

Concurrency Theory

12. Lecture: Petri Net Complexity & Languages

Dr. Stephan Mennicke

Institute for Theoretical Computer Science Knowledge-Based Systems Group

June 30, 2025

Last Lecture

- an introduction to Petri net properties
- some decision procedures for
 - 1. bounded Petri nets (e.g., liveness)
 - 2. general Petri nets (e.g., deadlock-freedom)
- the reachability problem

Today

- Complexity of Petri nets
- Petri net languages

Complexity of Petri Net Problems

Some Complexity Results

Unfortunately, the problems we have discussed have very high computational complexity. We are going to prove them all Expspacehard.

Boundedness for general Petri nets is Expspace-complete (same for *coverability*).

It was believed that deadlock-freedom, liveness, and reachability are also Expspace-complete. However, all three problems have **non-elementary** complexity.

Detour: Non-Elementary Complexity

Consider the family of functions $(\exp_k)_{k\in\mathbb{N}}$ defined as follows:

- $\exp_0(x) = x$
- $\exp_{k+1}(x) = 2^{\exp_k(x)}$

Class k-Expspace contains all problems that can be solved by a Turing machine using at most $\exp_{k(n)}$ space where n for inputs of length n.

$$\bigcup_{k=0}^{\infty} k$$
-Expspace

is the class of all *elementary problems*.

Detour: Non-Elementary Complexity

While $n\mapsto \exp_n(n)$ grows quite fast*, there are functions growing even faster.

Ackermann function

$$A(m,n) = \begin{cases} n+1 & \text{if } m=0 \\ A(m-1,n) & \text{if } m>0 \text{ and } n=0 \\ A(m-1,A(m,n-1)) & \text{if } m>0 \text{ and } n>0 \end{cases}$$

All known algorithms for deadlock-freedom, liveness, and reachability for Petri nets have non-primitive recursive runtime.

^{*}still *primitive recursive*, i.e. **For**-loops suffice

Simulating Exponentially Bounded Automata

When n is the size of the machine, an *exponentially bounded automaton* is a Turing machine that uses (i.e., works/writes) at most 2^n tape cells.

A deterministic, exponentially bounded automaton of size n can be simulated by a Petri net of size $\mathcal{O}(n^2)$.

If the given automaton A requires 2^n space, then the corresponding Petri net solves the same problem and requires at least $2^{\mathcal{O}(\sqrt{n})}$ space.

Bounded automata and Petri nets do not fit well. We use a particular kind of *counter programs* (cf. Minsky machines). Petri nets can simulate *bounded counter programs*.

Recall and Adapt: Counter Programs

For program locations ℓ, ℓ_1, ℓ_2 and counter x, the following lines represent all counter program basic commands:

$$\begin{array}{l} \ell: x \coloneqq x + 1 \\ \ell: x \coloneqq x - 1 \\ \ell: \mathbf{goto} \ \ell_1 \\ \ell: \mathbf{if} \ x = 0 \quad \mathbf{then} \ \ell_1 \\ & \quad \mathbf{else} \ \ell_2 \\ \ell: \mathbf{halt} \end{array}$$

We assume all initial counter values to be 0. Semantics is similar to that of Minsky machine, except for the *unconditional* decrement.

Recall and Adapt: Counter Programs

If $\ell : x := x - 1$ is executed on a state in which x = 0, the program execution fails and, therefore, the run *aborts*. Proper termination is signaled by reaching the last line of the program containing **halt**.

A counter program is k-bounded if after any step in its unique execution every counter has value $\leq k$.

Theorem 12.1 There is a polynomial time procedures accepting deterministic bounded automata A of size n and returns a counter program C with $\mathcal{O}(n)$ commands simulating A on the empty tape.

Recall and Adapt: Counter Programs

A halts if and only if C halts. If A is exponentially bounded, then C is 2^{2^n} -bounded.

Is is sufficient to show that a 2^{2^n} -bounded counter program of size $\mathcal{O}(n)$ can be simulated by a Petri net of size $\mathcal{O}(n^2)$.

Giving a mathematical description of a Petri net with places and transitions is rather cumbersome. We refer here to **yet another** kind of programs, easy to implement in Petri nets: *net programs*.

