intimately related.

There is no formal notion of bureaucracy, but I guess the consensus
is that, when two proofs are morally the same, but they differ in
inessential details, then this is due to bureaucracy.

If this is so, we should conclude that eliminating bureaucracy
should lead us to eliminate the inessential details that blur the
`sameness´, i.e., identity, of proofs.

We should agree that, for any given logic, there are several
possible notions of identity of proofs, and people can invent more
and more of them.

Given a notion of identity and a formalism, either the formalism is
able to express the identical proofs or it isn't: in the latter
case, we have bureaucracy, and we have an enemy.

Our goal is to attack some specific, important kinds of bureaucracy,
in order to improve the ability of proof theory to deal with
bureaucracy. It is hopeless to try and define bureaucracy once and
for all. However, it is now possible to define formalisms which get
rid of the most brutal and medieval forms of bureaucracy.

53

Bureaucracy in the Formalism and in the Deductive System

I will use in the following the syntax of the calculus of structures
(CoS) [WS].

There are several sources of bureaucracy, and I think it is
convenient to address them separately. It should be possible to make
a broad distinction between bureaucracy induced by the formalism and
bureaucracy induced by the specific deductive system used (in the
given formalism).

What I call formalism A [1] takes care of bureaucracy of the kind

[R' T'] [R' T']
r'------- r -------
[R' T] [R T']

r ------- vs. r'------- ,
[R T] [R T]

where the order of the application of two inference rules doesn't
morally matter. In formalism A, one can write

R' T'
[r--- r'---]

R T

and the problem is solved. This is an example of formalism-related
bureaucracy: CoS only sees the two derivations above, and doesn't
express the one below.

However, consider a deductive system where associativity is explicit
(I mean, we are not working modulo associativity). Consider the
following two derivations:

[[a a] a]
ass -----------

[a [a a]] [[a a] a]
ac_ ---------- ac_ ---------

[a a] [a a]
ac_ ------ vs. ac_ ------ .

a a

They might be considered `morally the same´, but it is difficult to
fix the problem in the formalism definition. Perhaps, a better idea
is to fix the deductive system. For example, one can propose a
deductive system with sort of a `general atomic contraction´,
quotient by associativity, and go for the derivation

[a a a]
gac_ ------- .

a

54

So, this could be an example of fixing the bureaucracy problems by
fixing the deductive system (inside a given formalism).

A Problem with Commutativity and Associativity

In my opinion, the very first source of bureaucracy in all deductive
systems in all formalisms is associativity and commutativity (when
present) in formulae. I mean, in most cases, we do not want to
distinguish formulae, and so proofs, just because of the order of
associations, right?

The only practical way of dealing with commutativity is working
under an equivalence relation that takes care of it. Associativity
offers some more options. Anyway, working under associativity and
commutativity, in a deductive system, is difficult. Actually, it is
also dangerous.

Consider

E C
[| |]
[A B] A

* ---------- .
A [B A]

[| |]
D F

This is a derivation (in formalism B [2]) in which two derivations
are vertically composed by *, and we work under commutativity and
associativity. The problem is that this is the only way we have in
formalism B for representing (what I could graphically and
imprecisely represent as)

E C
[| |]
[A B] A
| \ | .
A [B A]

[| |]
D F

However, the same derivation above could also stand for

E C
| |

[[A B] A] ,
| |
F D

and this of course is morally different!

What can we do? Well, we could stop working under commutativity and
associativity: this way we could easily distinguish between the two

55

cases. However, if we drop commutativity and associativity, we get
back all the bureaucracy in formulae, with a vengeance, because now
this bureaucracy scales up to proof composition.

Possible Solutions

Apart from developing the ideas in [2], there is now the possibility
of designing a geometric formalism that solves the problems
mentioned above, which I called wired deduction. I posted its
possible definition(s) to the mailing list Frogs, and this generated
a discussion [3]. For convenience, I reproduce in the appendix the
email with the definition, but there is no room for reporting all
the issues discussed on Frogs.

It is too early to tell whether this is the long-term solution we
are looking for, however, the new formalism certainly works well for
classical logic, and this is what I’d like to show at the workshop,
since the ideas of wired deduction are all clearly exposed also in
the case of classical logic.

