

Hannes Strass (based on slides by Michael Thielscher)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Negation: Model Theory

Lecture 9, 8th Dec 2025 // Foundations of Logic Programming, WS 2025/26

Previously ...

- For every normal logic program *P*, its **completion** *comp(P)* replaces the logical implications of clauses by equivalences (to disjunctions of bodies).
- SLDNF resolution w.r.t. *P* is **sound** for entailment w.r.t. *comp(P)*.
- SLDNF resolution is only **complete** (for entailment w.r.t. *comp(P)*) for certain combinations of classes of programs, queries, and selection rules.
- For a normal program P, its **dependency graph** D_P explicitly shows positive and negative dependencies between predicate symbols.
- A normal program P is **stratified** iff D_P has no cycle with a negative edge.

$$P: \qquad p \leftarrow q, \sim r \\ q \leftarrow r$$

$$p/0 \leftarrow + q/0 \leftarrow + r/0$$

Completion of *P*:

$$p \leftrightarrow (q \land \neg r)$$
$$q \leftrightarrow r$$
$$r \leftrightarrow false$$

Overview

Consequence Operator for Normal Programs

Standard Models

Perfect Models and Local Stratification

Well-Supported Models

Consequence Operator for Normal Programs

Consequence Operator for Normal Programs

Definition

Let *P* be a normal logic program and *I* be a Herbrand interpretation. Then

$$T_P(I) := \{H \mid H \leftarrow \vec{B} \in ground(P), I \Vdash \vec{B}\}$$

In case *P* is a definite program, we know that

- T_P is monotonic,
- T_P is continuous,
- T_P has the least fixpoint $T_P \uparrow \omega$,
- $T_P \uparrow \omega = \mathfrak{M}(P) = \bigcap \{I \mid I \text{ is a Herbrand model of } P\}.$

For normal programs, all of these properties are lost.

T_P -Characterisation for Normal LPs (1)

Lemma 4.3

Let *P* be a normal logic program and *I* be a Herbrand interpretation. Then

$$I \Vdash P \quad \text{iff} \quad T_P(I) \subseteq I$$

Proof.

```
iff for every H \leftarrow \vec{B} \in ground(P): I \Vdash \vec{B} implies I \Vdash H iff for every H \leftarrow \vec{B} \in ground(P): I \Vdash \vec{B} implies H \in I iff for every ground atom H:
H \leftarrow \vec{B} \in ground(P) \text{ and } I \Vdash \vec{B} \text{ implies } H \in I iff for every ground atom H: H \in T_P(I) implies H \in I iff T_P(I) \subset I
```


T_P -Characterisation for Normal LPs (2)

Definition

Let F and Π be ranked alphabets of function symbols and predicate symbols, respectively, let $= \notin \Pi$ be a binary predicate symbol (equality), and let I be a Herbrand interpretation for F and Π . Then

$$I_{=} := I \cup \{=(t,t) \mid t \in HU_{F}\}$$

is called a **standardised** Herbrand interpretation for *F* and $\Pi \cup \{=\}$.

Lemma 4.4

Let *P* be a normal logic program and *I* a Herbrand interpretation. Then

$$I_{=} \Vdash comp(P)$$
 iff $T_{P}(I) = I$

 \rightsquigarrow The T_P operator for normal LPs characterises the completion semantics.

T_P -Characterisation for Normal LPs (3)

Proof Idea of Lemma 4.4:

 $T_{P}(I) = I$

```
I_{=} \Vdash comp(P)
iff (since I_{=} is a model for standard axioms of equality and inequality) for every ground atom H: I \Vdash \left(H \leftrightarrow \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B}\right)
iff for every ground atom H: H \in I iff I \Vdash \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B}
iff for every ground atom H: H \in I iff I \Vdash \vec{B} for some H \leftarrow \vec{B} \in ground(P)
iff for every ground atom H: H \in I iff H \in T_P(I)
```

 \rightsquigarrow Is comp(P) the "intended" declarative semantics of P?

iff

Completion May Be Inadequate

Consider the following normal logic program *P*:

```
ill ← \simill, infection infection ←
```

Its completion $comp(P) \supseteq \{ill \leftrightarrow (\neg ill \land infection), infection \leftrightarrow true\}$ is unsatisfiable (it has no models).

Hence, $comp(P) \models healthy$.

But $I = \{infection, ill\}$ is the only Herbrand model of P (taken as a theory):

 $P \equiv \{ill \leftarrow (\neg ill \land infection), infection\} \equiv \{ill \lor \neg \neg ill \lor \neg infection, infection\}$

Hence, $P \not\models healthy$.