Net Programs

Since Petri nets (without extensions) cannot test for 0, net programs replace the conditional jump by a nondeterministic one.

$$\ell: x := x + 1$$

$$\ell: x := x - 1$$

$$\ell: \mathbf{goto} \ \ell_1$$

$$\ell: \mathbf{goto} \ \ell_1 \ \mathbf{or} \ \mathbf{goto} \ \ell_2$$

$$\ell:\mathbf{gosub}\ \ell_1$$

$$\ell$$
: return

$$\ell:\mathbf{halt}$$

Net Programs

The Petri net corresponding to a net program with k commands has $\mathcal{O}(k)$ places, $\mathcal{O}(k)$ transitions, and its initial marking has size $\mathcal{O}(k)$. Thus, size $\mathcal{O}(k^2)$.

Let C be a 2^{2^n} -bounded counter program with $\mathcal{O}(n)$ commands.

We construct a net program N(C) with $\mathcal{O}(n)$ commands, corresponding to a Petri net of size $\mathcal{O}(n^2)$.

N(C) will be nondeterministic, even though C is deterministic. N(C) simulates C in the following sense: C halts (i.e., executes the **halt** command) if and only if some computation of N(C) halts (other computations fail).

Core Idea: Exploiting Boundedness

Every variable x of N(C) has an auxiliary complement variable \overline{x} .

N(C) takes care of initializing \overline{x} with 2^{2^n} at the beginning of the program. $N_{init}(C)$

The simulation takes care of the invariant $\overline{x} = 2^{2^n} - x$. $N_{sim}(C)$

Then $N(C) = N_{init}(C); N_{sim}(C)$.

$$N_{sim}(C)$$

We replace each command of C by a respective (sequence of) net program commands.

$$x \coloneqq x + 1$$

$$x \coloneqq x + 1; \overline{x} \coloneqq \overline{x} - 1$$

$$x \coloneqq x - 1; \overline{x} \coloneqq \overline{x} + 1$$

$$\mathbf{goto} \ \ell_1$$

if x = 0 then goto ZERO else goto NONZERO

such conditional jumps are replaced by a subroutine call

 $\mathsf{Test}_n(x, \mathsf{ZERO}, \mathsf{NONZERO})$

Designing Conditional Jumps

$$\mathsf{Test}_n(x, \mathsf{ZERO}, \mathsf{NONZERO})$$

- If x = 0 ($1 \le x \le 2^{2^n}$, resp.), some execution of the program leads to ZERO (NONZERO, resp.), and **no** computation leads to NONZERO (ZERO, resp.).
- The program has no side-effects: after any execution leading to ZERO or NONZERO no variable has changed its value.

Since we have to *read* certain counter values, it is easier to design a subroutine with a side-effect first:

$$\mathsf{Test}'_n(x, \mathsf{ZERO}, \mathsf{NONZERO})$$

After any execution leading to ZERO, values of x and \overline{x} are swapped.

Designing Conditional Jumps

 $\mathsf{Test}_n(x, \mathsf{ZERO}, \mathsf{NONZERO}):$

 $\mathsf{Test}_n'(x, \mathsf{CONTINUE}, \mathsf{NONZERO})$

 $\operatorname{CONTINUE}:\operatorname{\mathsf{Test}}'_n(x,\operatorname{ZERO},\operatorname{NONZERO})$

The Net Program for Test_n'

Since x never exceeds 2^{2^n} , testing x=0 is a nondeterministic choice between

1. decreasing x by 1

if successful, x > 0

2. decreasing \overline{x} by 2^{2^n}

if successful, $\overline{x} = 2^{2^n}$ and x = 0

If we choose to decrease x by 1 but $x = 0, \dots$ discuss

For the decrement of \overline{x} by 2^{2^n} , use another subroutine $\mathsf{Dec}_n(s_n)$:

- if the initial value of $s_n < 2^{2^n}$, every execution fails;
- if the value of $s_n \ge 2^{2^n}$,
 - ▶ all executions terminating with **return** have the effect that $s_n := s_n 2^{2^n}$; $\overline{s_n} := \overline{s_n} + 2^{2^n}$;
 - ► all other executions fail.

