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Abstract

Since the early days of theorem proving and inductive logic program-
ming several f-subsumption algorithms have been developed. Recently,
the focus came back to #-subsumption due to its relevance in planning
within first-order Markov Decision Processes. More than one formalism
has been adopted to describe the language and the algorithms. Many
experimental evaluations have been performed, but all focusing only on
some algorithms and a particular domain. In this thesis, we will present
the most popular @-subsumption algorithms within a unified framework
for a fair comparison. Further, we will describe the domains in which 6-
subsumption is used and present a huge experimental evaluation on data
from these domains. In addition, we give arguments for which algorithm
is best suited depending on some basic parameters.
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1 List of symbols

1.1 Sets

)

Dowm(#)
RANGE(6)
VRANGE(#)
1]

C 6SUBS D

C NoT 9SUBS D

element
subset
union
intersection
empty set

cardinality (number of elements in set A)
cartesian product of sets A and B

set of functions from A to B
set of all subsets of A

alphabet

set of variable symbols

set of function symbols

set of predicate symbols

set of terms based on X
predicate symbole of literal [

set of variables occurring in clause C

size of the clause C

the empty clause

and

or

not

logical entailment
substitutions

empty substitution
domain of

range of

variables of the range of 0
argument of [ at position 7
C f-subsumes D

C does not #-subsume D



2 Introduction

2.1 DMotivation

f-subsumption is a decidable restriction of logical implication [25]. Although
being NP-complete [16], it is heavily used in domains such as

e Inductive Logic Programming ([23], [24]) as generality relation stating
whether a hypothesis covers a training example;

e Frequent Pattern Discovery [5];

e Theorem Proving (like in prover9: a first-order automated reasoning sys-
tem which is the successor to otter) as decidable but incomplete logical
implication for remove redundant clauses; or

e Planning in a First-Order framework [14] to prune the search space by
eliminating states that are more specific than others, or for calculating
successor and predecessor states in the search process.

Since the early days of #-subsumption, several algorithms have been devel-
oped to increase its computational efficiency. Nevertheless, these algorithms
have not been compared exhaustively. There exists few articles that compare
the older ones in a formal way on a theoretic basis. In their article [11], Gottlob
and Leitsch establish a lower bound on the worst-time complexity of known
algorithm upto that date (1985), namely ST and CL. Based on that study, they
developed a new algorithm that does not suffer from the same weaknesses. Some
experimental analysis have been carried out (e.g. in [28], [20], [9]), but they all
focus their study either on particular application domains, or on particular as-
pects of the search domain of the #-subsumption problems. For example, the
system django, described in [20], is only compared to the system by Scheffer
et al. [28]. Alongside, new approaches ([17], [29]) have been proposed and
computational behaviour has only partially been studied.

2.2 A bit of History

0-subsumption has first appeared in conjunction with the notion of least gen-
eral generalization (lgg) which was introduced by Plotkin [25]. In some ex-
tend, it is the opposite of most general unification, that’s why it is sometimes
also called anti-unification. For example, given two atomic formulas p(f(a), X)
and p(f(Y),b), unification computes the most general specialization p(f(a),b)
whereas anti-unification computes their most special generalization p(f(Y"), X).
Plotkin extends this notion to clauses, and defines therefore the above mentioned
notion of #-subsumption: a clause C; generalizes a clause Cs, if C; #-subsumes
C5 (The formalism and definitions will be given in the following sections). The
least general generalization C of a set of clauses S is the smallest clause that
generalizes every clause in S. (smallest meaning here: for each clause D that
generalizes every clause in S, we have D generalizes C).



2.3 Main contributions
2.3.1 Unified framework

As f-subsumption has been used in various domains, the formalisms used are
not the same. One part of the work in this thesis, was to unify the formalisms
in order to have the same representation and to be able to compare the different
algorithms on a common basis.

2.3.2 Missing proofs completed

Most of the algorithms have been presented in articles in a rather short way,
pointing out the main new feature, and spending few time in strict formal defi-
nitions. That’s why they also only give proof sketches and informal correctness
arguments, since the formal definition of e.g. the language used and assumption
made are missing. In this thesis, the formalism will be clearly defined, so that
we can work out the missing correctness proofs, and present them.

2.3.3 Experimental data and evaluation

The authors of the #-subsumption algorithms have focused on only one specific
domain of application each. So experimental data was often taken from In-
ductive Logic Programming. We extend the data by typical problem instances
of other domain where #-subsumption is used. Other domains are Theorem
Proving and First-Order Planning.

The experimental evaluation carried out previously by other authors consid-
ered “newer” algorithms only, and neglected the existence of older algorithms.
The main reason was that the implementations for older algorithms are not avail-
able. In order to make the experimental evaluation as exhaustive as possible,
we implemented as much algorithms as possible for which no implementation
existed.

2.4 Related work

Nearly all authors of new approaches to f-subsumption have provided some
experimental argument that showed the advantage of their method. They in-
vestigated the behaviour of their algorithm on some typical data of their focused
domain.

Kietz and Liibbe [18] for instance, tested their algorithm on three aspects
but staying in the ILP framework:

1. A toy domain: learning the definition of an arch (A curve with the ends
down and the middle up, shaped like an inverted U),

2. Artificially constructed k-local Horn clauses of increasing size,

3. Testing least general generalizations against the example of three ILP-
domains: krk [7], mesh [26], and speed [30].

Scheffer et al. [28] tested their implementation solely on the mesh domain
[26]. To obtain different clauses of arbitrary size, they included only those nodes
and edges that have only a certain distance from a randomly drawn starting
node.



Maloberti and Sebag [20] have assessed the performance of their algorithm
by a stochastic modeling. Stochastic modeling is widely used for validating
CS (Constraint Satisfaction) algorithms. The modeling has been ported to 6-
subsumption by Giordana and Saita [10]. They tested their implementation
on artificial clauses generated such that they are in the phase transition, i.e.,
the hardest problems to solve because the probability of successful subsumption
is difficult to know in advance. They also tested their implementation on the
mutagenesis domain, which is widely used in ILP as benchmark problem. They
compared they implementation again the implementation by Scheffer et al. only.