Non-Intended Minimal Herbrand Models

For normal LPs, a unique least Herbrand model is not guaranteed to exist. Can we at least settle for minimal Herbrand models?

$$P_1: \quad p \leftarrow \sim q$$

 P_1 has three Herbrand models:

$$M_1 = \{p\}, M_2 = \{q\}, \text{ and } M_3 = \{p, q\}.$$

 P_1 has no least, but two minimal Herbrand models: M_1 and M_2

However: M_1 , and not M_2 , is the "intended" model of P_1 .

Supported Herbrand Interpretations

Definition

A Herbrand interpretation I of P is **supported** : \iff for every $H \in I$ there exists some $H \leftarrow \vec{B} \in ground(P)$ such that $I \Vdash \vec{B}$. If additionally $I \Vdash P$, we say that I is a **supported model** of P.

(Intuitively: \vec{B} is an explanation for H.)

Example

- M_1 is a supported model of P_1 . (Literal $\sim q$ is a support for p.)
- M_2 is no supported model of P_1 . (Atom $q \in M_2$ has no support.)
- Note (cf. Lemma 4.3) that $T_{P_1}(M_2) = \emptyset \subsetneq M_2$, but in contrast $T_{P_1}(M_1) = M_1$.
- The definite (therefore normal) program $\{p \leftarrow q, q \leftarrow p\}$ has two supported models: \emptyset and $\{p,q\}$. In the second supported model, p is an explanation for q and vice versa. Thus "support" can be cyclic.

T_P -Characterisation for Normal LPs (4)

Lemma 6.2

Let *P* be a normal program and *I* be a Herbrand interpretation. Then $I \text{ is a supported model of } P \text{ iff } T_P(I) = I$

Proof Idea.

```
I \Vdash P and I is supported iff for every (H \leftarrow \vec{B}) \in ground(P): I \Vdash \vec{B} implies I \Vdash H and for every H \in I: I \Vdash \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B} iff for every ground atom H: I \Vdash \left(H \leftarrow \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B}\right) and I \Vdash \left(H \rightarrow \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B}\right) iff for every ground atom H: I \Vdash \left(H \leftrightarrow \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B}\right) iff I_{=} model for comp(P) iff (Lemma 4.4) I_{P}(I) = I
```


Standard Models

Non-Intended Supported Models

$$\begin{array}{cccc} P_2: & p & \leftarrow & \sim q \\ q & \leftarrow & q \end{array}$$

 P_2 has three Herbrand models:

$$M_1 = \{p\}, M_2 = \{q\}, \text{ and } M_3 = \{p, q\}$$

 P_2 has two supported Herbrand models:

$$M_1$$
 and M_2

However: M_1 , and not M_2 , is the "intended" model of P_2 .

 M_1 will be called the standard model of P_2 (cf. slide 19).

Stratifications

Definition

Let P be a normal program with dependency graph D_P .

- A predicate symbol p is defined in P $:\iff P \text{ contains a clause } p(t_1,\ldots,t_n) \leftarrow \vec{B}.$
- $P_1 \cup ... \cup P_n = P$ is a **stratification** of P:⇔
 - 1. $P_i \neq \emptyset$ for every $i \in [1, n]$
 - a partition of P 2. $P_i \cap P_j = \emptyset$ for every $i, j \in [1, n]$ with $i \neq j$
 - 3. for every p defined in P_i and edge $q \stackrel{+}{\longrightarrow} p$ in D_P : q is not defined in $\bigcup_{i=i+1}^n P_i$
 - 4. for every p defined in P_i and edge $q \xrightarrow{-} p$ in D_P : q is not defined in $\bigcup_{i=1}^n P_i$

Lemma 6.5

A normal program P is stratified iff there exists a stratification of P.

Note: A stratified program may have different stratifications.

Example (1)

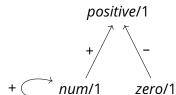
The normal logic program *P* is the following:

```
zero(0) \leftarrow \\ positive(x) \leftarrow num(x), \sim zero(x) \\ num(0) \leftarrow \\ num(s(x)) \leftarrow num(x)
```

 $P_1 \cup P_2 \cup P_3$ is a stratification of P, where

$$P_3 = \{positive(x) \leftarrow num(x), \sim zero(x)\}$$

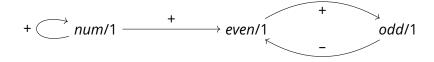
 $P_2 = \{zero(0) \leftarrow \}$
 $P_1 = \{num(0) \leftarrow, num(s(x)) \leftarrow num(x)\}$



Example (2)

```
\begin{array}{ccc} num(0) & \leftarrow \\ num(s(x)) & \leftarrow & num(x) \\ even(0) & \leftarrow \\ even(x) & \leftarrow & \sim odd(x), \ num(x) \\ odd(s(x)) & \leftarrow & even(x) \end{array}
```

P admits no stratification.