References

[1] Alessio Guglielmi. Formalism A. URL:
http://iccl.tu-dresden.de/~guglielm/p/AG11.pdf.

[2] Alessio Guglielmi. Formalism B. URL:
http://iccl.tu-dresden.de/~guglielm/p/AG13.pdf.

[3] Alessio Guglielmi, Stéphane Lengrand and Lutz Straßburger. Emails at URLs:
http://thread.gmane.org/gmane.science.mathematics.frogs/219,
http://thread.gmane.org/gmane.science.mathematics.frogs/220.

Web Site

[WS] http://alessio.guglielmi.name/res/cos.

Appendix

Delivered-To:Frogs
Date: Tue, 15 Mar 2005 17:32:09 +0100
To: Frogs, Michel Parigot
From: Alessio Guglielmi
Subject: [Frogs] Wires and pipes
Cc: Dominic Hughes
List-Post: Frogs
List-Page: <http://frogs.prooftheory.org>

Hello,

in this message I propose a formalism and a deductive system for classical
propositional logic.

The formalism, which I'd like to call `wired deduction' (weird deduction!) should
be the first example of deductive derivation net: it is an intrinsically

56

bureaucracy-free, deductive and geometric formalism. It naturally subsumes CoS and
formalisms A and B.

As usual, I will define the formalism by way of a deductive system, and the natural
choice is classical propositional logic. It is possible to define the formalism in
isolation, in two ways: 1) geometrically, as a set of graph-forming rules; 2)
deductively, by the definition for formalism B I showed at the workshop, *enriched
by wires* (see below for what wires are).

These definitions are almost trivial after you see a deductive system. Before
posting their details, I would like to receive some reactions about the deductive
system, which you find below.

This email has three parts: Motivations, Intuition and Technicalities. Reading up
to Intuition should be enough to get a good idea, if you know already about CoS and
KS.

I would be very grateful if somebody checks the technicalities, though. They are
nontrivial and unfortunately very combinatorial. Clearly, they might be wrong, but
it should be possible to fix any mistake without changing the general picture.

Please, if you check, let me know, even if you find no mistakes (positive
information is still very useful!).

Ciao,

-Alessio

MOTIVATION
==========

The general motivation is devising a formalism which is bureaucracy-free and
intrinsically so. Moreover, we want the formalism to be geometric.

Bureaucracy-free means that it should be possible to express, inside the formalism,
canonical representatives of derivations which are `morally the same' according to
some notion. See the message

<http://article.gmane.org/gmane.science.mathematics.frogs/219>

for an exposition of these ideas. See also the notes

<http://iccl.tu-dresden.de/~guglielm/p/AG11.pdf> ,
<http://iccl.tu-dresden.de/~guglielm/p/AG13.pdf> ,
<http://www.iam.unibe.ch/~kai/Current/prty.pdf> .

`Intrinsically' bureaucracy-free means that the formalism disallows the very
formation of some redundant derivations. This notion is closely related, somehow,
to the idea that the formalism should be geometric.

For a formalism, being `geometric' means that derivations are some sort of graphs
over which one operates locally and modulo some basic symmetries like those due to
commutativity and associativity.

Much of the inspiration for wired deduction comes from subatomic logic, especially
the idea of wires and the ww_ rule. See

<http://iccl.tu-dresden.de/~guglielm/p/AG8.pdf> .

57

In the design of the deductive system for classical logic, I wanted to get rid once
and for all of the unit equations. They have no strong justification in terms of
`war to bureaucracy' and they cause some technical problems. I think that the
system below is particularly convincing in this respect. It might be possible to do
better than I did, in the sense that some technicalities can perhaps be simplified.

INTUITION
=========

I will attempt here a completely informal exposition of the system for classical
logic, called KSw, which should be sufficient for people who know CoS and KS. The
technical definitions are in the Technicalities part of this message (they are
still subject to changes, of course).

We need to operate under associativity and commutativity, in order to get rid of
bureaucracy in formulae. However, in some cases we need to keep track of `where the
atoms come from'. The obvious solution would be to disambiguate these situations by
resorting to occurrences. Wires go one step further: they allow following atoms and
their transformations throughout a whole derivation.

The main idea goes as follows: there is a denumerable set of wires. Wires are
neither created nor destroyed. To wires we associate atoms, and the association may
vary in the course of the derivation.

