
On the Exploration of the Query Rewriting Space with
Existential Rules

Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

University Montpellier 2, France

Abstract. We address the issue of Ontology-Based Data Access, with ontolo-
gies represented in the framework of existential rules, also known as Datalog+/-.
A well-known approach involves rewriting the query using ontological knowl-
edge. We focus here on the basic rewriting technique which consists of rewriting
a conjunctive query (CQ) into a union of CQs. We assume that the set of rules is
a finite unification set, i.e., for any CQ, there exists a finite sound and complete
rewriting of this CQ with the rules. First, we study a generic breadth-first rewrit-
ing algorithm, which takes as input any rewriting operator. We define properties
of the rewriting operator that ensure the correctness and the termination of this
algorithm. Second, we study some operators with respect to the exhibited proper-
ties. All these operators have in common to be based on so-called piece-unifiers
but they lead to different explorations of the rewriting space. Finally, an exper-
imental comparison of these operators within an implementation of the generic
breadth-first rewriting algorithm is presented.

1 Introduction

We address the issue of Ontology-Based Data Access, which aims at exploiting knowl-
edge expressed in ontologies while querying data. In this paper, ontologies are repre-
sented in the framework of existential rules [BLMS11,KR11], also known as Datalog±
[CGK08,CGL09]. Existential rules allow to assert the existence of new unknown indi-
viduals, which is a crucial feature in an open-world perspective, where data are incom-
pletely represented. These rules are of the form body→ head, where the body and the
head are conjunctions of atoms (without functions) and variables that occur only in the
head are existentially quantified. They generalize lightweight description logics, which
form the core of the tractable profiles of OWL2.

The general query answering problem can be expressed as follows: given a knowl-
edge base K composed of data and an ontology (a set of existential rules here), and a
queryQ, compute the set of answers toQ inK. In this paper, we consider Boolean con-
junctive queries (note however that all our results are easily extended to non-Boolean
conjunctive queries). The fundamental question becomes: is Q entailed by K?

There are two main approaches to solve this problem, which are linked to the clas-
sical paradigms for processing rules, namely forward and backward chaining. Both can
be seen as ways of reducing the problem to a classical database query answering prob-
lem by eliminating the rules. The first approach consists of applying the rules to the
data, thus materializing entailed facts into the data. Then, Q is entailed by K if and
only if it can be mapped to this materialized database. The second approach consists of

2 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

using the rules to rewrite the query into a first-order query (typically a union of conjunc-
tive queries [CGL+07,PUHM09,GOP11,VSS12,RMC12]) or a Datalog query [RA10].
Then, Q is entailed by K if and only if the rewritten query is entailed by the initial
database. Finally, techniques combining both approaches are developed, in particular
the so-called combined approach [LTW09,KLT+11].

In this paper, we focus on rewriting techniques, and more specifically on rewriting
the initial conjunctive query Q into a union of conjunctive queries, that we will see
as a set of conjunctive queries, called rewritings of Q. The goal is to compute a set
of rewritings both sound (if one of its elements maps to the initial database, then K
entails Q) and complete (if K entails Q then there is an element that maps to the initial
database). Minimality may also be a desirable property.

As in classical backward chaining, the rewriting process relies on a unification op-
eration between the current query and a rule head. However, existential variables in rule
heads induce a structure that has to be considered to keep soundness. Thus, instead of
unifying a single atom of the query at once, our unifier processes a subset of atoms
from the query. A piece is a minimal subset of atoms from the query that have to be
erased together, hence the name piece-unifier. Piece-unifiers lead to a logically sound
and complete rewriting method. As far as we know, it is the only method accepting any
kind of existential rules, while staying in this fragment, i.e., without Skolemization of
rule heads to replace existential variables with Skolem functions.

Computing a set of rewritings can be reformulated in terms of exploring a poten-
tially infinite space of queries, composed of the initial (Boolean) conjunctive query and
its sound rewritings, with the aim of computing a complete set of rewritings. This space
can be provided with a partial preorder, such that Q2 ≥ Q1 (Q2 is more general than
Q1) if there is a homomorphism from Q2 to Q1. It can be shown that the completeness
of the output set is kept when this set is restricted to its most general elements.

We recall that the entailment problem with existential rules is undecidable. A set of
existential rules ensuring that a finite sound and complete set of most general rewritings
exists for any query is called a finite unification set (fus) [BLMS11]. Note that, in the
case of fus rules, it may be the case that the set of sound rewritings of the query is
infinite while the set of its most general sound rewritings is finite. It follows that a
breadth-first exploration of the rewriting space is not sufficient to ensure finiteness of
the process; one also has to maintain a set of the most general rewritings. At each step
of the breadth-first algorithm, some queries are thus discarded, because they are more
specific than another rewriting, even if they have not been explored yet. The question
is whether this dynamic pruning of the search space guarantees the completeness of the
output. This is the main point at the origin of this paper. This ties in with an issue raised
in [ISG12] about the gap between theoretical completeness of some methods and the
effective completeness of their implementation, this gap being mainly due to errors in
algorithmic optimizations.