Quiz: Stratifications

Recall: A normal logic program P is *stratified* iff its dependency graph D_P has no cycle involving a negative edge.

Quiz

Consider the normal logic program P where x is the only variable: ...

Standard Models (Stratified Programs)

Definition

Let I be an Herbrand interpretation, Π be a set of predicate symbols.

$$I \mid \Pi := I \cap \{p(t_1, \dots, t_n) \mid p \in \Pi, t_1, \dots, t_n \text{ ground terms}\}$$

Let $P_1 \cup ... \cup P_n$ be a stratification of the normal program P. Define:

```
M_1 := least Herbrand model of P_1 such that M_1 \mid \{p \mid p \text{ not defined in } P \text{not defined in } P_1 \cup ... \cup P_n\} = \emptyset
```

$$M_2$$
 := least Herbrand model of P_2 such that

$$M_2 \mid \{p \mid p \text{ defined nowhere or in } P_1 \text{ not defined in } P_2 \cup \ldots \cup P_n\} = M_1$$

$$M_n$$
 := least Herbrand model of P_n such that

$$M_n \mid \{p \mid p \text{ defined nowhere or in } P_1 \cup \ldots \cup P_{n-1} \text{ not defined in } P_n\} = M_{n-1}$$

We call $M_P = M_n$ the **standard model** of P.

Example (1)

Let $P_1 \cup P_2 \cup P_3$ with

$$P_1 = \{num(0) \leftarrow, num(s(x)) \leftarrow num(x)\}$$

 $P_2 = \{zero(0) \leftarrow\}$
 $P_3 = \{positive(x) \leftarrow num(x), \sim zero(x)\}$

be a stratification of *P*. Then:

```
 \begin{aligned} M_1 &= \{num(t) \mid t \in HU_{\{s,0\}}\} \\ M_2 &= \{num(t) \mid t \in HU_{\{s,0\}}\} \cup \{zero(0)\} \\ M_3 &= \{num(t) \mid t \in HU_{\{s,0\}}\} \cup \{zero(0)\} \\ &= \{zero(0), num(0), num(s(0)), \ldots\} \\ &\cup \{positive(t) \mid t \in HU_{\{s,0\}} \setminus \{0\}\} \\ &\cup \{positive(s(0)), positive(s(s(0))), \ldots\} \end{aligned}
```

Hence $M_P = M_3$ is the standard model of P.

Properties of Standard Models

Theorem 6.7

Consider a stratified program P. Then:

- M_P does not depend on the chosen stratification of P,
- M_P is a minimal model of P,
- M_P is a supported model of P.

Corollary

For a stratified program *P*, *comp*(*P*) admits a Herbrand model.

Perfect Models and Local Stratification

Stratification may be too demanding

Consider the first-order program P_1 over $\Pi_1 = \{even/1\}$ and $F_1 = \{s/1, 0/0\}$:

• *P*₁ is not stratified, since *even/*1 depends negatively on itself.

```
even(0) \leftarrow
even(s(x)) \leftarrow \sim even(x)
```

Observation

 P_1 has a clear intended model: {even(0), even(s(s(0))), even(s(s(s(0)))), ...}.

Consider, in contrast, the propositional program P_0 over $\Pi_0 = HB_{\{even\},\{s,0\}} = \{even(0)/0, even(s(0))/0, \ldots\}$ and $F_0 = \emptyset$:

- P₀ is stratified.
- The standard model of P_0 is the intended model of P_1 .

```
even(0) \leftarrow
even(s(0)) \leftarrow \sim even(0)
even(s(s(0))) \leftarrow \sim even(s(0))
\vdots
```


Perfect Models

Definition

Let P be a normal program over Π and F, and let \prec be a well-founded order on $HB_{\Pi,F}$. Further, let M and N be Herbrand interpretations of P.

- A Herbrand model *M* of *P* is **perfect** (w.r.t. ≺)
 : there is no Herbrand model of *P* that is preferable to *M*.

Well-founded orders admit no infinite descending chains ... $\prec c_2 \prec c_1 \prec c_0$.

Example

$$p \leftarrow \sim q$$
 $q \leftarrow q$

For the well-founded order $q \prec p$, we obtain $\{p\} \triangleleft \{q\}$.

The Standard Model is Perfect

Lemma 6.9

Let *P* be a normal program and \prec be a well-founded order on $HB_{\Pi,F}$.