Moreover, at any given time bunches of wires are organised into a tree of logical
relations, which also can change over time. For example, the following is a
derivation of a from (a V a) (so, it's a contraction):

[a a]
| |
[a f] .

1 2

There are two wires, 1 and 2, vertically disposed, and we assume that time flows
vertically going upwards. In the beginning, a is associated to 1 and f is
associated to 2. In traditional logic, a would be a propositional variable and f
would be the `false' unit; both are atoms for us. Wires 1 and 2 are in a
disjunction relation (indicated as usual in CoS). After some time wire 2 gets the
value a, but the logical relation between wires does not change. We indicate this
situation by the rule

[a a]
wc_ -|-|- ,

[a f]

which is of course supposed to apply in the middle of other wires. This is an
example of atomic rule. A special feature of wired deduction is that atomic rules
only work on wires, their values and their relations, by `going through' a
predetermined amount of them (in the case above, two). Atomic rules `see' which
atoms wires carry.

There is another kind of rule, the local rule. These are different than atomic
rules, they only see *bunches* of wires, called *pipes*, and they reshuffle their
logical relations. For example, take the switch rule

(A [B C])
s =|==|==|= .
[(A B) C]

58

Through pipes, logical inferences can go up and down, provided they don't stumble
one on another. For example, consider the following derivations:

([a a] [b b c]) ([a a] [b b c])
s =| |====| |===|= wc_-|-|- | | |
[(| | | |) |] | f | b |

| | | b | and | |wc_-|-|- | .
| |wc_-|-|- | | | | f |
| a | f | (| | [| | |])

wc_-|-|- | | | s =| |====| |===|=
[([a f] [b f]) c] [([a f] [b f]) c]

As you can see, the two wc_ rules can freely go up and down and pass through the
holes in the s rule. This example shows how wired deduction deals with both type A
and type B bureaucracy.

This also shows that employing this geometric criterion (sort of an elastic
deformation of graphs) avoids the problem of representing non-canonical
derivations: all derivations are canonical, and convergence of the `rewriting
system' is trivial.

So, what are derivations? Derivations are nets of the kind seen above, whose
general shape is

(<R> t ... t)
\|| | /
<net> .

/|| | \
[<T> f ... f]

In other words, the premiss R is in the middle of any number of t wires in
conjunction and the conclusion T is in the middle of any number of f wires in a
disjunction. *No wires are created or destroyed*: in this sense, this formalism is
always *linear*. A proof, of course, is a derivation with all t's in the premiss.

This setup clearly works for classical logic, and all our results with CoS, and my
preliminary work with subatomic proof theory, tell us that this should work for
any logic. Of course, in general f and t are simply the units of whatever
disjunction and conjunction one has, for example they would be bottom and one for
linear logic.

The general geometry is given by the wires: we *always* assume that they live under
a commutative and associative equivalence. In the case of non-commutative logic,
the non-commutativity will be represented by the logical relation between wires,
not by their geometry. In other words: if you take the horizontal section of any
derivation like the ones above, you always have a relation web (back to the
origins).

So, this is propositional classical logic's system KSw; notice that there are *no
equations*:

(t t) [a a] (f t)
wi_ -|--|- , wc_ -|-|- , ww_ -|-|- ,

[a -a] [a f] [a f]

(A [B C]) [(A B) (C D)]
s =|==|==|= , m =|===X===|= .
[(A B) C] ([A C] [B D])

Of course, I have to show that this system is complete for classical logic
(soundness is trivial). I could do it semantically, for example by showing how to

59

get disjunctive normal forms and then realising resolution and appeal to its
completeness.

However, I also want to check that the complexity of proofs does not grow wrt KS,
which is the place where we mostly study it. So, in the technicalities, you will
find a complete proof of the admissibility of KS equations for KSw.

What is the secret of success? Part of the reason is in the fact that we can assume
to have an unlimited supply of t's in conjunction and f's in disjunction. These
atoms can be brought wherever they are needed by the switch rule. Doing this way
does generate a small amount of bureaucracy of the deductive-system kind, for
contraction and weakening rules. However, it is very easy to get rid of this
bureaucracy by simple permutations. This is not very geometrical, but it is more
geometrical than basically allowing [R f] = R and (R t) = t everywhere, so I went
that way. In any case, there always is bureaucracy associated to the piling up of
contraction and weakenings, as I showed in the previous message to Frogs, and this
can be dealt with by using an appropriate deductive system with non-local rules (or
by using a straightforward equivalence on proofs).

