Complexity Theory

Exercise 11: Randomised Computation and Quantum Computing

4th February 2025

Exercise 11.1. Let $0 and let <math>(X_i \mid i \in \mathbb{N})$ be a sequence of independent random variables $X_i \colon \Omega_i \to \{0,1\}$ such that $P(X_i = 1) = p$ for all $i \in \mathbb{N}$. Describe a way how to transform the sequence $(X_i \mid i \in \mathbb{N})$ into a sequence $(Y_i \mid i \in \mathbb{N})$ such that $P(Y_i = 1) = P(Y_i = 0) = 1/2$. The construction may have a zero probability to fail.

Exercise 11.2. Consider the following alternative definition of ZPP:

A language L is in ZPP if and only if there exists some polynomial time PTM \mathcal{M} that answers Accept (A), Reject (R), or Inconclusive (I), and all of the following hold.

- For all $w \in \mathbf{L}$, \mathcal{M} always returns A or I.
- For all $w \notin \mathbf{L}$, \mathcal{M} always returns R or I .
- For all $w \in \Sigma^*$, $\Pr[\mathcal{M}(w) = I] < \frac{1}{2}$.

Prove that the alternative definition is equivalent to the one given in the lecture.

Exercise 11.3. Prove Theorem 23.7 (see slide 18 of lecture 23).

Exercise 11.4. Let **UPath** be the set of all tuples $\langle G, s, t \rangle$ with G an undirected graph, and s and t are two connected vertices in G. Show that **UPath** $\in RL$ using the following result.

Theorem. Let G be some undirected graph and let s and t be some vertices in G. If s is connected to t, then the expected number of steps it takes for a random walk from s to hit t is at most $10n^4$.

Exercise 11.5. Review the slides from Lecture 24, and especially slides 13–18 on calculating the odds in a quantum-based game strategy.

- 1. Can Bob use the experiment to learn about Alice's choice, possibly by repeating the experiment with many pairs of entangled particles? Compute the chances of Bob emasuring 0 in each case considered on the slides (no rotation, only Alice rotates, both rotate).
- 2. Suppose Alice measures her bit without any rotation happening before. Specify the possible states of Bob's remaining 1-qubit system after this.
- 3. Consider the case x=0 and y-1, and the following order of events: Alice measures, Bob rotates, Bob measures. What is the probability of the game being won in this case.