3 Preliminaries

3.1 Language

Definition 3.1 (Language) The alphabet & of the language is the union of
the following disjoint sets of symbols:

e The set Yy of variables, Xy = {Z,Y, X, ...}

o The set X of function symbols. Each function symbol f € X is associ-
ated with an arityny € N, Xp = {f/ny,g/ng,...}. If there is no ambiguity
we write f, g, ... instead of f/ny,g/ng,.... 0-ary function symbols (function
symbols with arity 0), are also called constant symbols, or constants.

o The set X i of predicate or relations symbols. Fach predicate symbol p €
Y is associated with an arity n, € N, ¥p = {p/ny, ¢/ng, ...}. If there is
no ambiguity we write p, q, ... instead of p/ny, q/ng, ....

e The set of connectives {—}.

e The set of punctuation symbols 7(”, 7,”, and ”)”.

Definition 3.2 (Term) Terms are defined recursively as follows:
1. A wvariable is a term.

2. If f is an n-ary function symbol and t1,...t,, are terms, then f(t1,...,t,)
18 a term.

The set of all terms based on the alphabet X is noted T (X).

Definition 3.3 (DATALOG-term) DATALOG-terms are defined as follows:
1. A constant symbol is a DATALOG-term;
2. A variable is a DATALOG-term.

If there is no ambiguity, we will denote DATALOG-terms as terms.

Example ¢(g(a, X), f(f(a))) is a term.
a and X are DATALOG-terms.

Definition 3.4 (Atom) If p is an n-ary predicate symbol and ty,...,t, are
terms then p(ti, ..., t,) is an atomic formula or atom.
An atom is called ground if it does not contain any variable.

Definition 3.5 (Literal) If atom is an atom, then atom and —atom are liter-
als, called respectively positive and negative literal.
If 1 is a literal, we will write pred(l) for the predicate symbol occurring in l.

Definition 3.6 (Argument position) Letp(ay,...,a;,...,a,) be an atom. The
argument position of a; is i.

If L is of the form | = p(aq,...,a;,...,a,) then l[i] = a;. If i > n then l[i] is
undefined.

The argument position of a literal is the argument position of the atom of
the literal.
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Example p(X,Y) and p(f(a), Z) are atoms, as well as (positive) literals.
-p(X,Y) is a (negative) literal. The term at argument position 2 in p(X,Y) is
p(X,Y)[2] =Y.

Definition 3.7 (Clause) A clause is a set C of literals.
The size of the clause is the cardinality of the set C, written |C|. The empty
clause is denoted by [].

If C is a clause,

We note var(T) the set of variables occurring in T', where T can be a term,
a literal, a clause or a set of clauses.

Example C =p(X,Y),p(f(a),Z) is a clause.

3.2 Definitions and properties

Definition 3.8 (Variable disjoint) Let C' and D be clauses. C and D are
variable disjoint if var(C) Nwvar(D) = 0, i.e., no variable occurring in the first
clause occurs in the second clause. In the literature, this is also often called
standardized apart.

In the following, we assume without loss of generality that clauses are vari-
able disjoint.

Definition 3.9 (Substitution) A substitution 0 is a mapping from the set of
variables into the set of terms which is equal to the identity mapping almost
everywhere except for a finite set of variables, i.e., {X € Xy | 6(X) # X} is
finite. 0 is represented as the finite set of pairs {X1 — t1,..., X, — t,}, where
X1, ..., Xpn are different variables and for all1 <i<n X; #t;. {X1,...,X,} is
called the domain of 0, written DOM(0) and {t1, ..., t,} is the range of 0, written
RANGE(0). The set of variables of the range is written VRANGE(6).

The empty substitution, i.e., the empty mapping, is denoted by €.

Applying a substitution 0 to a term s, denoted by sO, is the term obtained
by simultaneously replacing each occurrence of a variable from DoM(0) in s by
the corresponding term in RANGE(0).

Applying a substitution to an atom p(ty,...ty,) is p(t1,...tm )0 = p(t16, ..., t0).
Applying a substitution to a clause C = aq, ..., an is CO = a10, ..., a,0. Applying
a substitution to a set S = {ly,...,l,} of literal, is defined by applying 0 to all
the elements: SO = {116, ...,1,0}.

We will note T (X)®V the set of all substitutions.

Example For example § = {X — f(Y),Y — a} is a substitution. Applying
this substitution to the term ¢ = g(X,Y") gives t0 = g(f(Y), a).

Definition 3.10 (Composition) The composition O\ of two substitutions 0
and X is defined as follows: for each term t, t(ON) = (t0)A\.

Proposition 3.11 (Idempotency of composition) Let § be a substitution.
If DoM(6) N VRANGE(6) = 0 then the composition is idempotent, i.e., 00 = 6.

Proof The proof is a proof by structural induction over terms.

e (Induction base) Let X be a variable.
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— If X ¢ Dom(f) then X0 = X. Thus X (60) "< (Xx0)0 = X9.

— If X € DoM(#). Suppose X — t in 6.

Then X (06) < (x0)0 = 0.

Since t € RANGE(0), var(t) € VRANGE(#) and thus var(t) ¢ Dom(6)
by the assumption of the proposition.
Hence, t0 = t, and X (06) =t = X6.

e (Induction step) Let f/n be a function symbol.
Assume that the proposition holds for ¢4, ..., ¢,, (Induction hypothesis: TH).
Then,

f/n(te, ... tn)(00) = f/n(t1(00), ...,t,(00))
St (410, ..., t,0)
= f/n(th...,tn)ﬁ

Proposition 3.12 (Associativity of composition) The composition of sub-
stitutions is associative, i.e., if 0, p, o are substitutions, then O(uc) = (Ou)o.

Proof Let t be a term and 6, pu, o substitutions.

t(0(n0)) < (t0)(uo) = ((t0))o
t(6p)0) < (t(0))0 E ((t0)n)o
Thus, O(uo) = Op)o. |

Definition 3.13 (Strong compatibility) Two substitutions 61 and 05 are
called strongly compatible iff 616, = 650 .

If 6, and 6, are grounding substitutions, i.e. VRANGE(6;) = VRANGE(fz) =
() then 6; and 65 are strongly compatible iff no variable is assigned different
terms in 07 and 6.

Definition 3.14 (Unifier, Most general unifier) A substitution 6 is a uni-
fier of a set of terms S if |S6] = 1.

The definition extends in a natural way to atoms: a substitution 6 is a unifier
of a set of atoms S if |S6] = 1.

A most general unifier (mgu) 6 is a unifier such that for all unifiers p there
exists a substitution A such that p = 6.

Example Let t1 = f(X), ta = f(9(Y,Z)) then 0 = {X — ¢(Y,Z)} is a most
general unifier of {¢1,t2}, but = {X — g(a,b),Y +— a,Z — b} is a unifier but
not a most general one.