If you have more or less clear what I tried to explain above, you can jump directly
to section 3 of the Technicalities and see KSw in action while getting rid of KS
equations.

TECHNICALITIES
==============

1 LANGUAGE

Definition We define the following:

- WW is a denumerable set of _wires_; we denote wires by natural numbers.

- PP is a set of _pipes_; we denote pipes by A, B, C, D and various
decorations.

- SSF is the language of _scheme skeleton formulae_, produced by

SSF ::= WW | PP | [SSF SSF] | (SSF SSF)

and such that no wire and no pipe appears twice in any element of SSF; we
denote scheme skeleton formulae by K; an _instance_ of a scheme skeleton
formula K is a scheme skeleton formula obtained by replacing in K any pipes
by scheme skeleton formulae.

Example K = [(1 2) A] is a scheme skeleton formula, while [(1 1) A] is not.
K' = [(1 2) (A B)] is an instance of K, while [(1 2) (A A)] is not.
[(1 2) ([3 4] (5 6))] is an instance of K'.

Definition AA is a denumerable set of _atoms_; we denote atoms by a, b and
c; on atoms we have an involution -: AA -> AA (i.e., --a = a); two special
atoms f and t, called _units_, belong to AA, and -f = t. A _scheme formula_ is
a couple (K, wr K -> AA), where wr K is the set of wires appearing in K; if no
pipes appear in K, then the scheme formula is a _formula_; formulae are denoted
by F.

Example If K = [(1 2) A] then (K, {1 -> a, 2 -> t}) is a scheme formula; if

60

K' = [(1 2) 3] then (K', {1 -> a, 2 -> t, 3 -> a}) is a formula, corresponding
to the classical propositional logic formula ((a ^ t) V a).

Definition The equivalence == on SSF is defined as the minimal equivalence
relation such that

[K K'] == [K' K] ,
(K K') == (K' K) ,

[K [K' K"]] == [[K K'] K"] ,
(K (K' K")) == ((K K') K") ,

if K == K' then [K K"] == [K' K"] and (K K") == (K' K") .

The equivalence == is applied naturally wherever scheme skeleton formulae
appear. _Structures_, denoted by P, Q, R, T, U and V, are formulae modulo ==.

Examples and Notation We usually omit indicating wires, and we write, for
example, [(a t) a] in the place of ([(1 2) 3], {1 -> a, 2 -> t, 3 -> a}). We
have that [(a b) [f a]] == [a [f (b a)]]. We drop unnecessary parentheses, so
[a [f (b a)]] can be written as [a f (b a)].

Definition Two structures R and T are _isomorphic_ if in their respective
==-equivalence classes there are two formulae which are equal modulo some
permutation of wires.

Example Let

R = ([([1 2] 3)]_==, {1 -> a, 2 -> b, 3 -> c}) ,
T = ([(4 [5 6])]_==, {4 -> c, 5 -> a, 6 -> b}) .

Clearly,

T = ([([5 6] 4)]_==, {5 -> a, 6 -> b, 4 -> c}) ;

we can consider the permutation {1 <-> 5, 2 <-> 6, 3 <-> 4}, and this shows
that R and T are isomorphic.

Notation We usually do not indicate pipes, rather we use structure
notation. So, for example, ([A B] C) is indicated as ([R T] U). This allows for
an important shortcut: when we repeat letters, like in (R R), we mean any
structure

([(K K')]_==, m), where m: wr (K + K') -> AA,

such that ([K]_==, m') and ([K']_==, m") are isomorphic, where m' and m" are
the restrictions of m to wr K and wr K', respectively.

Example ([R R] a) can be instantiated as ([(T T U) (T T U)] a) and
([(b f) (b f)] a), for example, but not as ([b c] a). ([R T] a) instead does
not impose any restriction on R and T.