Paper contributions. The global breadth-first algorithm maintains a set of rewritingsQ
and iteratively performs the following task until all queries fromQ have been explored:
(1) generate all one-step rewritings from unexplored queries in Q; (2) add these rewrit-
ings to Q and keep only the most general elements in Q. We call rewriting operator
the function that, given a query and a set of rules, returns a set of one-step rewritings of

On the Exploration of the Query Rewriting Space 3

this query with the rules. The question raised can be expressed as follows: under what
conditions a rewriting operator proven to be complete leads to a complete set when the
space of rewritten queries is pruned at each step of the breadth-first algorithm? More
generally, which properties have to be fulfilled by the operator to ensure correctness
and termination of the algorithm? To answer this question, we define several properties
that a rewriting operator has to satisfy and show that they actually ensure correctness
and termination of the algorithm: soundness, completeness, prunability and finite cov-
erability.

We then study several operators based on piece-unification in light of these prop-
erties. We point out that it follows from the results in [KLMT12] that the piece-based
rewriting operator is sound, complete and prunable. These properties still hold when
only most general piece-unifiers are considered. The picture is not the same when we
consider the restriction to piece-unifiers processing a single piece at once; whereas the
single-piece based operator is sound and complete, as proven in [KLMT12], it is not
prunable. We exhibit several examples for which the output is not a complete set of
rewritings. Thus, if single-piece unifiers are interesting from an algorithmic viewpoint,
they have to be combined to achieve prunability. We then introduce a new piece-based
rewriting operator, called an aggregator, which explores the space of rewritings in a
radically different way. This operator is shown to be sound, complete and prunable.
However, for this operator to become more efficient than the previous ones, we pro-
vided it with an optimization. According to experiments the new operator generates
significantly less queries than the other piece-based operators and outputs a complete
rewriting set. However the prunability of the optimized operator is not proven theoreti-
cally yet.

The paper is organized as follows. Section 2 recalls some preliminaries on the ex-
istential rule framework. In Section 3 the generic breadth-first algorithm is introduced
and general properties of rewriting operators are studied. In Section 4, we focus on
piece-based unifiers, and their restrictions to most general piece-unifiers and single-
piece unifiers. Section 5 is devoted to the new agregation operator. Section 6 presents
ongoing work on optimization, experiments and draws some perspectives. The proofs
of the results are available in the accompanying report [KLMT13].

2 Framework

2.1 Preliminaries

An atom is of the form p(t1, . . . , tk) where p is a predicate with arity k, and the ti are
terms, i.e., variables or constants. Given an atom or a set of atomsA, vars(A), consts(A)
and terms(A) denote its set of variables, of constants and of terms, respectively. In the
following examples, all the terms are variables (denoted by x, y, z, etc.). |= denotes the
classical logical consequence.

A fact is an existentially closed conjunction of atoms.1 A conjunctive query (CQ)
is an existentially quantified conjunction of atoms. When it is a closed formula, it is
called a Boolean CQ (BCQ). Hence facts and BCQs have the same logical form. In

1 We generalize the classical notion of a fact in order to take existential variables into account.

4 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

the following, we will see them as sets of atoms. Given sets of atoms A and B, a
homomorphism h from A to B is a substitution of vars(A) by terms(B) s.t. h(A) ⊆ B.
We say that A is mapped to B by h. If there is a homomorphism from A to B, we say
that A is more general than B, which is denoted A ≥ B. Given a fact F and a BCQ Q,
the answer to Q in F is positive if F |= Q. It is well-known that F |= Q iff there is a
homomorphism from Q to F .

Definition 1 (Existential rule). An existential rule (or simply a rule) is a formula R =
∀x∀y(B[x,y]→ ∃zH[y, z]) whereB = body(R) andH = head(R) are conjunctions
of atoms, resp. called the body and the head of R. The frontier of R, noted fr(R), is the
set vars(B) ∩ vars(H) = y. The set of existential variables in R is the set vars(H) \
fr(R) = z.

In the following, we will omit quantifiers in rules as there is no ambiguity.
A knowledge base (KB) K = (F,R) is composed of a fact F and a finite set of

existential rules R. The BCQ entailment problem takes as input a KB K = (F,R) and
a BCQ Q, and asks if F,R |= Q holds.

2.2 Desirable Properties of Rewriting Sets

Given a query Q and a set of existential rules R, rewriting techniques compute a set of
queries Q, called a rewriting set. It is generally desired that such a set satisfies at least
three properties: soundness, completeness and minimality.

Definition 2 (Sound and Complete (rewriting) set of BCQs). Let R be a set of ex-
istential rules and Q be a BCQ. Let Q be a set of CQs. Q is said to be sound w.r.t. Q
and R if for all facts F , for all Q′ ∈ Q, if Q′ can be mapped to F then R, F |= Q.
Reciprocally, Q is said to be complete w.r.t. Q and R if for all fact F , if R, F |= Q
then there is Q′ ∈ Q s.t. Q′ can be mapped to F .

To define the minimality notion, we use the following covering relation among sets
of BCQs.

