
On Implementing Temporal Query Answering
in DL-Lite* (extended abstract)

Veronika Thost1, Jan Holste2, and Özgür Özçep3

1 Technische Universität Dresden, Germany, thost@tcs.inf.tu-dresden.de
2 Technische Universität Hamburg-Harburg, Germany, mail@janholste.com

3 University of Lübeck, Germany, oezcep@ifis.uni-luebeck.de

Temporal information plays a central role in many applications of ontology-based
data access (OBDA). For example, knowledge about the past is usually kept in patient
records, and collected by companies or scientific projects as MesoWest4, focusing on
weather data. Such applications obviously benefit from using ontologies for data inte-
gration and access (e.g., the wind force ‘Storm’ on the well-known Beaufort Wind Force
Scale is equally characterized by wind speed and wave height, which can be represented
by a general concept inclusion as HighWindSpeed t HighWaves v Storm). Temporal
knowledge is however not taken into account by systems implementing OBDA, in gen-
eral. Though, assuming that we consider several weather stations’ data of the past 24
hours, a query such as the following could be interesting: “Get the heritage sites that
are nearby a weather station, for which at some time in the past (24 hours) a danger of
a hurricane was detected, since then, the wind force has been continuously very high,
and it increased considerably during the two latest times of observation.”

For that reason, we investigate different approaches for answering temporal con-
junctive queries (TCQs) [4, 5] w.r.t. ontologies written in the description logic (DL)
DL-Litecore (hereinafter called DL-Lite). TCQs combine conjunctive queries (CQs) via
LTL operators5 and have already been studied extensively in the context of DL-Lite [13,
8]. The above example query could be specified as the following TCQ:
HeritageSite(x) ∧WeatherStation(y) ∧ nearby(x, y) ∧(
HighWind(y)SDangerOfHurricane(y)

)
∧ #− Storm(y) ∧ ViolentStorm(y),

asking for all pairs (x, y) of heritage sites and nearby weather stations, whose sensor
values at some point in time implied a danger of a hurricane, since (S) then, the mea-
surements have implied Beaufort category ‘high wind’, in the previous (#−) moment of
observation they implied category ‘storm’, and the latest values imply ‘violent storm’.
The semantics of TCQs is based on temporal knowledge bases, which, in addition to
the ontology (assumed to hold at every point in time), contain a sequence of fact bases
A0,A1, . . . ,An, representing the data collected at specific points in time. Especially
note that the ontology and the fact bases itself are formulated in a classical DL.

Related Work

On the DL side, there are various optimized systems realizing OBDA [10]. In particu-
lar, the so-called rewriting approach realized by Ontop [15] allows for efficient query

*Partially supported by the DFG in CRC 912 (HAEC) and by the EU Commission as part of
the FP7 project Optique.

4http://mesowest.utah.edu/
5Please note that we do not consider negation.



answering w.r.t. an ontology written in DL-Lite. Specifically, Ontop internally rewrites a
given conjunctive query, which is written in the abstract vocabulary of the ontology, into
an SQL query that encodes the relevant ontological knowledge but addresses a standard
database system; the latter can then be used to store the data and efficiently answer the
queries. But whereas a lot of DL research is studying temporal extensions of ontology
and query languages [2, 6, 3, 11, 13, 5, 8, 14], none of the freely available systems takes
the temporal nature of the data into account, yet (i.e., the query languages supported
do not provide operators for explicitly referencing different points in time). Neverthe-
less, recently, several practical approaches for answering temporal queries have been
developed in the fields of (RDF) stream reasoning [7] and complex event processing [9,
1]. These systems are tailored to continuously answering given queries over an infinite
stream of data—which is usually realized by restricting the focus to a window of the
data (i.e., instead of considering all the past data available, the number of considered
time points or data instances is fix). But only few of these systems support ontologies,
yet, and standards for a common stream representation and processing, for query lan-
guages, and for operation semantics are still to be developed.

Our work complements these applied approaches by starting from a DL perspec-
tive, where many use cases consider static data, ontologies are important, and there are
several well-investigated query languages. Specifically, we study three pragmatic ap-
proaches for answering TCQs based on the work of [8]. We prototypically implemented
and evaluated them, and in this paper report on our experiences.

