

Hannes Strass (based on slides by Michael Thielscher) Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Unification

Lecture 2, 16th Oct 2023 // Foundations of Logic Programming, WS 2023/24

Previously ...

Prolog Programs

- Prolog programs consist of **facts** and **rules**.
- We use Prolog by asking **queries** to programs.
- Answers to queries can be Boolean (yes/no) ...
- ... or given by variable assignments.
- Prolog programs are **declarative** (to a certain extent).

```
direct(frankfurt,san_francisco).
direct(frankfurt,chicago).
direct(san_francisco,honolulu).
direct(honolulu,maui).
```

```
| ?- connection(frankfurt, maui).
yes
```

```
| ?- connection(frankfurt, X).
X = san_francisco
```


Ranked Alphabets and Terms

Substitutions

Unifiers and Most General Unifiers

Martelli-Montanari Algorithm

Unification (Lecture 2) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 3 of 31

The Need to Perform Unification

- p(f(X),g(f(c),X)).
- | ?- p(U,g(V,f(W))).
- U = f(f(W)),V = f(c)
- | ?- p(U,g(c,f(W))).

no

| ?- p(U,g(V,U)).

Ranked Alphabets and Terms

Unification (Lecture 2) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 5 of 31

Ranked Alphabets and Term Universes

- A variable is a first-order predicate logic variable
- A ranked alphabet is a finite set Σ of symbols; to every symbol a natural number n ≥ 0 (its arity or rank) is assigned
 (Σ⁽ⁿ⁾ denotes the subset of Σ with symbols of arity n)
- Parentheses, commas
- For *V* a set of variables, *F* a ranked alphabet of **function symbols**:

The **term universe** $TU_{F,V}$ (over *F* and *V*) is the smallest set with

1. $V \subseteq TU_{F,V}$; 2. if $f \in F^{(0)}$, then $f \in TU_{F,V}$; 3. if $f \in F^{(n)}$ with $n \ge 1$ and $t_1, \ldots, t_n \in TU_{F,V}$, then $f(t_1, \ldots, t_n) \in TU_{F,V}$. The elements of $TU_{F,V}$ are called **terms**.

Ground Terms and Herbrand Universes

- *Var*(*t*) := set of variables in *t*
- *t* ground term : \iff *Var*(*t*) = \emptyset
- *F* ranked alphabet of function symbols: **Herbrand universe** HU_F (over *F*) : \iff $TU_{F,\emptyset}$
- s **sub-term** of $t :\iff$ term s is sub-string of t (equivalently: sub-tree)

Substitutions

Unification (Lecture 2) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 8 of 31

Substitutions

Definition

Let *V* be a set of variables, $X \subseteq V$ be finite, and *F* be a ranked alphabet. A **substitution** is a function $\theta : X \to TU_{F,V}$ with $x \neq \theta(x)$ for every $x \in X$.

We use the notation $\theta = \{x_1/t_1, ..., x_n/t_n\}$ to express that

1.
$$X = \{x_1, ..., x_n\}$$
, and

- 2. $\theta(x_i) = t_i$ for every $x_i \in X$.
- **empty** substitution $\varepsilon \iff n = 0$
- θ **ground** substitution : $\iff t_1, \ldots, t_n$ ground terms
- θ **pure variable** substitution : $\iff t_1, \ldots, t_n$ variables
- θ renaming : \iff { t_1, \ldots, t_n } = { x_1, \ldots, x_n }

Substitutions (2)

Consider a substitution $\theta = \{x_1/t_1, \dots, x_n/t_n\}$.

 $Dom(\theta) := \{x_1, \dots, x_n\}$ $Range(\theta) := \{t_1, \dots, t_n\}$ $Ran(\theta) := Var(Range(\theta))$ $Var(\theta) := Dom(\theta) \cup Ran(\theta)$ $\theta|_Y := \{y/t \mid y/t \in \theta \text{ and } y \in Y\}$ for every $Y \subseteq \{x_1, \dots, x_n\}$

Slide 10 of 31

Applying Substitutions

Definition

Let *t* be a term and θ be a substitution. The **application of** θ **to** *t* is the term $t\theta$ obtained as follows:

1. If t = x is a variable, then $t\theta = x\theta := \begin{cases} \theta(x) & \text{if } x \in Dom(\theta), \\ x & \text{otherwise.} \end{cases}$

2. If $t = c \in \Sigma^{(0)}$ is a constant symbol, then $t\theta = c\theta := c$.

- 3. If $t = f(t_1, \ldots, t_n)$ for an $f \in \Sigma^{(n)}$, then $t\theta = f(t_1, \ldots, t_n)\theta := f(t_1\theta, \ldots, t_n\theta)$.
- *t* is an **instance** of *s* : \iff there is a substitution θ with $s\theta = t$
- s is more general than $t :\iff t$ is an instance of s
- *t* is a **variant** of *s* : \iff there is a renaming θ with $s\theta = t$

Lemma 2.5

Term *t* is a variant of term *s* iff *t* is an instance of *s* and *s* is an instance of *t*.