Definition 3 (Covering relation). Let Q1,Q2 be two sets of BCQs. Q1 covers Q2,
which is denoted Q1 ≥ Q2, if for each Q2 ∈ Q2 there exists Q1 ∈ Q1 s.t. Q1 ≥ Q2.

Definition 4 (Minimal set of BCQs). LetQ be a set of BCQs.Q is said to be minimal
if there is no Q ∈ Q such that (Q \ {Q}) ≥ Q.

In [KLMT12] it is shown that, given a finite set of existential rulesR and a BCQQ,
all sound, complete and minimal rewritings sets have the same cardinality. Furthermore,
any sound and complete finite rewriting set can be made minimal by selecting one of
its minimal covering subsets, i.e., Q′ ⊆ Q s.t. Q′ is minimal and Q′ ≥ Q.

3 A Generic Breadth-First Rewriting Algorithm

We will now present a generic rewriting algorithm that takes a set of existential rules
and a query as input and a rewriting operator as parameter. The studied question is
the following: which properties should this operator fulfill in order that the algorithm
outputs a sound, complete and minimal set?

On the Exploration of the Query Rewriting Space 5

3.1 Algorithm

Definition 5 (Rewriting operator). A rewriting operator rew is a function which takes
as input a conjunctive query Q and a set of rules R and outputs a set of conjunctive
queries rew(Q,R).

Since the elements of rew(Q,R) are queries, it is possible to apply further steps of
rewriting to them. This naturally leads to the notions of k-rewriting and k-saturation.

Definition 6 (k-rewriting). Let Q be a conjunctive query, R be a set of rules and
rew be a rewriting operator. A 1-rewriting of Q (w.r.t. rew and R) is an element of
rew(Q,R). A k-rewriting of Q, for k > 1, (w.r.t. rew and R) is a 1-rewriting of a
(k − 1)-rewriting of Q.

Definition 7 (k-saturation). Let Q be a query, R be a set of rules and rew be a
rewriting operator. We denote by rewk(Q,R) the set of k-rewritings of Q. We call
k-saturation, and denote by Wk(Q,R), the set of i-rewritings of Q for any i ≤ k. We
denote W∞(Q,R) =

⋃
k∈NWk(Q,R).

In the following, we extend the notations rew, rewk and Wk to a set of queries
Q instead of a single query Q: rew(Q,R) =

⋃
Q∈Q rew(Q,R), rewk(Q,R) =⋃

Q∈Q rewk(Q,R) and Wk(Q,R) =
⋃

i≤k rewi(Q,R).
Algorithm 1 performs a breadth-first exploration of the rewriting space of a given

query. At each step, only the most general elements are kept thanks to a covering func-
tion, denoted by cover , that computes a minimal covering subset of a given set.

If rew fulfills some good properties (subsequently specified), then after the ith

iteration of the while loop the i-saturation of Q (with respect toR and rew) is covered
by QF , while QE contains the queries that remain to be explored.

Algorithm 1: A GENERIC BREADTH-FIRST REWRITING ALGORITHM

Data: A fusR, a conjunctive query Q
Access : A rewriting operator rew , a minimal covering function cover
Result: A minimal cover of the set of all the rewritings of Q
QF ← {Q}; // resulting set
QE ← {Q}; // queries to be explored
whileQE 6= ∅ do
QC ← cover(QF ∪ rew(QE ,R)); // update cover
QE ← QC\QF ; // select unexplored queries
QF ← QC ;

returnQF

In the following, we study the conditions that a rewriting operator must meet in
order that: (i) the output set is a minimal cover of the set of all the rewritings that can
be obtained by using this rewriting operator on the inputs, (ii) the output set is sound
and complete, according to Definition 2, and (iii) the algorithm halts. We introduce the
notion of prunable operator for the first condition, which will be combined with that of

6 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

sound and complete operator for the second one. Finally a notion of finitely coverable
operator is introduced for the third one.

3.2 Correctness of the algorithm

We now exhibit a sufficient property on the rewriting operator that ensures that Algo-
rithm 1 outputs a minimal cover of W∞(Q,R).

Definition 8 (Prunable). LetR be a set of rules and rew be a rewriting operator. rew
is prunable if for all queries Q1, Q2, Q

′
2 such that Q1 ≥ Q2, Q′2 ∈ rew(Q2,R) and

Q1 6≥ Q′2, there exists Q′1 ∈ rew(Q1,R) such that Q′1 ≥ Q′2.

Intuitively, if an operator is prunable then it guarantees that for every Q1 more gen-
eral thanQ2, the one-step rewritings ofQ2 are covered by the one-step rewritings ofQ1

or by Q1 itself. The following lemma states that it can be generalized to k-rewritings.

Lemma 1. Let rew be a prunable rewriting operator, and let Q1 and Q2 be two sets
of queries. If Q1 ≥ Q2, then W∞(Q1,R) ≥W∞(Q2,R).

This lemma would not be sufficient to prove the correctness of Algorithm 1. We
need a stronger version, which checks that a query whose 1-rewritings are covered
needs not to be explored.