Definition 3.15 (Matcher, Most general matcher) Given two termst, and
t1, a substitution 0 is a matcher for t; over ty if t10 = ts.

The definition extends to literals and clauses as follows:
Given two literals | and ', a matcher for [ over l' is a substitution 6 such that
0=1.

12



Given two clauses C' and D, a matcher for C' over D is a substitution 0 such
that C0 = D.

Similarly to the most general unifier, the most general matcher is defined:
A most general matcher 0 is a matcher such that for all matchers p there exists
a substitution \ such that = G\.

The set of all matchers for a literal I; € C' over some literal in D is denoted
by match(C,l;, D) = {p € T(X)*V |1, € C,l;u € D}

Example Let C =p(X,Y),p(Y,Z),q(Z), D = p(a,b),p(b,c),p(c,d), q(d). Then
match(C,p(X,Y), D) = {61, 03,03}, with

e 0, ={X — a,Y — b} matcher for p(X,Y") over p(a,b).

e 0 ={X — b, Y — ¢} matcher for p(X,Y") over p(b, c).

e 05 ={X — ¢,Y — d} matcher for p(X,Y") over p(c,d).

The next definition is the central definition of this thesis.

3.3 #-subsumption

Definition 3.16 (A-subsumption [25]) Let C' and D be clauses. C 0-subsumes
D, written C 0SUBS D iff there exists a substitution 6 such that CO C D.

The set of all substitutions 6 such that C' 0SUBS D is called the answerset of
C 9SUBS D.

There exists also a stronger version of 8-subsumption, written C' SUBS . D,
defined as follows: C' 0SUBS D iff C 0SUBS D and |C| < |D|.

Example Let C = p(X,Y),p(Y, 2),q(Z), D1 = p(a,b),p(b, ¢), p(c,d),q(d) and
Dy = p(a,b),p(b,c). Then C gSUBS D; by substitution § = {X — b,V —
¢, Z — d}, and not C SUBS Ds.

There are three different problems that will be considered in this thesis:

e Decision Problem: Given two clauses C' and D, check whether C' 6SUBS D.
A problem instance of this kind will be written in short “376.C 6SUBS D”.

e One-Solution Problem: Given two clauses C and D, find one substitution
0 such that C' 9SUBS D, if it exists. A problem instance of this kind will
be noted “Onef?.C 6SUBS D”

e Function Problem: Given two clauses C' and D, find all substitutions (the
answerset) 6 € 7(X)"*"(©) such that C 6SUBS D. A problem instance of
this kind will be noted “All07.C' §SUBS D”.

Example Consider the clauses
o C=p(X,Y),p(Y,Z),q(T) and

e D =p(a,a),p(a,c),p(c,d),qa),q(b).

The answer to the decision problem “J70.C §SUBS D” is YES.

The answer to the one-solution problem “Onef?.C SUBS D” is for example
0h={Xr—a,Y—aZ—cT—altorby={Xw—aY—c,Z—dTw—a}.

The answer to the function problem “All§?.C' 6SUBS D” is the set of substi-
tutions containing:

13



0 ={X—aY—aZ—cTwra}

O ={X—a,Y—aZ—cTwr—b}

O3 ={X—a,Y—c,Z—c,Tr a}

0s={X—aY—c,Z—cTw— b}

f-subsumption is defined syntactically. But for understanding why it has
been defined, we have to take a short look at the semantics of clauses, and how
it is related to #-subsumption.

The semantics of clauses are defined through interpretations.

Definition 3.17 (Interpretation) An interpretationZ is a set of ground atoms.
Example The following are interpretations:

e 7y = (), the empty interpretation

e I; = {p(a, )}

o Iy = {p(a,b),q(b,c)}

Definition 3.18 (Model) Let M be an interpretation. M is a model for an
atom a, written M F a, if a € M, otherwise M is not a model for a, written
MFEa.

M is a model for negative literal —a, written M F —a, iff M ¥ a.

M is a model for clause C = ay,...,ay, written M F C, iff M E a1 or ... or
M E a,.

Definition 3.19 (Logical entailement) Let C' and D be clauses. C entails
D (or equivalently D is a logical consequence of C), written C E D iff M = C
implies M E D, i.e., every model for C' is a model for D.

Proposition 3.20 ([12]) Let C' and D be clauses. If C £ D then C 0SUBS D.

The converse is not true, as shown be the following popular example from
[24].

Example Let C' = p(f(X)), 7p(X) and D = p(f(f(X))), 7p(X).
Then C NOT 0SUBS D but C £ D.

This shows that f-subsumption is a sound but incomplete restriction of log-
ical entailment.

Proposition 3.21 Let C and D be clauses. Let D' be the clause D where
all variables have been skolemized, i.e., all variables have been replaced by new
(occurring nowhere else) constant symbols. Then, C §SUBS D iff C 0SUBS D’
and the set of all solutions S’ for C 6SUBS D’ can be obtained from the set
of all solutions S for C 0SUBS D by skolemizing all the variables from the set
var(S) Nwvar(D).

Definition 3.22 (Subsumption algorithm) A subsumption algorithm takes
as input two clauses C' and D and, depending on the type of problem that the
algorithm is intended to solve, it produces as answer:

14



e "YES” or "NO”, if it solves the Decision Problem;

o A substitution 0 such that C 6SUBS D by 6 or "NO” if it solves the One-
Solution Problem;

o A set S such that for each § € S we have C SUBS D by 0 (S is empty, if
no such 0 exists), if it solves the Function Problem.

Proposition 3.23 (Eisinger [8]) A clause C 0 subsumes a clause D iff there
is an n-tuple (01, ...,0,) € X ymatch(C,l;, D), where n = |C|, such that all 6;
are pairwise strongly compatible.

Example Consider the clauses
e C=p(X,Y),p(Y,Z) and
e D =yp(a,c),plc,d).

Then the carthesian product x?_;match(C,l;, D) =

91,1:{X’—>G,Y'—>C} % 9271={Y0—>G,ZD—>C}
bho={X+—cY —d} b0 ={Y —c,Z—d}

match(C,p(X,Y), D) match(C,p(Y, Z), D)

The substitutions of the tuple (61,1, 022) are pairwise strongly compatible (since
in both Y is mapped to ¢), so C §SUBS D.

Definition 3.24 (Deterministic Subsumption [18]) Let C and D be clauses.
C deterministically 0-subsumes D, written C 0SUBS pprD, by 0 = 0105...0,, iff
there exists an ordering C' = ly,...,l, of C such that for all i € {1..n}, there
exists exactly one 0; such that {l,...,1;}61...0; C D.