Composition

Definition

Let θ and η be substitutions. The **composition** $\theta\eta$ is defined by setting $(\theta\eta)(x) := (x\theta)\eta$

for each variable *x*.

Intuition: First apply θ , then apply η .

Lemma

Let $\theta = \{x_1/t_1, \dots, x_n/t_n\}, \eta = \{y_1/s_1, \dots, y_m/s_m\}.$ Then $\theta\eta$ can be constructed from the sequence

 $x_1/t_1\eta,\ldots,x_n/t_n\eta, y_1/s_1,\ldots,y_m/s_m$

- 1. by removing all bindings $x_i/t_i\eta$ where $x_i = t_i\eta$ and all bindings y_j/s_j where $y_j \in \{x_1, ..., x_n\}$, and
- 2. then forming a substitution from the resulting sequence.

Comparing Substitutions

Definition

Let θ and τ be substitutions.

 θ is **more general than** $\tau :\iff \tau = \theta \eta$ for some substitution η .

Examples

- $\theta = \{x/y\}$ is more general than $\tau = \{x/a, y/a\}$ (with $\eta = \{y/a\}$)
- $\theta = \{x/y\}$ is not more general than $\tau = \{x/a\}$ (since for every η with $\tau = \theta \eta$: $x/a \in \{x/y\}\eta \implies y/a \in \eta \implies y \in Dom(\theta \eta) = Dom(\tau)$)
- θ is more general than θ for every θ , via $\theta = \theta \varepsilon$
- $\theta = \{x/y\}$ is more general than $\tau = \{y/x\}$ (with $\eta = \tau$), and τ is more general than θ (with $\eta = \theta$), but $\theta \neq \tau$.

Slide 13 of 31

Unifiers and Most General Unifiers

Unification (Lecture 2) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 14 of 31

Unifiers

Definition

Let s and t be terms.

- Substitution θ is a **unifier** of terms *s* and *t* : \iff $s\theta = t\theta$.
- Terms *s* and *t* are **unifiable** : \iff a unifier of *s* and *t* exists.
- Substitution θ is the **most general unifier** (**mgu**) of *s* and *t* : $\iff \theta$ is a unifier of *s* and *t* that is more general than all unifiers of *s* and *t*.

Definition

Let $s_1, \ldots, s_n, t_1, \ldots, t_n$ be terms, let $s_i \doteq t_i$ denote the (ordered) pair (s_i, t_i) and let $E = \{s_1 \doteq t_1, \ldots, s_n \doteq t_n\}$.

- Substitution θ is a **unifier** of $E \iff s_i \theta = t_i \theta$ for every $i \in [1, n]$.
- θ is the **most general unifier** (**mgu**) of $E : \iff \theta$ is a unifier of E that is more general than all unifiers of E.

Slide 15 of 31

Unifying Sets of Pairs of Terms

Definition

- Sets *E* and *E*′ of pairs of terms are **equivalent** :⇐⇒ *E* and *E*′ have the same set of unifiers.
- The set $\{x_1 \doteq t_1, \dots, x_n \doteq t_n\}$ of pairs is **solved** $:\iff x_i, x_j$ pairwise distinct variables $(1 \le i \ne j \le n)$ and no x_i occurs in t_j $(1 \le i, j \le n)$.

Lemma

If
$$E = \{x_1 \doteq t_1, \dots, x_n \doteq t_n\}$$
 is solved, then $\theta = \{x_1/t_1, \dots, x_n/t_n\}$ is an mgu of E .

Proof.

1. $x_i\theta = t_i = t_i\theta$

2. for every unifier η of E: $x_i\eta = t_i\eta = x_i\theta\eta$ for every $i \in [1, n]$ and $x\eta = x\theta\eta$ for every $x \notin \{x_1, \ldots, x_n\}$; thus $\eta = \theta\eta$.

Quiz: Most General Unifiers

Quiz

Consider the following set of pairs:

$$E = \{ f(a, y) \doteq x, g(y) \doteq g(z) \}$$

• • •

Martelli-Montanari Algorithm

Unification (Lecture 2) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 18 of 31

Martelli-Montanari Algorithm

Let *E* be a set of pairs of terms.