Lemma 2. Let rew be a prunable rewriting operator, and letQ1 andQ2 be two sets of
queries. If (Q1 ∪Q2) ≥ rew(Q1,R), then (Q1 ∪W∞(Q2,R)) ≥W∞(Q1 ∪Q2,R).

Finally, the correctness of Algorithm 1 is based on the following loop invariants.

Property 1 (Invariants of Algorithm 1). Let rew be a prunable rewriting operator. After
each iteration of the while loop of Algorithm 1, the following properties hold:

1. QE ⊆ QF ⊆W∞(Q,R);
2. QF ≥ rew(QF \ QE ,R);
3. (QF ∪W∞(QE ,R)) ≥W∞(Q,R);
4. for all distinct Q,Q′ ∈ QF , Q 6≥ Q′ and Q′ 6≥ Q.

Theorem 1. If rew is prunable, then the output of Algorithm 1 is a minimal cover of
W∞(Q,R).

3.3 Preserving Soundness and Completeness

Of course, having a prunable rewriting operator is not a sufficient condition for the
soundness and completeness of the obtained rewriting set w.r.t. the usual first-order se-
mantics. This is why we consider two further properties of a rewriting operator, namely
soundness and completeness.

Definition 9 (Soundness/completeness of a rewriting operator). Let rew be a rewrit-
ing operator. rew is sound if for any set of rules R, for any query Q, for any Q′ ∈
rew(Q,R), for any fact F , F |= Q′ implies that F,R |= Q. rew is complete if
for any set of rules R, for any query Q, for any fact F s.t. F,R |= Q, there exists
Q′ ∈W∞(Q,R) s.t. F |= Q′.

On the Exploration of the Query Rewriting Space 7

Property 2. If rew is sound, then the output of Algorithm 1 is a sound rewriting set of
Q andR.

More surprisingly, using a complete rewriting operator in Algorithm 1 does not
ensure that the output is a complete rewriting set. While this will be shown with some
details in the next section, let us state that if the operator is moreover prunable, then the
output set of Algorithm 1 is complete.

Property 3. If rew is prunable and complete, then the output of Algorithm 1 is a com-
plete rewriting set of Q andR.

3.4 Termination of the algorithm

We last define a condition on the rewriting operator that ensures that Algorithm 1 halts.
In such case, the output needs to be finite, hence the definition of finite coverability.

Definition 10 (Finite coverability). LetR be a set of rules. A rewriting operator rew
is finitely coverable w.r.t. R if for every query Q there exists an integer i such that
Wi(Q,R) ≥W∞(Q,R).

The next property states that Algorithm 1 halts in such cases, that is, it halts each
time its output is finite.

Property 4. Let R be a set of rules, Q be a query, and rew be a finitely coverable set
operator w.r.t.R. Algorithm 1 halts onR, Q,rew.

4 Piece-based Rewriting Revisited

In this section, we consider the framework of piece-unifiers. We first recall basic defini-
tions and results. Note that we provide an alternative definition of piece-unifiers, which
we will reuse in the next section to define a new rewriting operator.

4.1 Piece-based Rewriting

As detailed in [KLMT12] and shown in Example 1, existential variables in rule heads
induce a structure that has to be taken into account in the rewriting step. Thus, instead
of unifying the query and a rule head atom by atom, we process subsets of atoms.

Example 1. Let the rule R = ∀x (q(x) → ∃y p(x, y)) and the Boolean CQ Q =
∃u∃v∃w(p(u, v)∧ p(w, v)∧ r(u,w)). Assume we want to unify the atom p(u, v) from
Qwith p(x, y), for instance by a substitution {(u, x), (v, y)}. Since v is unified with the
existential variable y, all other atoms containing v must also be considered: indeed, sim-
ply rewriting Q into Q1 = q(x) ∧ p(w, y) ∧ r(x,w) would be unsound: intuitively, the
fact that the atoms p(u, v) and p(w, v) inQ share a variable would be lost in atoms q(x)
and p(w, y); for instance the fact F = q(a)∧ p(b, c)∧ r(a, b) would answer Q1 despite
Q is not entailed by (F, {R}). Thus, p(u, v) and p(w, v) have to be both unified with the
head of R, for instance by means of the following substitution: {(u, x), (v, y), (w, x)}.
{p(u, v), p(w, v)} is called a piece (as precisely defined below). The corresponding
rewriting of Q is q(x) ∧ r(x, x).

8 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

A piece-unifier “unifies” a subset Q′ of Q with a subset H ′ of head(R), in the sense
that the associated substitution u is such that u(Q′) = u(H ′). Given a piece-unifier, Q
is partitioned into “pieces”, which are minimal subsets of atoms that must processed to-
gether. More specifically, let us call cutpoints the variables from Q′ that are not unified
with existential variables from H ′ (i.e., they are unified with frontier variables or con-
stants); then a piece in Q is a minimal non-empty subset of atoms “glued” by variables
other than cutpoints: for all atoms a and a′ in Q, if a and a′ share a variable that is not
a cutpoint, then a and a′ are in the same piece.