Theorem 3.25 ([18]) Given two clauses C' and D, solving the problem
C 9SUBS pprD can be computed with O(|C|? - |D|) basic unification attempts.

Most of the algorithms can only solve #-subsumption problems on DATA-
LOG-clauses. This is motivated by the fact that non-DATALOG-clauses can
be transformed (flattened) into DATALOG-clauses such that #-subsumption is
preserved.

The idea is that for every function symbol f of arity n, a new predicate f,
of arity n + 1 is introduced, where the first n arguments are the same as for
the function and the last is the result of the function. Formally, we have the
following definition and proposition.

Definition 3.26 (Flattening predicate (adapted from [27])) The flatten-
ing predicate f, associated with the function symbol f of arity n > 1 ' is the
predicate of arity n+ 1 defined by:

(X1, X, X) = X = f(X1, ., Xp)

The variable X is called the output argument of f.

11In the original version, constant symbols where not treated separately, thus removing the
additional condition n > 1 for the arity of the function symbol.

15



Definition 3.27 (Flattened clause [27]) Let C be a clause. The flattened
clause flat(C) is obtained from C by exhaustively applying the following rule:
Replace any occurrence of f/n(t1,...,tn) by a new variable X and add the literal
fo/n+ 1(t1, ..., tn, X) to the clause.

Example Let C = p(f(f(X))),q(f(X)) be a clause. The application of the
transformation rule yields:

p(f(f(X))), a(f(X)).
p(X1), q(f (X)), fp(f(X), X1).
p(Xl)’ q(X2)7 fp(X27X1)7 fp(X’ X2)'
)

So, flat(C) = p(X1), ¢(X2), fp(X2, X1), fp(X, X2).

Proposition 3.28 ([27]) Let C' and D be clauses.
C 9SUBS D iff flat(C') 9SUBS flat(D).

Proposition 3.28 allows us to flatten every clause before testing it for 6-

subsumption. That’s why, in the rest of this thesis, we will only talk about
DATALOG-clauses.
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4 State-of-the-art

4.1 Overview of the algorithms

In Table 1, the different algorithms under study are presented. The first part
shows which problem the algorithm can solve. The second part states the re-
strictions on the language or on the definition of #-subsumption. In the third
part, the feature used by the algorithms are shown.

Problem Restrictions Feature
S
o ks
. | A B _ | 3 A
= | A g o |z @
Al |2 ° p % g
N M ) g 9 + ~
m 2| & 2 3 - % @] O
) AN > g il = < ®? O - o 0
2ol &gle| v 2| | 2 % 512|328 |%
S |0 219 | »n | w» 2]z ] o O | £ %2 | O
AN EEH B
s S| S22 Rll2lclEl8lc|a|B|8|2)2|2) ¢
J 3} — o — 0 Q B=l
Mo |la|=|=||a|d|S|2|d|o|a|d|a|3|4&|am
CL X X X X
ST X X X X
DC X X X X
KL X X X X
GC X | x X X X | x X
Django X X X X X X
ALLTHETA X | x| x X X X | x x | x
FASY X X X (1)
oC X X X b'e

Table 1: Overview of the algorithms. (1) means that the algorithm assumes that the input

clauses have been preprocessed with that feature

4.2 CL [3]

The CL algorithm was one of the first #-subsumption algorithms developed
by C.-L. Chang and R. C.-T. Lee in 1971. 6-subsumption was essentially use
as a technique for reducing the search space in theorem provers, due to the
combinatorial explosion of generated clauses.

The CL algorithm uses a special resolution strategy to solve the #-subsumption
problem.

Let Dy, = ly,...ly,, then =Dy, = =ly,...,7l,. In the case C §SUBS D holds,
then CL derives a contradiction from C' A —D; in the other case, it does not.
Definition 4.1 (Binary resolvent) Let C' =ly,ls,...l, and D =13,1,,...,1,,,
and let there be i and j (1 < i < mn, 1 < j < m) such that l; is a positive
literal and l; is a negative literal and l; and l; are unifiable with unifier 0, then
R=100,..,1;i10,1i110,....1,0,110,...15_,0,1;,,0,...1;,0 is a binary resolvent of
C and D. Note that R can be the empty clause [].
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Algorithm 1: CL

Input: C, Dy,: two clauses
Output: true if C SUBS D, false otherwise
begin
U—{C}h
while [| €U and U # 0 do
U — { binary resolvents of C; and C5 |Cy € U,Cs € =Dy, };
if [] €U then
| SUBS « true;
end
SUBS « false ;
end
end

Theorem 4.2 ([11]) If n > m then ucy(n,m, k) > k(k +1)""2(m + k), oth-
erwise if n < m it holds ucr(n,m, k) > k(k+ 1)""*(k(m — n) + m),

Remark: the algorithm here is a slightly modified version of the original
one presented in [3] since binary resolution was used instead of full resolution.
In [11], it is shown that the worst-case complexity is reduced when using only
binary resolution.

4.3 ST [32]

ST has been developed by Rona B. Stillman in 1973. It was used in theorem
proving like the CL algorithm. Although faster than CL in numerous cases, it
suffers from being dependent on the order of literals in the clauses.

The ST algorithm is based on the generation of successive substitutions 6;.

Let C =1,...,1,. If 0; has been generated, we have for all j <14, ;0; € D.
Then, ST tries to find a ;41 = 0;p such that for all j <¢+1, [;6;44 € D. If
such a #; 1 cannot be found, backtracking is applied. The run time of ST is
essentially dependent on the ordering of literals in C.

Let C =1y,...,ln and D =1}, ...,1] . We define a Boolean function uni fy(L, M),
which returns true iff L and M are unifiable; if [ and I’ are unifiable, then a
variable, mgu(1,]’), which represents the most general unifier of [ and I’ is defined.

The Stillman algorithm then consists in the application of the boolean func-
tion ST (see below) on the input (1,1,¢€); C =14,...,1, and D =1}, ....I/ are to
be considered as global to ST.
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Algorithm 2: ST
function ST(¢, 7,0);
begin
let a be a variable local to ST ;
if j > |D| then
| return false ;
else
a7
while not unify(/;0, /) and a < |D| do
| a—a+1
end
if a > |D| then
| return false ;
else
i — mgul;60,1,);
if i =|C| or ST(i +1,1,60u;) then return true ;
else return ST(i,a+ 1,6);
end

end

end

Theorem 4.3 ([11]) The worst-case unification complexity of ST is:

o usr(n,m,k) = k(k];izl), fn>mandk >1

o usr(n,m,k) = %1{1) + ks, ifn<m and k> 1,

with s = min(m —n — 1,k — 1)

4.4 DC [11]

In 1985, G. Gottlob and A. Leitsch analysed the complexity of existing algo-
rithms and developed a new one with a better worse case complexity. The
main feature was that #-subsumption problems were decomposed in indepen-
dent smaller problems, thus reducing the overall complexity.