Martelli-Montanari Algorithm

As long as possible, nondeterministically choose a pair of a form below and perform the associated action:

(1)
$$f(s_1,\ldots,s_n) \doteq f(t_1,\ldots,t_n)$$

(2)
$$f(s_1,\ldots,s_n) \doteq g(t_1,\ldots,t_m)$$
 where $f \neq g$

$$(3) \quad x \doteq x$$

- (4) $t \doteq x$ where t is not a variable
- (5) $x \doteq t$ where $x \notin Var(t)$ and x occurs in some other pair
- (6) $x \doteq t$ where $x \in Var(t)$ and $x \neq t$

replace by $s_1 \doteq t_1, \dots, s_n \doteq t_n$ halt with failure delete the pair replace by $x \doteq t$ perform substitution {x/t} on all other pairs halt with failure

Terminate with success when no action can be performed.

(2) ≙ "clash"
(6) ≙ "occur check"-failure

Martelli-Montanari (Theorem)

Theorem

If the original set *E* has a unifier, then the algorithm successfully terminates and produces a solved set *E'* that is equivalent to *E*; otherwise the algorithm terminates with failure.

Corollary: In case of success, E' determines an mgu of E.

Proof Steps

- 1. Prove that the algorithm terminates.
- 2. Prove that each action replaces the set of pairs by an equivalent one.
- 3. Prove that if the algorithm terminates successfully, then the final set of pairs is solved.
- 4. Prove that if the algorithm terminates with failure, then the set of pairs at the moment of failure does not have a unifier.

Relations

R relation on a set \mathcal{A} : $R \subseteq \mathcal{A} \times \mathcal{A}$ R reflexive : $(a, a) \in R$ for all $a \in \mathcal{A}$ R irreflexive : $(a, a) \notin R$ for all $a \in \mathcal{A}$ R antisymmetric : $(a, b) \in R$ and $(b, a) \in R$ implies a = bR transitive : $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Well-founded Order(ing)s

- $(\mathcal{A}, \sqsubseteq)$ partial order
 - $:\iff \sqsubseteq$ reflexive, antisymmetric, and transitive relation on \mathcal{A}
- (\mathcal{A}, \Box) strict partial order
 - $:\iff \ \ \sqsubseteq \ irreflexive \ and \ transitive \ relation \ on \ \mathcal{A}$
- strict partial order (A, \Box) well-founded
 - $:\iff$ there is no infinite descending chain

 $\ldots \sqsubset a_2 \sqsubset a_1 \sqsubset a_0$

of elements $a_0, a_1, a_2, \ldots \in A$

Examples

- (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , $(\mathcal{P}(\{1, 2, 3\}), \subseteq)$ partial orders;
- (N, <), (\mathbb{Z} , <), ($\mathbb{P}(\{1, 2, 3\})$), \subsetneq) strict partial orders;
- $(N, <), (\mathcal{P}(\{1, 2, 3\}), \subsetneq)$ are well-founded,
- whereas (**Z**, <) is not.

Lexicographic Ordering

The **lexicographic ordering** \prec_n ($n \ge 1$) is defined inductively on the set \mathbb{N}^n of *n*-tuples of natural numbers:

$$(a_1) \prec_1 (b_1) :\iff a_1 < b_1$$

and
 $(a_1, \dots, a_{n+1}) \prec_{n+1} (b_1, \dots, b_{n+1}) :\iff (a_1, \dots, a_n) \prec_n (b_1, \dots, b_n)$
or $(a_1, \dots, a_n) = (b_1, \dots, b_n)$ and $a_{n+1} < b_{n+1}$

Example

For n = 3, we have $(3, 12, 7) \prec_3 (4, 2, 1)$ and $(8, 4, 2) \prec_3 (8, 4, 3)$.

Theorem

For every $n \in \mathbb{N}$, the pair (\mathbb{N}^n, \prec_n) is a well-founded strict partial order.

Unification (Lecture 2) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 23 of 31

Proof Step 1 (1)

Proposition

The Martelli-Montanari Algorithm terminates.

Definition

Variable *x* is **solved in** *E*

: $\iff x \doteq t \in E$, and this is the only occurrence of x in E.

uns(E) := number of variables in E that are unsolved lfun(E) := number of occurrences of function symbols in the first (left) components of pairs in E

card(E) := number of pairs in E

Example

Consider $E = \{ f(x) \doteq f(y), y \doteq a \}$. Then uns(E) = 2, lfun(E) = 1, card(E) = 2.

Slide 24 of 31

Proof Step 1 (2)

Proposition

The Martelli-Montanari Algorithm terminates.

Proof.