We call separating variables of Q′ the variables occurring both in Q′ and Q \ Q′.
Condition 2 of the following piece-unifier definition (Def. 11) ensures that a separating
variable is necessarily a cutpoint. It follows that Q′ is composed of pieces: indeed, an
existential variable from H ′ is necessarily unified with a non-separating variable from
Q′, say x, which ensures that all atoms from Q′ in which x occurs are also part of Q′.

In this paper, we give a definition of piece-unifiers based on partitions instead of
substitutions, which simplifies subsequent notions. To a substitution u from a set of
variables E1 to a set of terms E2 can be assigned a partition Pu of E1 ∪ E2 such
that two terms are in the same class of Pu if and only if they are merged by u; more
specifically, we consider the equivalence classes of the reflexive and transitive closure
of the following relation ∼: t ∼ t′ if u(t) = t′. Conversely, to a partition on a set
of terms E, such that no class contains two constants, can be assigned a substitution
obtained by selecting an element of each class with giving priority to constants. If we
consider a total order on terms, such that constants are smaller than variables, then a
unique substitution is obtained by taking the smallest element in each class. We call
admissible partition a partition such that no class contains two constants.

The set of all partitions over a given set is structured in a lattice by the “coarser
than” relation (given two partitions P1 and P2, P1 is coarser than P2, denoted by P2 ≥
P1, if every class of P2 is included in a class of P1).2 The greatest lower bound of two
partitions is obtained by making the union of their non-disjoint classes. If we restrict
our attention to admissible partitions, then two partitions may not have a greatest lower
bound since the union of classes may lead to a non-admissible partition. We say that
two admissible partitions are compatible if their greatest lower bound is an admissible
partition.

In the following definition of a piece-unifier we assume that Q and R have disjoint
sets of variables.

Definition 11. [Piece-Unifier] A piece-unifier of Q with R is µ = (Q′, H ′, Pu), where
Q′ 6= ∅, Q′ ⊆ Q, H ′ ⊆ head(R) and Pu is a partition on terms(Q′) ∪ terms(H ′) s.t.:

– Pu is admissible, i.e., no class in Pu contains two constants;
– if a class in Pu contains an existential variable (from H ′) then the other terms in

the class can only be non-separating variables from Q′.
– let u be the substitution associated with Pu obtained by selecting the smallest ele-

ment in each class, according to the following order: constants < existential vari-
ables < other variables; then u(H ′) = u(Q′).

2 Usually, the notation ≤ means “finer than”. We adopt the converse convention, which is more
in line with substitutions and the ≤ preorder on CQs.

On the Exploration of the Query Rewriting Space 9

This definition corresponds to the definition of [KLMT12], except that it considers
moreover that variables from the query are necessarily substituted by variables from the
rule, which would mean here that frontier variables come before variables from Q′.

Actually, not all piece-unifiers are useful: in the next sections, we will refer to most
general piece-unifiers.

Definition 12. Given two piece-unifiers defined on the same subsets of a query and a
rule head, µ1 = (Q′, H ′, Pu1

) and µ2 = (Q′, H ′, Pu2
), we say that µ1 is more general

than µ2 (notation µ1 ≥ µ2) if Pu2
is coarser than Pu1

(i.e.,Pu1
≥ Pu2

). A piece-unifier
µ = (Q′, H ′, Pu) is called a most general piece-unifier if no other piece-unifier on Q′

and H ′ is strictly more general than µ.

Definition 13 (One-step Rewriting). Given a piece-unifier µ = (Q′, H ′, Pu) of
Q with R, the one-step rewriting of Q according to µ, denoted by β(Q,R, µ), is
u(body(R)) ∪ u(Q \Q′), where u is a substitution associated with Pu.

Definition 14 (R-rewriting of Q). An R-rewriting of Q is a CQ Qk obtained by a
finite sequence (Q0 = Q), Q1, . . . , Qk s.t. for all 0 ≤ i < k, there is Ri ∈ R and a
piece-unifier µi of Qi with Ri s.t. Qi+1 = β(Qi, Ri, µi).

The next theorem states that piece-based backward chaining is logically sound and
complete.

Theorem 2. [SM96] Let a KB K = (F,R) and a Boolean CQ Q. Then F,R |= Q iff
there is anR-rewriting of Q that can be mapped to F .

4.2 Piece-based Rewriting Operator

It follows from Theorem 2 that a sound and complete rewriting operator can be based
on piece-unifiers: β(Q,R) is the set of all one-step rewritings of Q according to a
piece-unifier of Q with a rule R ∈ R.

In [KLMT12] the study of piece-unifiers with specific properties is restricted to
rules with a head composed of a single atom. This restriction can be done without loss
of generality since any existential rule can be decomposed into an equivalent set of rules
with an atomic head. It simplifies some notions and computations. In order to be able
to rely on previous proofs, we assume in the sequel of this paper that rules have atomic
heads. Moreover, this is in line with our current implementation of this framework. Note
however that all results remain true in the general case.

Property 5. The piece-based rewriting operator is sound, complete and prunable; this
property is still true if only most general piece-unifiers are considered.