The formal definition of the algorithm follows.

Definition 4.4 ([11]) The literal graph L(C) = (Vi(c), Er(c)) of a clause
C = l,...,l, is defined by the set of vertices Vicy = {l1,...,ln} the set of
literals in C' and the set of edges Ep ¢y such that (1,I") € Epcy iff 1,I' € C,1 # 1
and there is a variable occurring both in | and l'.

Example Let

c :p(X, a),p(b,X), Q(X)7
p(Z1, Zs),
p(U,V),p(V,W),p(W,T),p(T,U)

The literal graph of C' is L(C) shown in figure Fig. 1.
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(X, a)

(21, Z>)
O

pU, V)  p(V,W)

p(T,U) p(W,T)

Figure 1: Literal graph of the clause C.

Definition 4.5 (connected components (graph theory)) In an undirected
graph, a connected component or component is a mazimal connected subgraph.

In an undirected graph G, two vertices u and v are called connected if G
contains a path from u to v.

Generally, the clause C' is decomposed into different independent groups of
subclauses. These groups can be identified with the connected components of
the graph L(C).

In figure Fig. 1, there are 3 components, namely:

b p(X,a),p(b,X),q(X)
o p(ZhZQ)
e p(U, V),p(V, W),p(VV, T),p(T, U)

In [11] it is proved that if C is a clauses where L(C) has the connected
components Gy, ..., Gi then C 6SUBS D iff for all i = 1,...,k : V5, 6SUBS D.

Definition 4.6 A clause is called simple if for all components G; of L(C) it
holds that |var(Va,)| <1 or [Vig,)| = 1.

In other words, a clause is simple if each of the components of its literal
graph has either only one variable or consist of only one vertex.

The algorithm DC (division into components) works as follows. First we
test Cyimp OSUBS D for the maximal subclause Cyipmyp of C, which is simple (the
graph L(Cg;mp) itself may consist of several components) because this test is
polynomial. If G; is a component such that Vi, is not simple, we select a literal
Liop € Vi, having the maximal number of variables that also occur in other
literals. (By storing the clauses appropriately, L;,, can be selected in linear
time with respect to |Vg,|.) More exactly, we define L,,, as the first literal L
in C' such that L has a maximal number of variables that also occur in other
literals and var({L}) > 2 (L exists because Vg, is not simple).
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After selection of Ly, from Vg,, we proceed as follows: If a substitution ¢
is found such that L,,0 € D, we process the clause Vi, 0 — {Lyop }0, subjecting
it to the same analysis as defined above (recursion).

Algorithm 3: DC

function DC(C, D)// Tests the Predicate C 6SUBS D

Input: C, D: two clauses

Output: true if C' 6SUBS D, false otherwise

begin

construct L(C);

identify Cs;mp and let G,y be the connected components of

L(Climp);

if not Cgjmp 0SUBS D then

return false // we apply a polynomial decision algorithm

e.g. ST

else if For All G & Ggimp TC(V, D) then return true ;

else return false ;

end

function TC(E,D) // TC means "test components"

Input: E: a set of literals

D: a clause

Output: true if £ §SUBS D, false otherwise

begin
select Liop from F;
a<—1;
repeat
while ¢ < |D| and not unify (L, K,) do a «— a+1;
if a > |D| then sub « false ;
else
if |E| =1 then sub « true ;
else
M ngu(Ltopa Ka) ;
if DC(Eu — {Liop i, D) then sub «— true ;
else sub « false ;
end
end
a<—a+1;

until a > |D| or sub ;
return sub;
end

4.5 KL [18]

In 1994, Kietz and Liibbe brought the idea by Gottlob and Leitsch to a further
level. They studied the complexity of -subsumption by looking at loosely con-
nected componentes, which they call k-locals. They show that #-subsumption
“is efficiently computable for some resonably small k7 [18]. Formally, k-locals
are defined as follows:

Definition 4.7 (based on [18], corrected) Let C = Cppr,CnonNpeT and
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D be two clauses, with Cpgr the maximal subclause of C which deterministically
0-subsumes C and CNONDET =C \ CDET- LOCl g CNONDET S a non-
determinate local of C iff (var(LOC;)\var(Cpgr))war(Cyonper \LOC;) =0
and there does not exist a LOC; C LOC; (*) which is also a non-determinate
local of C. A non-determinate local LOC; is a k-local for a constant k iff
k > min(|(var(LOC;) \var(Cpgr))|, |ILOC;|). A clause is k-local iff every non-
determinate local is a k-local.

In other words, a non-determinate local is a subclause which do not share
variables with the rest of the clause, except with literals that can be matched
deterministically.

In the original version of definition 4.7, the set inclusion marked by (*) was
LOC; O LOC;, which is obviously wrong since the one and only nondeterminate
local of DNONDET would then be DNONDET itself.

Example Let C = »(X,Y),p(Y,2),p(Z,T),(T,Z),p(U,V),q(V,W),p(M, N)
and D = r(a,b),p(b, ¢), p(b,d),q(a,b), q(b, d).
Then Cpgr = p(X,Y) and
CNONDET = p(Y, Z),p(Z, T),p(T, Z),p(U7 V)7 Q(Va W),p(M, N)
The non-determinate locals are:

LoC, = p(Y, Z),p(Z, T)7p(T7 Z) (1)
LOCy; = p(Ua V)a Q(V7 W) (2)
LOC; = p(M,N) 3)

LOC} is a 2-local, but not a 1-local, since |var(LOC1) \ Cpgr| = 2; LOC, is a
2-local, but not a 1-local, since |LOCy| = 2; and LOC} is a 1-local and also a
2-local.

Basically the only improvement to the algorithm by Gottlob and Leitsch [11]
is that the k-locals are the connected components of the literal-graph (defined
by Gottlob and Leitsch) after the deterministic subsumption step and not the
connected components of the literal-graph of the initial clause.