Definition An _atomic inference rule_ is any expression of the kind

F
r ---,

F'

where F and F' are formulae such that the same wires appear in F and F'; r is
the _name_ of the rule. We adopt a notation such that wires are not explicitly
indicated, but they can be `followed', for example

61

((1 2), {1 -> f, 2 -> t})
ww_ -------------------------

([1 2], {1 -> a, 2 -> f})

is denoted by

(f t) (t f)
ww_ -|-|- or ww_ -X- .

[a f] [a f]

Definition A _local inference rule_ is any expression of the kind

K
r --- ,

K'

where K and K' are scheme skeleton formulae where no wires appear and such that
the same pipes appear in both; r is the _name_ of the inference. We adopt a
notation where we join vertically the pipes; for example

(A [B C])
s ---------
[(A B) C]

is denoted by

(A [B C]) (A [C B])
s =|==|==|= or s =|===X= .
[(A B) C] [(A B) C]

Example System KSw for classical propositional logic is defined by the
following rules

(t t) [a a] (f t)
wi_ -|--|- , wc_ -|-|- , ww_ -|-|- , for all a in AA,

[a -a] [a f] [a f]

(A [B C]) [(A B) (C D)]
s =|==|==|= , m =|===X===|= .
[(A B) C] ([A C] [B D])

The first three rule (schemes) are atomic, the last two are local. They are
called, respectively _wired interaction_, _wired contraction_, _wired
weakening_, _switch_ and _medial_.

2 COMPOSITION OF RULES

This part needs to be completed. For now, suffice to say that we compose rules
like in the calculus of structures. Of course, it is possible to define more
geometric notions of compositions, like for formalism B.

3 CLASSICAL PROPOSITIONAL LOGIC

Proposition The _contraction_ rule

[P P]
c_ ~|~^~ ,

P

62

is derivable for KSw.

Proof By structural induction on P. If P = a then consider

S[a a]
wc_ |-|--|-

|[a f]
s* =|=|==|= .

[S{a} f]

If P = [R T] then consider

[R R T T]
c_ | |~|~^~

[R R |]
c_ ~|~^~| .

[R T]

If P = (R T) then consider

[(R T) (R T)]
m =|===X===|=
([| R] [T T])

c_ | | ~|~^~
([R R] |)

c_ ~|~^~ |
(R T)

<>

Proposition The following rules

f
aw_ ~|~ (_atomic weakening_),

a

[a a]
ac_ ~|~^~ (_atomic contraction_),

a

f (f f) R
r1 ~!^!~ , r2 ~|~^~ , r3 ~|~!~ ,

(f f) f (R t)

t [t t] [R f]
r5 ~|~!~ , r6 ~|~^~ , r8 ~|~^~

[t t] t R

are derivable for KSw.

Proof Consider, respectively:

(S{f} t)
s* =|=|==|=

|(f t)
ww_ |-|--|-

|[a f]
s* =|=|==|= ,

[S{a} f]

[a a]
c_ ~|~^~ ,

a

63

(S(f) t t t t)
s* =|========|==| | | |=

|(| | | t t)
wi_ | | | | -|-|-

|(| t t [t f])
wi_ | | -|-|- | |

|(| [t f] [t |])
2.s | | =|===X===|=

|(| [| t (f f)])
s | =/ /==|==| |=/ /=

|[(f f) (| [| |])]
s* =|==| |===| | |=

[|(| |) (| [t t])] S(f f)
wc_ | | | | -|--|- aw_ | | ~|~

[|(| |) (| [t f])] |(f t)
s | | | =|==|==|= ww_ |-|--|-
[|(| |) (f t) |] |[f f] (S{R} t)

ww_ | | | -|--|- | , s* =|=|==|= , s* =|=|==|= ,
[S(f f) f f f] [S{f} f] S(R t)

(S{ t} t t)
s* =|==|==| |=

|(t t t)
wi_ | -|--|- |

|([t f] |)
s | | | |

|[| (f t)]
ww_ | | -|--|-

|[| t f] [t t] S[R f]
s* | =|==|==|= , c_ ~|~^~ , s* =|=|==|= .

[S[t t] f] t [S{R} f]

<>

Theorem <PP> In KSw, if S{P} is provable then S[P P] is provable.

Proof Induction on the length of the proof D of S{P}.

Base Case: If D = [(t t_t) f_f], we have to show that
[([(t n.t) (t n.t)] t_t) f_f] is provable, for n>= 0. Take

[(t t n.t n.t t_t) f_f]
wi_ -|--|- | | | |

[([t f] | | |) |]
aw_ | ~|~ | | | |

[([| t] n.t | |) |]
2.s =|====><=====|= | | .