The Net Program for Test'_n $\mathsf{Test}'_n(x, \mathsf{ZERO}, \mathsf{NONZERO})$:

goto nonzero or goto loop;

nonzero :
$$x := x - 1; x := x + 1;$$

goto NONZERO

$$loop: \overline{x} := \overline{x} - 1; x := x + 1;$$

$$s_n\coloneqq s_n+1; \overline{s_n}\coloneqq \overline{s_n}-1;$$

goto exit or goto loop

 $exit : \mathbf{gosub} \ dec_n;$

goto ZERO

The Net Program Dec_n

By induction on n. Dec_0 has to increase s by $2^{2^0} = 2$.

$$egin{aligned} \mathsf{Dec}_0(s): \ &s \coloneqq s-1; \overline{s} \coloneqq \overline{s}+1; \ &s \coloneqq s-1; \overline{s} \coloneqq \overline{s}+1; \ &\mathbf{return} \end{aligned}$$

For Dec_{i+1} we rely on the subroutine Dec_i . Note,

$$2^{2^{i+1}} = (2^{2^i})^2 = 2^{2^i} \cdot 2^{2^i}$$

The Net Program Dec_n

$$\begin{split} \operatorname{Dec}_{i+1}(s): \\ \operatorname{outer_loop}: y_i &:= y_i - 1; \overline{y_i} := \overline{y_i} + 1; \\ \operatorname{inner_loop}: z_i &:= z_i - 1; \overline{z_i} := \overline{z_i} + 1; \\ s &:= s - 1; \overline{s} := \overline{s} + 1; \\ \operatorname{Test}_i'(z_i, \operatorname{inner_exit}, \operatorname{inner_loop}); \\ \operatorname{inner_exit}: \operatorname{Test}_i'(y_i, \operatorname{outer_exit}, \operatorname{outer_loop}); \\ \operatorname{outer\ exit}: \operatorname{\mathbf{return}} \end{split}$$

The Net Program $N_{init}(C)$

Initialize all co-counters with 2^{2^n}

Petri Net Languages

Recall: LTSs and Trace Semantics

Given an LTS $(Q, \Sigma, \longrightarrow)$, we have $s \stackrel{t}{\longrightarrow} s'$ $(t \in \Sigma)$ for direct successors and, generally, the $trace\ relation\ s \stackrel{\sigma}{\longrightarrow} s'$ for $\sigma \in \Sigma^{\star}$. The set of all traces from $s_0 \in Q$ will be denoted $L(s_0)$ and, if a set of terminal states $S_f \subseteq Q$ is specified, the $terminal\ language\ of\ s_0$ is $L_{t(s_0)} = \left\{\sigma \in \Sigma^{\star}\ \middle|\ \exists s \in S_f: s_0 \stackrel{\sigma}{\longrightarrow} s\right\}$.

For a Petri net $N=(P,T,F,m_0)$, we can forge the same definitions, based on the reachability graph of N. It is customary to incorporate a labeling function $\ell:T\to\Sigma$ so that more than one Petri net transition may be associated with the same *action*.

Also the use of internal actions, like τ in CCS, is often used.

Recall: LTSs and Trace Semantics

Definition 12.1 Let Σ be an alphabet with $\tau \notin \Sigma$ (reserved for internal actions). We call a tuple $N = (P, T, F, m_0, \Sigma, \ell)$ a labeled Petri net over Σ if (P, T, F, m_0) is a Petri net and $\ell : T \to \Sigma \cup \{\tau\}$. If $\forall t \in T : \ell(t) \neq \tau$, we call N a τ -free Petri net.

A terminal Petri net is a tuple $N=(P,T,F,m_0,M_f)$ where (P,T,F,m_0) is a Petri net and $M_f\subseteq \mathbb{N}^P$ is a set of final markings. Analogously to labeled Petri nets, we obtain the notion of terminal labeled Petri nets by introducing a respective labeling function on the set of transitions.