For example, with the same clause C of the previous example, the connected
components would be

G = T(X,Y),p(Y, Z),p(Z7T),p(T,Z) (4)
Gy = p(U7 V)7 q(v’ W) (5)
4.6 GC [28]

In 1996, Scheffer et al. proposed a new method for solving the #-subsumption
problem. Their work is twofold.

First, they borrow the idea of reducing matching candidates from the similar
problem of graph isomorphism. They give a new characterisation of the set of
clauses that can be tested for subsumption in polynomial time.

Second, they map the subsumption problem to the clique problem (i.e.,
finding the maximal clique in a graph). they define a highly optimized version
of an algorithm for the clique problem, tuning it by knowing in advance which
is the size of the clique to be found (which is the size of the first clause of the
f-subsumption problem, as we will see).
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4.6.1 Contexts

The context of a literal is described by occurrences of identical variables (or
constants) or chains of such occurrences. It is defined for a fixed depth. The
intuition is that, for each literal f, we look at the literals that are linked to f,
by chains of variables. The idea is that a literal I; can only be matched to a
literal [ if its context is included in the context of ;.

For example C' = on(X,Y),on(Y, Z) cannot subsume D = on(a,b), on(c,d)
because the literal on(X,Y) shares the variable Y with the literal on(Y, Z)
whereas on(a, b) does not share anything with on(c, d).

We will now define the context of literals formally based on [28].

Definition 4.8 (Occurrence Graph [28]) The occurrence graph of a clause
C=l,...,l, is the directed edge-labeled graph (Vo, Ec) with

o vertices Vo = {l1,...,ln} and

e labeled edges Ec such that (I;, (m;,7;),l;) € Ec iff i[m] = lj[7;], with
l; #1; or m; # mj. In other words, there is a term t that occurs in literal
l; at argument position m; and in literal l; at argument position 7;. l; and
l; can refer to the same literal. The term t must occur twice, i.e., ifi = j,
we cannot have m; = ;.

Example Let C =p(X,Y),q(Y,Z),r(Z). The occurrence graph of C is repre-
sented in Figure 2.

Figure 2: Occurrence graph of the clause C.

Definition 4.9 (Context [28]) The context of depth d of a literal I;, in a
clause C, written con(l;,,d,C), is the set of alternating sequenceses of predicate
symbols and position pairs such that

/! /

[Pz‘m (Wio,W¢1)7Pi1, (WilaW¢2),piza--~apid,1, (Wid,laﬁd)mid] S Con(lioadv C)
iff the following walk
li07 (ﬂ'io , 7721 )7 li1 ) <7ri1 ) W£2)7 "'lid—l ) (ﬂ-id—l ) ng), lid
exists in the occurrence graph of C, and each p; is the predicate symbol of literal

lj. (Note that l; = l;s is possible too.)
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Example Let C = p(X,Y),q(Y,Z),r(Z). Then the context of depth 2 of literal
p(X,Y) is

COTL(p(X7 Y)v 2, C) = {[(qv 2, 1)» (7‘, 2, 1)} ) [(‘L 2, 1)7 (p7 L, 2)]}

The first sequence means that literal p(X,Y) is linked by a variable at position
2 in p(X,Y) (namely Y) to a variable at position 1 in some literal [, with
predicate symbol ¢; I, in turn is linked by a variable at position 2 (namely Z)
to a variable at position 1 in some literal with predicate symbol 7.

The second sequence is the round trip from p(X,Y") over ¢(Y, Z) back to
p(X,Y).

Proposition 4.10 Let Iy € C,l} € D be literals, let the depth d be any nat-
ural number. Let p be a matcher of Iy and lj: lijp = la. If con(l1,d,C) €
con(ly,d, D), then there is no substitution 6 such that Cuf C D.

In other words, a literal need not be matched against another literal if its
context cannot be embedded in the other literal’s context. In [28], there is a
proof-sketch of Proposition 4.10, but to the best of our knowledge, a complete
proof does not exist yet. For completeness, we provide here a proof. This proof
is not based on the proof-sketch since our formalism is not exactly the same.

Proof Let C' and D be clauses, I; € C and I € D be literals such that there
is a p so that Iy = Ij. Assume con(ly,d,C) € con(l},d, D) and assume (ad
absurbum) that there is a substitution 6 such that Cuf C D.

Let P = [p1, (71, 75), D2, (T2, 75), ..., Da—1, (Ta—1,7), pa] € con(ly,d,C').

Then, there is a sequence of literals Iy, ...,I; in C such that for all j € {2..d}
pred(l;) = pj and I [mj 1] = I;[5].

Thus, for all j € {2..d}, we have (I;_1[mj—1])ud = (I;[7}]) 0.

Thus, (lj—1p0)[7;—1] = ([ju0)[7] for j € {2..d}.

Since Cub C D, for all j € {1..d}: Ijuf € D (and 1 pub = 17).

The sequence of literals 1440, ...,lqu0 is in D and such that (l;_qp0)[7—1] =
(Ljp0)[m}] for j € {2..d} and l1puf = 13,

thus the walk lyuf, (11, 75), lapb, (72, 75), l3p, ..., la—1 10, (Tg—1, 7)), lapb is in
the occurrence graph of D, starting at lyuf =1].

And thus [p1, (71, 7),p2, (72, 78), ..., Pa—1, (Ta—1,7y),pa] € con(lipd,d,D) =
con(la,d, D).

Thus, con(ly,d,C) C con(ds,d, D).

Which contradicts with the assumption. |

Definition 4.11 (Substitution Graph) The substitution graph of two clauses
C=1l,la,....ly and D =11,1},...,1! is an undirected graph (V, E) such that

m

o The vertices V.= {(0,i) € T(2)®> xN |1 <i<nAl; € CAI €
D 1,60 = 1"} are all matching substitutions from any term of C to some
term in D. The substitutions are augmented with the number of the orig-
inating literal in C (called layer) because each clique must contain only
one matching substitution for each literal of C.

o The edges E = {((61,11), (02,i2)) € V x V| 8102 = 6261} are the compat-
ibility of the substitutions.