Algorithms for Temporal Query Answering

In particular, [8] propose algorithms for answering temporal queries (w.r.t. TKBs) that
generalize TCQs in that they combine queries of a generic atemporal query languageQ
via LTL-operators (i.e., we restrict Q to CQs).6 Similar to the streaming scenario, [8]
assume a fix set of TCQs to be answered continuously at time point n.

We first implemented the Iterative Algorithm (IA) (cf. Section 6 in [8]), which it-
eratively computes sets of answers to several subqueries of the TCQ to be answered,
for each time point i, 0 ≤ i ≤ n. For example, the answers to #−Storm(x) at i are
obtained by evaluating Storm(x) at i − 1. Since the processing at i only uses Ai and
the sets computed for the previous moment, whose sizes are bounded, the IA achieves a
so-called bounded history encoding (i.e., it’s runtime does not depend on the number of
considered fact bases). A growing number of data from the past however usually leads
to an increase in processing time, in practice. We therefore describe a window-based
variant of the IA, the Vector Algorithm (VA) (cf. Section 4 in [12]). With this approach,
the entire history can still be regarded (i.e., by considering it as one window) but, for
example, streaming scenarios can be managed, too. The VA specifically supports slid-
ing windows, where the TCQs are not evaluated at every time point, but in fix intervals,
by only regarding the then necessary of the above mentioned sets of answers. To answer
the query #−Storm(x) at every second point in time, for example, Storm(x) does not
always have to be evaluated. Our implementations of both algorithms are based on ma-
terializing the fact bases and thus may be extended in the future w.r.t. other rewritable

6[8] assume Q to be a rewritable query language, which basically means that the certain an-
swers to every query in Q w.r.t. a knowledge base K can be obtained by answering an appropriate
adaptation of the query in a canonical model of K.



query languages (e.g., by employing a corresponding reasoner for the atemporal query
answering, temporal queries over EL-TKBs could be answered).

To get an impression of the performance of a temporal rewriting approach, we fi-
nally consider (a rather simple) Rewriting Algorithm (RA) translating TCQs into stan-
dard database queries. Note that the idea is similarly described by [8]. However, in [8],
the TCQs are assumed to be rewritten into a temporal standard query language. Since it
turned out that such query languages are only partially supported by existing databases,
we describe a rewriting into basic SQL. In particular, we developed the QuAnTOn li-
brary, which translates TCQs w.r.t. a DL-Lite ontology into SQL queries encoding the
relevant ontological knowledge and addressing a standard database. QuAnTOn applies
Ontop for rewriting the CQs into SQL, appropriately combines these SQL queries, and
adds clauses specifying the temporal conditions. For example, the TCQ #−Storm(x)
could be translated into the below SQL query with the inner query coming from Ontop.

SELECT loc FROM
(SELECT loc, sensor, timestamp FROM sensorvalues

WHERE (sensor = 'wind-speed' AND value > 24.5) OR
(sensor = 'wave-height' AND value > 9))

WHERE timestamp = current_time-1;

Evaluation Results
We focus on the querying of weather data as outlined above and regard sequences of fact
bases each containing 1000 assertions representing sensor measurements. We chose this
(streaming) scenario, sketched in [17], to facilitate a comparison with stream reasoning
systems, which is planned for future work. We also use an extension of the correspond-
ing sensor-observation ontology7. To especially learn about the performance of different
kinds of TCQs, we only use very simple CQs within the latter. We investigate the time
needed for rewriting and answering TCQs in dependence of the number n + 1 of fact
bases considered and show the below;8 the full details can be found in [16, 12].

– The time required for the initial preprocessing (per TCQ) is negligible: less than 1
ms for the IA/VA and about 200 ms for the application of the RA.

– The scenario considering a fix set of sensors suits our constant domain assumption,
and the IA shows a rather constant performance (Figure 1).

– The VA is only applicable for windows of moderate size, due to memory issues.
– The time taken for answering the queries of the RA strongly depends on the kind

of the queries and the application (e.g., the impact of fetching the results is large).