Each successful action reduces (*uns*(*E*), *lfun*(*E*), *card*(*E*)) wrt. \prec_3 . For every *u*, *l*, *c* \in N the reduction is as follows:

(1)
$$(u, l, c) >_3 (u - k, l - 1, c + n - 1)$$
 for some $k \in [0, n]$
(3) $(u, l, c) >_3 (u - k, l, c - 1)$ for some $k \in \{0, 1\}$
(4) $(u, l, c) >_3 (u - k_1, l - k_2, c)$ for some $k_1 \in \{0, 1\}$ and $k_2 \ge 1$
(5) $(u, l, c) >_3 (u - 1, l + k, c)$ for some $k \ge 1$

Termination is now a consequence of (\mathbb{N}^3 , \prec_3) being well-founded.

Slide 25 of 31

Proof Step 2

Proposition

Each action replaces the set of pairs by an equivalent one.

Proof.

This is obviously true for actions (1), (3), and (4). Regarding action (5), consider $E \cup \{x \doteq t\}$ and $E\{x/t\} \cup \{x \doteq t\}$. Then: θ is a unifier of $E \cup \{x \doteq t\}$ iff θ is a unifier of E and $x\theta = t\theta$

iff θ is a unifier of $E\{x/t\}$ and $x\theta = t\theta$

iff θ is a unifier of $E\{x/t\} \cup \{x \doteq t\}$

Slide 26 of 31

Proof Step 3

Proposition

If the algorithm successfully terminates, then the final set of pairs is solved.

Proof.

- If the algorithm successfully terminates, then the actions (1), (2), and (4) do not apply, so each pair in *E* is of the form $x \doteq t$ with *x* being a variable.
- Moreover, actions (3), (5), and (6) do not apply, so the variables in the first components of all pairs in *E* are pairwise disjoint and do not occur in the second component of a pair in *E*.

Proof Step 4

Proposition

If the algorithm terminates with failure, then the set of pairs at the moment of failure does not have a unifier.

Proof.

• If the failure results from action (2), then some

$$f(s_1,\ldots,s_n) \doteq g(t_1,\ldots,t_m)$$

occurs in *E* (where $f \neq g$), and for no substitution θ we have $f(s_1, \ldots, s_n)\theta = g(t_1, \ldots, t_m)\theta$.

• If the failure results by action (6), then some $x \doteq t$ (where x is a proper subterm of t) occurs in *E*, and for no substitution θ we have $x\theta = t\theta$.

Slide 28 of 31

Unifiers may be Exponential

 $E_1 = \{ f(x_1) \doteq f(g(x_0, x_0)) \}$ $\theta_1 = \{ x_1 / g(x_0, x_0) \}$

 $E_2 = \{f(x_1, x_2) \doteq f(g(x_0, x_0), g(x_1, x_1))\}$ $\theta_2 = \theta_1 \cup \{x_2/g(g(x_0, x_0), g(x_0, x_0))\}$

 $E_3 = \{ f(x_1, x_2, x_3) \doteq f(g(x_0, x_0), g(x_1, x_1), g(x_2, x_2)) \}$ $\theta_3 = \theta_2 \cup \{ x_3 / g(g(g(x_0, x_0), g(x_0, x_0)), g(g(x_0, x_0), g(x_0, x_0))) \}$

MM Algorithm without Occur Check

- In most PROLOG systems the occur check does not apply, for the sake of efficiency.
- As for the Martelli-Montanari algorithm this amounts to omitting the occur check in action (5) and to drop action (6).
- Then the algorithm terminates with success, e.g., for $\{x \doteq f(x)\}$, despite x and f(x) not being unifiable.
- Moreover, the algorithm may not terminate at all:

$$\{x \doteq f(x), y \doteq g(x)\}$$

$$\stackrel{(5)}{\rightsquigarrow} \{x \doteq f(x), y \doteq g(f(x))\}$$

$$\stackrel{(5)}{\rightsquigarrow} \{x \doteq f(x), y \doteq g(f(f(x)))\}$$

Unification (Lecture 2) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Conclusion

Summary

- A **substitution** replaces variables by terms, and is applied to terms.
- A **unifier** is a substitution that equates two terms when applied to them.
- The **Martelli-Montanari Algorithm** decides if a set of pairs of terms has a unifier and even outputs a (most general) unifier if one exists.
- The algorithm is **correct** (i.e., sound and complete) and **terminates**.

Suggested action points:

- Try out the Martelli-Montanari Algorithm on a few examples by hand.
- Verify your results using a Prolog system (try to turn the occur check on).
- Come up with examples how the different values for parameters k, k_1 , and k_2 in proof step 1 could be realised.

Slide 31 of 31