Definition 4.12 (Clique) A clique in an undirected graph G is a set of ver-
tices V' such that for every two wvertices in V', there exists an edge connecting
the two.
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4.6.2 The algorithm

Algorithm 4: ONETHETA
function OneTheta(C, D)
input : C, D two clauses
output: true if C' 6SUBS D

false otherwise

1 begin
Match as many literals of C' deterministically to literals of D;
Substitute C' with the substitution found;

if some literal of C' does not match any literal of D then
| return false

end

end

2 begin

Match as many literals of C' context based deterministically to literals
of D;

Substitute D with the substitution found;

if some literals of C' does not match any literal of D then
| return false

end

end

3 begin

Set up the substitution graph (Vo,p, Ec.p);

Delete all nodes (i,1) € Vo p with Lp=1' (l; € C,I" € D) and
con(l;,d,C) € con(l',d, D);

return OneClique (Vo p, Ec p,|C|);

end

The Algorithm 4 combines the benefit of deterministic matching and the
clique search. Clauses that can be tested context based deterministically are
tested in polynomial time without any search. In other cases, the algorithm
matches as many literals deterministically as possible, and sets up the remaining
substitution graph. It follows from proposition 4.10 that we can delete nodes
that match literals of C to literal of D which do not possess at least the same
context.The remaining graph is searched for a clique with a highly optimized
algorithm presented in Algorithm 5.
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Algorithm 5: ONECLIQUE(V, E, k)
input : (V| E): a graph with vertices of the form (6, )
k: the size of the clique to be found
output: true if a clique of size k£ has been found
false otherwise

1 begin

2 if k£ =0 then return true ;

3 if |{i | (6;,7) € V}| < k then return false ;

4 Let v € V be any node;

5 if ONECLIQUE(V N neighborsg(v), E,k — 1) then
6 ‘ return true ;

7 else if ONECLIQUE(V\{v}, E, k) then

8 ‘ return true ;

9

else
10 ‘ return false ;
11 end
12 end

The algorithm works essentially like this: pick the first node, search its
neighbors for a clique including it, and on failure, search for a clique without it.

The main difference to a normal clique search algorithm is line 3. Additional
knowledge about the subsumption problem is used to identify a class of regions
of the search space that cannot contain solutions. No substitution can contain
two matching substitutions that match the same literal in C to different literals
in D (each variable X in C' has to match one X6 in D by definition). Thus,
no clique can contain two nodes augmented with equal numbers of originating
literals. Therefore the algorithm can be stopped if the number of different
augmented numbers in the current V is less than the number of nodes that are
missing to make up a clique of the desired size.

4.6.3 Bugs of the implementation

Scheffer et al. have kindly provided the implementation of their algorithm,
as well as the source code. Unfortunately, they do not maintain the source
code anymore, and it was not possible to fix the bugs that the implementation
contains by ourselves.

Here are two examples showing the problem, where #SUBS “C denotes the
GC implementation of §-subsumption.

e Not correct: p(X, X),p(Y,Y). NOT SUBS ““p(a, a). Since the first clause
subsumes the other by 8 = {X +— a,Y +— a}.

e Correct: p(X, X),p(Y, X). 0SUBS “p(a, a). Surprisingly, on this example
the implementation works correctly.

Nonetheless, we keep GC in our experimental evaluation. It must be treated
specially since it is not complete. None of the example tested showed that it is
not sound, so we believe that the implementation is sound but incomplete.
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4.7 Django [20]

Django is a system developed by Maloberti et al. It maps the #-subsumption
problem into a binary CSP and solves the CSP using different CS methods.

4.7.1 CSP
Definition 4.13 (Binary CSP) A binary CSP is a tuple (x,§), where

o x ={X1,...,Xn} is a set of variables. Each X; is associated with a domain
dom(X;) ={ai,,...ai, }, which is the set of all possible values of X;

o { ={C1,...,Cn} is a set of binary constraints. Each constraint is asso-
ciated with a set arg(C;) = {X;, Xy} C x, which are the two variables
involve in the constraint C;.

Constraints can be seen as a set of possible assignment to the variables.
As we deal with binary constraints only (involving only 2 variables), a
constraint is a set of pairs: C; = {(a1,1,a12),...,(an,1,an2)}. Further,
we restrict this set to be finite.

Example Consider the problem of having 3 variables which can take the values
a or b, and the constraint that each variable must have a different value. The
binary CSP for that problem is (x, ), where

o x ={X1, Xo, X3}, with dom(X;) = dom(Xs3) = dom(X3) = {a,b}.
(] f = {01702,03} with
— arg(Ch) = {X1, X2}, C1 ={(a,b),(b,a)},

- arg(CQ) - {X23X3}7 Coy = {(aab)v (bv a)}7
- CLTg(Cg) = {X?nXl}» Cs = {(aab)7 (b’ a)}v

4.7.2 Transformation of the #-subsumption-problem into a CS-problem

Let C and D be clauses, with C' = 1,1, ...,1, where [; = pi(ail,...,aiki)7 a;,
DATALOG-Terms and D = [, 15, ...,1;, where I} = pj(a; , ..., agki), a;, constant
DATALOG-Terms. /

Now, the following CSP (x,&)c.p is defined:

e The set of variables: x = {V}, },ec. Each literal [; occurring in C give
raise to a constrained variable Y, termed dual variable, as opposite to the
variables in C referred to as primal variables.

e dom(Y},) = {l; € D |30 -1;0 = [;}. The domain of a dual variable ¥}, is

i

the set of all literals in D that matches the literal [;.

e The set of constraints:
E = {C(}/lN}/LJ)}YLl,YYl] EX.,E|7F7;,7T_7‘-11' |—7ri-|:l_7~ |—7T_7'-| A l; rwi“GEV

For each pair (Y7,,Y;;) (possibly ¢ = j) such that [; and I; share at least 1
variable, a constraint Cy, y, ) is defined:
i

Covi i) = {UhsUh,) € D x D | 30.040 = 1y, ALO =1;,)}
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with arg(Cyli’ylj) = (Y3,,Y;,). The constraints in the dual CSP, termed
dual constraints, are constructed in such a way that literals in C' must be
mapped onto literals in D so that each (primal) variable in C' is mapped
onto a single constant or variable in D. The constaint enforces that literals
in C that share a variable are mapped to literals in D such that the shared
variable is mapped to the same term in D.