Since the entailment problem is not decidable, Algorithm 1 instantiated with piece-
unifiers does not halt in general. A set of rules R admitting a finite minimal set of
R-rewritings for any query is called a finite unification set (fus) [BLMS11]. Several
fus classes of rules have been exhibited in the literature: atomic-body [BLMS09], also
known as linear TGDs [CGL09], domain-restricted [BLMS09], (join-)sticky [CGP10].
Since for any finite set S of R-rewritings, there exists an integer k such that S ⊆
Wk(Q,R), Algorithm 1 instantiated with piece-unifiers, possibly restricted to most
general piece-unifiers, halts for any fus.

10 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

Property 6. The piece-based rewriting operator is finitely coverable for any finite uni-
fication set of rules; this is still true if only most general piece-unifiers are considered.

4.3 Single-Piece-based Rewriting is not Prunable

A piece-unifer µ = (Q′, H ′, Pu) is said to be a single-piece unifier if Q′ is a single
piece. In [KLMT12] (Theorems 4 and 5) it is shown that (most general) single piece-
unifiers provide a complete operator. However, the restriction to single-piece unifiers is
not compatible with selecting most general rewritings at each step, as done in Algorithm
1. We study below some examples that illustrate this incompatibility (we omit H ′ in
these examples since all rule heads are atomic).

Example 2 (Basic example). Let Q = p(y, z) ∧ p(z, y) and R = r(x, x) → p(x, x).
There are two single-piece unifiers of Q with R, µ1 = (p(y, z), p(x, x), {{x, y, z}})
and µ2 = (p(z, y), p(x, x), {{x, y, z}}), which yield the same rewriting, e.g. Q1 =
r(x, x)∧p(x, x). There is also a two-piece unifier µ = (Q, p(x, x), {{x, y, z}}), which
yields e.g.Q′ = r(x, x). A query equivalent toQ′ can be obtained fromQ1 by a further
single-piece unification. Now, assume that we restrict unifiers to single-piece unifiers
and keep most general rewritings at each step. Since Q ≥ Q1, Q1 is not kept, so Q′

will never be generated, whereas it is incomparable with Q.

Fig. 1. The queries in Example 3

Example 3. This example has two interesting characteristics: (1) it uses unary/binary
predicates only (2) it uses a very simple rule expressible with any lightweight descrip-
tion logic, i.e., a linear existential rule where no variable appears twice in the head or
the body. LetQ = r(u, v)∧r(v, w)∧p(u, z)∧p(v, z)∧p(v, t)∧p(w, t)∧p1(u)∧p2(w)
(see Figure 1) and R = b(x) → p(x, y). Note that Q is not redundant. There are two
single-piece unifiers of Q with R, say µ1 and µ2, with pieces P1 = {p(u, z), p(v, z)}
and P2 = {p(v, t), p(w, t)} respectively. The obtained queries are pictured in Figure 1.
These queries are both more specific thanQ. The removal would prevent the generation
of a query equivalent to r(x, x), p1(x), p2(x), b(x), which could be generated from Q
with a two-piece unifier.

Property 7. The single-piece-based operator is sound, complete, finitely coverable for
any finite unification set of rules, but it is not prunable.

On the Exploration of the Query Rewriting Space 11

However, single-piece unifiers can still be used as an algorithmic brick to com-
pute general piece-unifiers. The obvious way of doing consists of merging “compati-
ble” single-piece unifiers to compute all piece-unifiers. In the next section, we present
another method: we aggregate single-piece unifiers in order to obtain a notion more
general than a piece-unifier, that we call an aggregated unifier.

5 Aggregated Piece-based Rewriting

In this section we define a way of combining most general single-piece unifiers that
allows to retrieve the desired prunability property. Two versions of rewriting operators
based on this combination are proposed. The first one, called single-rule aggregator,
consists in gathering “compatible” sequences of most general single-piece unifiers of a
query Q with the same rule R into a single unifier. The second one, called the all-rule
aggregator, is an extension of the first one that gathers compatible sequences of most
general single-piece unifiers of Q with possibly different rules into a single unifier.

For the following definitions, we consider partitions of possibly distinct subsets.
Alternatively, given partitions P1 of set S1 and P2 of set S2, we can extend them to
partitions on the same set S1 ∪ S2 by adding each missing element in its own class.

When we combine two piece-unifiers relative to the same rule, the variables of the
rule are renamed. Thus in the following, R1 . . . Rk denote distinct copies of possibly
less than k distinct rules.

Definition 15 (Compatible Piece-Unifiers). Let U = {µ1 = (Q′1, H
′
1, P1) . . . µk =

(Q′k, H
′
k, Pk)} a set of piece-unifiers of Q with rules R1 . . . Rk (respectively). U is said

to be compatible if (1) allQ′i andQ′j are pairwise disjoint; (2) the greatest lower bound
of P1 . . . Pk is admissible.

Note that the following additional condition will be always fulfilled for compatible
piece-unifiers: for all i and j, the sets of variables of H ′i and H ′j are pairwise disjoint.