0 10,000 20,000 30,000 40,000 50,000

0.65

0.7

0.75

0.8

Ti
m

e
(m

s)

Fig. 1. The time the IA takes for
answering a TCQ in dependence
of the number of fact bases, n+1.

7http://wiki.knoesis.org/index.php/LinkedSensorData
8The tests were run on an 2,2 GHz Intel Core i7 machine with 4 GB RAM. For answering

the queries returned by QuAnTOn, we applied a MySQL (v5.2.38) database.



References

1. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex event pro-
cessing in etalis. Semant. web 3(4), 397–407 (Oct 2012)

2. Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tractable
description logics. In: Goranko, V., Wang, X.S. (eds.) Proceedings of the 14th International
Symposium on Temporal Representation and Reasoning (TIME 2007), pp. 11–22. IEEE
Press (2007)

3. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: A cookbook for temporal con-
ceptual data modelling with description logics. ACM Transactions on Computational Logic
15(3), 25 (2014)

4. Baader, F., Borgwardt, S., Lippmann, M.: Temporalizing ontology-based data access. In:
Bonacina, M.P. (ed.) Proc. of the 24th Int. Conf. on Automated Deduction (CADE’13). Lec-
ture Notes in Computer Science, vol. 7898, pp. 330–344. Springer-Verlag (2013)

5. Baader, F., Borgwardt, S., Lippmann, M.: Temporal query entailment in the description logic
SHQ. Journal of Web Semantics (2015)

6. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Transactions on
Computational Logic 13(3), 21:1–21:32 (2012)

7. Balduini, M., Calbimonte, J.P., Corcho, O., Dell’Aglio, D., Della Valle, E.: Stream reasoning
for linked data, http://streamreasoning.org/events/sr4ld2014

8. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query languages over
knowledge bases. Journal of Web Semantics (2015), in press.

9. Cugola, G., Margara, A.: Tesla: A formally defined event specification language. In: Pro-
ceedings of the Fourth ACM International Conference on Distributed Event-Based Systems
(DEBS ’10). pp. 50–61. ACM, New York, NY, USA (2010)

10. Gonçalves, R.S., Bail, S., Jimenez-ruiz, E., Parsia, B., Glimm, B., Kazakov, Y.: OWL Rea-
soner Evaluation (ORE) workshop 2013 results: Short report

11. Gutiérrez-Basulto, V., Jung, J.C., Schneider, T.: Lightweight description logics and branch-
ing time: A troublesome marriage. In: Proc. of the 14th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’14). AAAI Press (2014)

12. Holste, J.: Ontology-Based Temporal Reasoning on Streams. Master’s thesis, Ham-
burg University of Technology (October 2014), http://www.sts.tuhh.de/
pw-and-m-theses/2014/holste14a.pdf

13. Klarman, S., Meyer, T.: Querying temporal databases via OWL 2 QL. In: Kontchakov, R.,
Mugnier, M.L. (eds.) Web Reasoning and Rule Systems, Lecture Notes in Computer Science,
vol. 8741, pp. 92–107. Springer International Publishing (2014)

14. Özçep, O., Möller, R., Neuenstadt, C.: A stream-temporal query language for ontology based
data access. In: Lutz, C., Thielscher, M. (eds.) KI 2014: Advances in Artificial Intelligence,
Lecture Notes in Computer Science, vol. 8736, pp. 183–194. Springer International Publish-
ing (2014)

15. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-Lite on-
tologies. In: Principles of Knowledge Representation and Reasoning: Proceedings of the
Thirteenth International Conference, KR 2012, Rome, Italy, June 10-14, 2012 (2012)

16. Thost, V., Holste, J., Özgür Özçep: On implementing temporal query answering
in DL-Lite. LTCS-Report 15-12, Chair for Automata Theory, TU Dresden, Ger-
many (2015), http://lat.inf.tu-dresden.de/research/reports/2015/
THO-LTCS-15-12.pdf, see http://lat.inf.tu-dresden.de/research/reports.html.

17. Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.P.: SRBench: a streaming RDF/SPARQL
benchmark. In: Proceedings of the 11th International Conference on The Semantic Web -
Volume Part I. pp. 641–657. ISWC’12, Springer-Verlag, Berlin, Heidelberg (2012)