Recall: LTSs and Trace Semantics

A (terminal) labeled Petri net N is called free if $\Sigma = T$ and $\ell = \mathrm{id}_T$. For a (terminal) labeled Petri net N, define the free version of N by $N^f := (P, T, F, m_0, M_f, T, id_T).$

Associating τ with the empty word ε helps us extending labeling functions to homomorphisms $\ell: T^{\star} \to \Sigma^{\star}$ as follows:

- 1. $\ell(\varepsilon) := \varepsilon;$ 2. $\ell(t) := \begin{cases} \varepsilon & \text{if } \ell(t) = \tau \\ \ell(t) & \text{otherwise;} \end{cases}$
- 3. $\ell(\sigma t) := \ell(\sigma)\ell(t)$

Petri Net Languages

$$L(N) \coloneqq \left\{ w \in \Sigma^\star \,\middle|\, \exists \sigma \in T^\star : m_0 \xrightarrow{\sigma} \land w = \ell(\sigma) \right\}$$

$$L_t(N) \coloneqq \left\{ w \in \Sigma^\star \,\middle|\, \exists \sigma \in T^\star, m \in M_f : m_0 \xrightarrow{\sigma} m \land \ell(\sigma) = w \right\}$$

 \mathcal{L}^{τ} class of all languages of arbitrary Petri nets

 \mathcal{L} class of all languages of τ -free Petri nets

 \mathcal{L}^f class of all languages of free Petri nets

 $\mathcal{L}_t^{ au}$ class of all terminal languages of arbitrary Petri nets

 \mathcal{L}_t class of all terminal languages of au-free Petri nets

 \mathcal{L}_t^f class of all terminal languages of free Petri nets

On Language Equivalence

Recall

- For Petri nets, bisimilarity is undecidable.
- Bisimilarity for deterministic Petri nets is the same as language (i.e., trace) equivalence.

Definition 12.2 For two Petri nets N_1 and N_2 , the language equivalence problem asks if $\mathcal{L}(N_1) = \mathcal{L}(N_2)$.

We denote the problem by LEP or LEP_t (for terminal language equivalence). Likewise, we have LEP^{τ} and LEP^f (together with their terminal counterparts LEP^{τ} and LEP^f).

On Language Equivalence

Theorem 12.3 LEP and LEP $_t$ are undecidable.

Proof. see exercise tomorrow ...

Theorem 12.4 LEP f is decidable.

- free Petri nets are also called *unlabeled Petri nets*
- although the Petri net firing rule is nondeterministic also if the underlying Petri net is free, free Petri nets are deterministic from a language point-of-view

Deciding Language Equivalence for Free Petri Nets

Let $N_1=(P_1,T_1,F_1,m_1,\ell_1)$ and $N_2=(P_2,T_2,F_2,m_2,\ell_2)$ be unlabeled Petri nets with disjoint sets of nodes.

Starting from the Petri net

$$N_1 + N_2 = (P_1 \cup P_2, T_1 \cup T_2, F_1 \cup F_2, m_1 + m_2, \ell_1 \cup \ell_2),$$

- add a duplicate transition t' for each transition $t \in T_1 \cup T_2$ with same label, pre-, and postset as t; sets denoted by T_1' and T_2'
- add a fresh place p with arcs $\{p\} \times (T_1 \cup T_2)$ and $(T_1' \cup T_2') \times \{p\}$;
- for each label $a \in \Sigma$, add places p_1^a, p_2^a and for $t \in T_i$ with $\ell_i(t) = a$, add arcs $\left(t, p_j^a\right), \left(p_j^a, u'\right)$ for transition duplicate $u' \in T_j$ with $\ell_j(u') = a$;
- add a transition t_{ω} with arcs $(p,t_{\omega}),(t_{\omega},p)$

Finally, N_1 and N_2 produce the same sets of traces if and only if the constructed net is deadlock-free.

Closure Properties of Petri Net Languages

- 1. Every regular language is a Petri net language;
- 2. Shuffle, union, concatenation
- 3. Synchronization
 - Restriction, Hiding
 - Intersection

But what about languages of free Petri nets?

$$\mathcal{L}, \mathcal{L}_t, \mathcal{L}^ au, \mathcal{L}_t^ au \ \mathcal{L}, \mathcal{L}_t, \mathcal{L}^ au$$

also
$$\mathcal{L}^f$$
 and \mathcal{L}_t^f