Definition 16 (Aggregated unifier). Let U = {µ1 = (Q′1, H
′
1, P1), . . . , µk =

(Q′k, H
′
k, Pk)} be a compatible set of piece-unifiers of Q with rules R1 . . . Rk. An ag-

gregated unifier of Q with R1 . . . Rk w.r.t. U is µ = (Q′, H ′, P) where: (1) Q′ =
Q′1∪ . . .∪Q′k; (2) H ′ = H ′1∪ . . .∪H ′k; (3) P is the greatest lower bound of P1 . . . Pk.
It is said to be single-piece if all the piece-unifiers of U are single-piece. It is said to be
most general if all the piece-unifiers of U are most general.

Definition 17 (Aggregation). The aggregation of a set of rules R = {R1 . . . Rk} is
the rule R = body(R1) ∧ . . . ∧ body(Rk) → head(R1) ∧ . . . ∧ head(Rk) (where we
assume that all rules have disjoint sets of variables).

Property 8. Let Q be a query and U = {µ1 = (Q′1, H
′
1, P1) . . . µk = (Q′k, H

′
k, Pk)}

be a compatible set of piece-unifiers of Q with R1 . . . Rk. Then the aggregated unifier
of U is a piece-unifier of Q with the aggregation of {R1 . . . Rk}.

We call single-rule aggregator (resp. all-rule aggregator) and denote by sra (resp.
ara) the rewriting operator that assigns to a query Q and a set of rules R, the set of

12 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

all the queries Qi such that Qi is the one-step rewriting of Q with an aggregated unifier
that agregates most general compatible single-piece unifiers of Q with the same rule
(resp. with any rule) ofR.

Property 9. sra and ara are sound, complete, prunable, and finitely coverable for any
finite unification set of rules.

6 Optimization, Experiments and Perspectives

In this section, we present some ongoing work: an optimization that makes ara more
efficient than sra, as well as experiments. We conclude with further work.

6.1 Optimization

Operators sra and ara generate several times the same rewriting with sequences of
aggregated unifiers that only differ with respect to the order in which parts of the query
are unified. The situation is even worse for ara, as illustrated by the following example
and Figure 2.

Fig. 2. The same rewritings are generated several times

Example 4. Let R = {p(z) → q(z), r(x, y) → s(x, y)} and Q = q(t) ∧ r(t, u) ∧
s(u, v). There are two most general single-piece unifiers of Q with a rule of R.
µ1 = ({q(t)}, {q(z)}, {{t, z}}) and µ2 = ({s(u, v)}, {s(x, y)}, {{u, x}, {v, y}}).
From these compatible single-piece unifiers ara will compute three aggregated
unifiers: the first ones are identical to µ1 and µ2 and the last one is µ3 =
({q(t), s(u, v)}, {s(x, y), q(z)}, {{t, z}{u, x}{v, y}}), which can be seen as a piece-
unifier of Q with the aggregated rule r(x, y) ∧ p(z) → s(x, y) ∧ q(z). The rewrit-
ings produced by µ1, µ2 and µ3 are respectively Q1 = p(t) ∧ r(t, u) ∧ s(u, v),

On the Exploration of the Query Rewriting Space 13

Q2 = q(t)∧ r(t, u)∧ r(u, v) and Q3 = p(t)∧ r(t, u)∧ r(u, v). Note that sra will not
produce Q3. At the next rewriting step, a piece-unifier identical to µ1 will be applicable
to Q2 and will produce Q5 equivalent to Q3. Symmetrically, a piece-unifier identical to
µ2 will be applicable to Q1 and will produce Q4 equivalent to Q3 (see Figure 2).

A simple way of avoiding these equivalent rewritings in ara is as follows: we mark
the newly added atoms when a rewriting is generated and consider only unifications in-
volving at least a marked atom. Indeed, unifications involving only non-marked atoms
have already been performed at a former step. More specifically, we will compute aggre-
gated unifiers only on the compatible sets of single-rule aggregated unifiers that unify
at least one marked atom i.e., an atom added at the previous rewriting step.

Example 4 (continued). We come back to the previous example by marking (i.e., under-
lying) the atoms just added. The rewriting produced by µ1, µ2 and µ3 are respectively
Q1 = p(t)∧ r(t, u)∧ s(u, v), Q2 = q(t)∧ r(t, u)∧ r(u, v) and Q3 = p(t)∧ r(t, u)∧
r(u, v). At the next step, there is no unifier of Q1 and Q2 with a rule of R using a
marked atom. Indeed, there is a unifier of Q2 with the first rule ofR identical to µ1 but
it does not use a marked atom. Symmetrically, the unifier of Q1 with the second rule of
R identical to µ2 does not use a marked atom. Thus Q4 and Q5 will not be produced.

This optimization keeps soundness and completeness of the operator but may be not
its prunability. We have checked in all our experiments that the same rewriting set is
finally output with and without this optimization. As developed in the next section,
experiments also show that this operator is more efficient than the previous ones, in the
sense that it generates significantly less queries. We thus have a candidate sound and
complete rewriting operator, faster and that practically outputs a sound and complete
rewriting set. Note that, in case it would not have the desired theoretical properties, this
operator would still be interesting in applicative settings where efficiency matters more
than a theoretical guarantee of completeness, since the difference could not be detected
experimentally.