[([(t n.t) (t n.t)] t_t) f_f]

Inductive Cases: If the bottommost rule instance in the proof of S{P} is like
in

__ __ __
|| || ||
S'{P} S{P'} S{P'}

r =|==|= or r |=|= or r |-|-
S{ P} S{P} S{P}

then use the induction hypothesis on
__ __
|| ||

__ S[P' P'] S[P' P']
|| r | | =|= r | | -|-

S'[P P] |[P' P] |[P' P]
r =|==| |= or r |=|= | or r |-|- | .

S[P P] S[P P] S[P P]

64

Otherwise, the following cases are possible:
__
||

S'[Q (t t)]
1 S{ } = S'[a { }], P = [-a Q] and D = wi_ | | -|--|- : Consider

S'[Q a -a]
__
||

S'[Q Q (t t) (t t)]
wi_ | | | | | -|--|-

| [| | (t t) a -a]
wi_ | | | -|-|- | |

| [| | -a a a |]
wc_ | | | |-|---|- |

| [| | | a f -a]
s* =|==| | | | =X= ;

[S'[Q Q -a a -a] f]

when Q is empty the argument is the same.

__
||

S'[Q a a]
2 S{ } = S'[{ } f], P = [Q a] and D = wc_ | |-|-|-: Consider

S'[Q a f]
__
||

S'[Q Q a a a a]
wc_ | | | |-|-|-|

| [| | | f a a]
c_ | | | | |~|~^~ ;

S'[Q Q a f a]

when Q is empty the argument is the same.

__
||

S'[Q a a]
3 S{ } = S'[a { }], P = [f Q] and D = wc_ | |-|-|-: Consider

S'[Q a f]
__
||

S'[Q Q a a a a]
wc_ | | | | |-|-|-

| [| | a a a f]
wc_ | | |-|-|-| |

| [| | f a a |]
c_ | | | |~|~^~| ;

S'[Q Q f a f]

when Q is empty the argument is the same.

__
||

S'[Q (f t)]
4 S{ } = S'[{ } f], P = [Q a] and D = ww_ | | -|-|- : Consider

S'[Q a f]
__
||

S'[Q Q (f t) (t f)]
ww_ | | | | | -|-|-

| [| | (f t) f a]
ww_ | | | -|-|- | |

| [| | a f | |]
c_ | | | |~|~~~^~| ;

S'[Q Q a f a]

65

when Q is empty the argument is the same.

__
||

S'[Q (f t)]
5 S{ } = S'[a { }], P = [f Q] and D = ww_ | | -|-|- : Consider

S'[Q a f]
__
||

S'[Q Q (t f) (f t)]
ww_ | | | | | -|-|-

| [| | (t f) a f]
ww_ | | | -|-|- | |

| [| | f a a |]
c_ | | | |~|~~~^~| ;

S'[Q Q f a f]

when Q is empty the argument is the same.
__
||

S'[Q (R [T U U'])]
6 S{ } = S'[{ } U'], P = [(R T) U Q] and D = s | | =|==|==| |= :

Consider S'[Q (R T) U U']
__
||

S'[Q Q (R [T U U']) ([U' U T] R)]
s | | | | | | | =| |==|==|=
| [| | (| [| | |]) | | (| |)]

s | | | =|==|==| |= | | | |
| [| | (| |) | U' U' | (| |)]

c_ | | | | | |~^~~~~~~|~ | | | ,
S'[Q Q (R T) U U' U (T R)]

when Q or U are empty the argument is the same.
__
||

S'[Q (R [T U U'])]
7 S{ } = S'[(R T) { } U'], P = [U Q] and D = s | | =|==|==| |= :

Consider S'[Q (R T) U U']
__
||

S'[Q Q (R [T U U']) ([U' U T] R)]
s | | | | | | | =| |==|==|=
| [| | (| [| | |]) | | (| |)]

s | | | =|==|==| |= | | | |
| [| | (| |) | U' U' | (| |)]

c_ | | | | | |~^~~~~~~|~ | | |
S'[Q Q (R T) U U' U (T R)]

c_ | | | ~|~~|~.|........|..|.~^^^^~ ,
S'[Q Q (R T) U U' U]

when Q or U are empty the argument is the same.