- If $N \subseteq M$ then $N \triangleleft M$.
- Every perfect model of *P* is minimal.
- The relation ⊲ is a partial order on Herbrand interpretations.

Theorem 6.10

Let P be a stratified normal program over Π and F and for $A, B \in HB_{\Pi,F}$ define $A \prec B :\iff$ the predicate symbol of B depends negatively on the predicate symbol of A.

Then M_P is a unique perfect model of P (w.r.t. ≺).

The standard model M_P is thus the \triangleleft -least Herbrand model of P.

But how to come up with an order \prec for non-stratified programs?

Local Stratification

Definition

Let P be a normal program over Π and F.

- A **local stratification** for *P* is a function *strat* from $HB_{\Pi,F}$ to the countable ordinals.
- For a given local stratification *strat* and $A \in HB_{\Pi,F}$, we define $strat(\sim A) := strat(A) + 1$.
- A clause $c \in P$ is **locally stratified w.r.t.** strat : \iff for every $A \leftarrow \vec{K}, L, \vec{M} \in ground(c)$, we have $strat(A) \geq strat(L)$.
- P is locally stratified w.r.t. strat
 : ⇒ all c ∈ P are locally stratified w.r.t. strat.
- P is locally stratified
 : it is locally stratified w.r.t. to some local stratification.
- → A first-order program is locally stratified iff its ground version is stratified.

Locally Stratified Programs & Perfect Models

Lemma 6.12

Every stratified program is locally stratified.

Example

The program

$$even(0) \leftarrow$$

 $even(s(x)) \leftarrow \sim even(x)$

is locally stratified (via $\{even(s^n(0)) \mapsto n\}$), but not stratified.

Theorem 6.13

Let *P* be a normal logic program (over Π and *F*) that is locally stratified (w.r.t. *strat*), and for $A, B \in HB_{\Pi,F}$ define $A \prec B :\iff strat(A) < strat(B)$. Then *P* has a unique perfect model (w.r.t. \prec).

Well-Supported Models

From Supported to Well-Supported Models

$p \leftarrow q$ $q \leftarrow p$	has two supported models, \emptyset and $\{p,q\}$. Only the minimal supported model is intended.
$ \begin{aligned} \rho &\leftarrow \sim q \\ q &\leftarrow q \end{aligned} $	has two minimal supported models, $\{p\}$ and $\{q\}$. Only $\{p\}$ is intended: the support of q (" q because q " is unfounded.
$ \begin{aligned} \rho &\leftarrow \sim q \\ q &\leftarrow \sim p \end{aligned} $	 has two minimal supported models, {p} and {q}. The program is not (locally) stratified. The situation is symmetric, so why should we prefer one model over the other?

Well-Supported Models

Definition

Let P be a normal logic program over vocabulary Π , F.

A Herbrand interpretation $I \subseteq HB_{\Pi,F}$ is **well-supported**

 \Longrightarrow

there is a well-founded order \prec on $HB_{\Pi,F}$ such that:

for each $A \in I$ there is a clause $A \leftarrow \vec{B} \in ground(P)$ with:

- I ⊪ B
- for every positive atom $C \in \vec{B}$, we have $C \prec A$.

If additionally $I \Vdash P$, then I is a **well-supported model** of P.

Intuitively: Well-supported models disallow circular justifications.

Theorem 6.20

Any locally stratified normal logic program *P* has a unique well-supported model that coincides with its perfect model.

Well-Supported Models: Examples

$$p \leftarrow \sim q$$
$$a \leftarrow a$$

has $\{p\}$ as only well-supported model.

$$p \leftarrow \sim q$$
$$q \leftarrow \sim p$$

has two well-supported models, $\{p\}$ and $\{q\}$.

$$p \leftarrow q$$

$$p \leftarrow \sim q$$

$$q \leftarrow p$$

$$q \leftarrow \sim p$$

has no well-supported model.

Preview: Well-supported models are also known as stable models.

Conclusion

Summary

- The immediate consequence operator T_P for a normal logic program P characterizes the **supported models** of P (= the models of comp(P)).
- The **stratification** of a program *P* partitions the program in layers (strata) such that predicates in one layer only <u>negatively/positively</u> depend on predicates in <u>strictly lower/lower</u> or equal layers.
- Every **stratified** logic program P has an intended **standard model** M_P .
- A program is **locally stratified** iff its ground instantiation is stratified.
- Locally stratified programs allow for a unique **perfect model**.
- A normal program *P* may have zero or more **well-supported models**.

Suggested action points:

• Prove Lemma 6.5; show that every well-supported model is supported.