6.2 Experiments

The generic breadth-first algorithm has been implemented in Java and instantiated with
the different rewriting operators, namely the single-rule aggregator, the all-rule aggre-
gator without optimization, and the all-rule aggregator with optimization.

First experiments were led on sets of existential rules obtained by translation
from ontologies expressed in DL-LiteR developed in several research projects, namely
ADOLENA (A), STOCKEXCHANGE (S), UNIVERSITY (U) and VICODI (V). See
[GOP11] for more details. The obtained rules have atomic head and body, which corre-
sponds to the linear Datalog+/- fragment. The associated queries have been generated
by Sygenia [ISG12]. Sygenia provided us with 114, 185, 81 and 102 queries for ontolo-
gies A, S, U and V respectively.

Table 1 presents the sum of the number of generated CQ rewritings (# generated)
for each ontology and each of the operators (sra : single-rule aggregator, ara : all-rule
aggregator, ara-opt : all-rule aggregator with optimization). The generated rewritings

14 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

are all the rewritings built during the rewriting process (excluding the initial query and
possibly including some multi-occurrences of the same rewritings). We also mention
the sum of the cardinalities of the final output sets (# output), which is the same for all
operators. The all-rule aggregator without optimization is always worse than the single-
rule aggregator, since by definition it generates a superset of sra rewritings; however
its optimized version is significantly better than sra, especially for ontology A. We
believe that the difference between both operators should increase with the complexity
of the ontologies and the queries. However, complex real-world ontologies and queries
are lacking for now.

rule base # output sra : # generated ara : # generated ara-opt : # generated
A 3209 146 523 357 584 62 813
S 557 6515 13246 6143
U 486 2122 3484 2201
V 2694 5318 7522 3286

Table 1. Results with sra, ara and ara-opt

6.3 Perspectives

As explained above, the optimized all-rule aggregator can be seen as an interesting can-
didate operator, which is sound and complete, practically prunable, and more efficient
than the classical piece-based operator. However, prunability and efficiency have still to
be studied from a theoretical viewpoint. Further work includes implementing other opti-
misations, by exploiting for instance dependencies between rules to select the rules to be
considered at each step, extending algorithms to rules with non-atomic head, combining
aggregation with query factorization techniques, such as those developed in [Tho13],
as well as experimenting the algorithms on more complex queries and ontologies.

Acknowledgements. This work was partially funded by the ANR project PAGODA
(ANR-12-JS02-007-01).

References

BLMS09. J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. Extending decidable cases for
rules with existential variables. In IJCAI’09, pages 677–682, 2009.

BLMS11. J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules with existential
variables: Walking the decidability line. Artificial Intelligence, 175(9-10):1620–1654,
2011.

CGK08. A. Calı̀, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under
expressive relational constraints. In KR’08, pages 70–80, 2008.

CGL+07. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family. J.
Autom. Reasoning, 39(3):385–429, 2007.

On the Exploration of the Query Rewriting Space 15

CGL09. A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. In PODS’09, pages 77–86, 2009.

CGP10. A. Calı̀, G. Gottlob, and A. Pieris. Query answering under non-guarded rules in
datalog+/-. In RR’10, pages 1–17, 2010.

GOP11. G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimization.
In ICDE’11, pages 2–13, 2011.

ISG12. Martha Imprialou, Giorgos Stoilos, and Bernardo Cuenca Grau. Benchmarking
ontology-based query rewriting systems. In AAAI, 2012.

KLMT12. M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. A sound and complete
backward chaining algorithm for existential rules. In M. Krötzsch and U. Straccia,
editors, RR, volume 7497 of Lecture Notes in Computer Science, pages 122–138.
Springer, 2012.

KLMT13. M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. On the Exploration of the
Query Rewriting Space with Existential Rules. Technical Report RR-13016, LIRMM,
GraphIK - INRIA Sophia Antipolis, April 2013.

KLT+11. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The Combined
Approach to Ontology-Based Data Access. In IJCAI, pages 2656–2661, 2011.

KR11. M. Krötzsch and S. Rudolph. Extending decidable existential rules by joining acyclic-
ity and guardedness. In IJCAI’11, pages 963–968, 2011.

LTW09. C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description
logic el using a relational database system. In IJCAI’09, pages 2070–2075, 2009.

PUHM09. H. Pérez-Urbina, I. Horrocks, and B. Motik. Efficient query answering for owl 2. In
ISWC’09, pages 489–504, 2009.

RA10. R. Rosati and A. Almatelli. Improving query answering over DL-Lite ontologies. In
KR’10, 2010.

RMC12. M. Rodriguez-Muro and D. Calvanese. High performance query answering over DL-
lite ontologies. In KR, 2012.

SM96. E. Salvat and M.-L. Mugnier. Sound and Complete Forward and Backward Chainings
of Graph Rules. In ICCS’96, volume 1115 of LNAI, pages 248–262. Springer, 1996.

Tho13. M. Thomazo. Compact rewriting for existential rules. In IJCAI, 2013.
VSS12. T. Venetis, G. Stoilos, and G. B. Stamou. Incremental query rewriting for OWL 2

QL. In Description Logics, 2012.