__
||

S'(R R' [(T T') U])
8 S{ } = S'[({ } R' T') U], P = (R T) and D = s | =| |====| |===|= :

Consider S'[(R R' T T') U]

66

__
||

S'[(R R' [(T T') U]) (R R' [(T T') U])]
s | | | | | | =| >==< |=====|=
| [(R R' [(T T') |]) (R T R' T') |]

s | =| >==< |===|= | | | | |
| [(R T R' T') U (| | | |) U]

c_ | | | | | ~^~....|..|....|..|....~|~
| [(| | R' T') (R T | |) |]

m | =| |=====> >=======< <=====| |= |
| [([(| |) (R T)] [(R' T') (R' T')]) |]

c_ | | | | | ~|~~|~~~~^^^^~ | ,
S'[([(R T) (R T)] R' T') U]

when R or R' or T or T' are empty, but (R R'), (T T'), (R T) and (R' T') are
not empty, the argument is the same. The only case remaining to consider is
when (R' T') is empty, i.e., S{ } = S'[{ } U], P = (R T), but this reduces to
case 6.

9 S{ } = S'([{ } R' U'] [T V]), P = [R U] and
__
||

S'[([R R'] T) ([U U'] V)]
D = m | =| |===/ /===|===/ /====|= : Consider

S'([R R' U U'] [T V])

__
||

S'[([R R'] T) ([R R'] T) ([U U'] V) ([U U'] V)]
m | =| |===/\/=/ /=\==|= | | | | | |
| [([| | R R'] [T |]) ([| |] V) ([U U'] |)]

m | | | | | | | =| |===/ X===/ /=\==|=
| [([| | | |] [T T]) ([| | U U'] [V |])]

m | =| | | |=======\ \=====| | | |====\ \==| |=
| ([| | | | | | | |] [T T V V])

c_ | | | | | | | | | ~|~^^^~|~
| ([| R' | R' | U' | U'] [| |])

c_ | |~|~.|~^~...............|~|~.|~^~ | | ,
S'([R R' R U U' U] [T V])

when R or R' or U or U' are empty, but [R R'] and [U U'] are not empty, the
argument is the same.

<>

Proposition <R7> The rule

R
r7 ~|~!~

[R f]

is admissible for system KSw.

Proof Consider the topmost instance of r7 in a proof in KSw + {r7}:

__
||

[(S{R} m.t) f_f]
r7 ~|~!~ , for some m >= 0.

[S[R f] f_f]

Let R = R'{a}, for some a; by Theorem <PP> there is a proof

67

__
||

[(S{R'[a a]} m.t) f_f]
wc_ | | -|---|- | |

[(|{| [a f]} |) |]
s* =|=|==| |====|= |

[|(| [| |] |) |]
s* |=|==|===|====|= |

[|[| {|} (| m.t)] |]
| | | | ^ |

...
| | | | /| \ |

[|[| {|} (| t t) m-2.f] |]
wi_ | | | | -|-|- | |

[|[| {|} (| [t f]) m-2.f] |]
s | | | =|==|==\===\=|= |

[|[| {|} (f t) m-1.f] |]
ww_ | | | -|--|- | |

[|[| {|} f f |] |]
s* =|=| | |==| |= | .

[S[R'{a} f] f m-1.f f_f]

Proceed eliminating r7 instances one by one.

<>

Proposition The rule

(R t)
r4 ~|~^~

R

is admissible for KSw.

Proof Consider

S(R t)
r7 | ~|~~!~ |

|([R f] |)
s | =|==|==|=

|[| (f t)]
ww_ | | -|--|-

|[| f f]
s* =|==|==| |= .
[S{ R} f f]

If S(R t) is provable in KSw, by Proposition <R7> then S{R} is also provable.

<>

Theorem System KSw is equivalent to system KS.

Proof All rules and equations of KS have admissible counterparts in KSw.

<>

68

Structures and Deduction –
the Quest for the Essence of Proofs
(satellite workshop of ICALP 2005)

Paola Bruscoli, François Lamarche
and Charles Stewart (Eds.)

FI05-08-Juli 2005

Technische Berichte
Technical Reports

ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