Example Let
o O =1t(Xo),p(Xo, X1),q(Xo, X2, X3) and

o D= t(a0)7p(a/07 al)ap(ala a2)7 Q(a07a27a3)7q(a07a17a3)~

Then, for the subsumption problem instance ”376.C 6SUBS D”, the following
CSP is defined:

e Set of variables: X = {)/t(Xo)a Yp(Xo,X1)7Yq(X0,X27X3)}

e With domains:

— dom(Yz.1) = {t(ao)}
— dom(Y}.2) = {p(ao,a1),p(ai,az)}
— dom(Yy.3) = {q(ao, az, a3),q(ao, a1, a3)}

e Three constraints are defined:

— C1 = {(t(ao),p(ao, a1))}, with arg(C1) = (Yi(xo)s Yp(x0,x1))
— Cy = {(t(ao), q(ao, az,a3)), (t(ao), q(ao, a1, a3))}, with arg(Cz) = (Yixy), Ya(x0,X2,Xs))

— O3 = {(p(ao,a1),q(ao, az,as)), (p(ao, a1),q(ao, a1, as))}, with arg(Cs) =
(Yp(XoyXl)vyvq(Xo,X2,X3))

Theorem 4.14 7370-C 0SUBS D” admits a solution iff (x,€)c,p is satisfiable.

Proof (=) Let C' SUBS D by the substitution § = {X; — a;}. Then, 3(01,...,0,) €
x_ymatch(C,l;, D), n = |C| such that all §; are pairwise strongly compatible
(Eisinger). Let S = (Y}, = 1;0;)i=1..n»- We will prove that S is a solution for
(x,&)e.p-

e Trivially, 1,0, € dom(Y},).

e For each constraint C(yli i) in £, we must prove that (1;6;,1,0;) € C(yh Yi,)»
i.e., we must prove that 3 - i = 1;0; A ljpn = 1;0;. Let’s take u = 6,0;.
We have li = pi(ti,h '."tivn’i)7
then 1191 = pl-(tl-vlé)i, cony t“h&)
and lﬁlﬁj = pi(ti’lﬁiej, cony tl’nﬁﬂj)

If ¢; 1, is a constant, t; 10; = t;10:0;.

If ¢; 1, is a variable, then ¢; , € dom(6;).

Since 6; and 6; are strongly compatible,

we have VX € dom(6;) - X0, = X6;,

thus VX € dom(@z) - X0,0; = XGJ-GZ-,

thus VX € dom(6;) - X6, = X6,0; (idempotency)

thus VX € dom(6;) - X6, = X0,0; (strong compatibility)

Thus, lﬁzﬁj = lZHz

Analogously, 1;0,0; = 1;6;. Thus, (1,0;,1;6,) € C()/li71/1j). Thus, S satisfies
each constraint in &.
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Thus § is a solution for (x,&)c,p.

(<) Let (x,§)c,p be satisfiable. Then there exists a solution and let S =
(Y1, = [} )ief1..ny be asolution for (x,€)c,p. The aim is to construct a substitu-
tion p such that Cu C D. Let uq, ..., 4y, be substitutions defined as follows: each
i is the most general matcher of I; and I} (it must exist since If € Dom(Y7,)):
Lig; = 1¥. Each p; is of the form p; = {XZ']C — a;k}ke{l_ni}. For each two
substitutions y; and p; (4,5 € {1..n}), two cases arises:

o Case 1: Vk € {L.n;},k" € {l.n;}- X7 # X3,,. Then p; and p; are
strongly compatible.

o Case 2: 3k € {l.n;}, k" € {l.n;}- X7, = X?,,. Thus, [; and [; share
(at least) a variable. Thus there is a constraint Cy, y, ) € £. Since S is

ir%)

and thus 30" - [;0* = I7 N 1;0° =17, 0" is of the form 6" = { X[ }rec(1.nv)-
Wlog. let X2y = X?, = X{,.., X7, = X7, = X, be the variables
shared by {; and I; (m > 1,m < n;,m < nj,m < n*). Then, for each
ke {l.m}: Xju, = X30" since Liu; = ;0" and Xj;pu; = X0 since
ljp; = 1;0*. Thus all variables shared by [; and [; are mapped to the same
term. Thus p; and p; are strongly compatible: p;p; = pjp; (since p; and
; are most general matchers and C' and D are variable disjoint).

a solution of (x,€)c,p, the constraint is satisfied and (I7,17) € Cy;, Vi)

Thus, Cu C D, with g = pq...4,, (Eisinger). |

4.7.3 Additional feature of Django

Another data structure is defined to restrict the search space. To each literal
in C and D is associated a signature (1-SIG and 2-SIG). 1-SIG is the same as
graph context with depth 1 (see Section 4.6).

Definition 4.15 (2-SIG) Let !y be a literal of a clause C. The 2-signature (2-
SIG) associated with Iy is the set of tuples (p, (711,m1,2), (W21, m2,2)) such that
there exist a literal ly in C so that l1[m11] = la[me.1]| and l1[m 2] = l2[m22].

In other words, the first literal shares 2 variables (or constants) with another
literal, and the positions of these variables are encoded in the 2-SIG.

Example Let C = p(X,Y),q(Y, X) be a clause. Then the 2-SIG of p(X,Y) is
{(g,(1,2),(2,1))}, meaning that p(X,Y") shares two variables with a literal I,
with predicate symbol ¢ such that the first variable of p(X,Y) is the second of
l4 and the second variable of p(X,Y) is the first of I,.

A necessary condition for a literal [ in C to be mapped onto a literal I’ in D
is that the 2-signature associated with [ is included in that of I’.

Django uses standard well known reduction and search procedures to solve
the CSP problem obtained from the f-subsumption problem. We will give a
brief overview of that procedure. A detailed description can be found in [33].
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4.7.4 Reduction Procedures

Reduction procedures reduce the variable domains, thereby transforming a CSP
into an equivalent one of lower complexity.

Definition 4.16 (2-Consistency) Let X be a constraint variable and let v
denote a value in dom(X). The value v is 2-consistent if, for every variable
Y such that there exists a constraint C' with X,Y € arg(C), there exists some
value w in dom(Y") such that (v,w) € C. w is called the support of v wrt. C.

Example Consider the binary CSP (x,£), where

e The set of variablesis x = {X,Y, Z}, with dom(X) = dom(Y') = dom(Z) =
{a7 b’ C7d7 6’ f’g}'

e The set of constraints is £ = {C, Ca} with
- arg(C'l) = {X7Y}’ Cr = {(a’b)a (Cv d)}v
- aTg(CQ) = {X7 Z}7 Cy = {(ave)a (fvg)}

Value a is consistent for X and is supported by b for Y and e for Z. Value c is
not consistent.

All non 2-consistent values for a variable X can soundly be removed from
dom(X).

Definition 4.17 (Consistency of partial assignments) A partial assignment
0 assigning a value to a subset xg of the constraint variables x, is consistent if
it violates no constraint, i.e., it satisfies all constraints defined on (a subset of)
X6-

Definition 4.18 (k-Consistency) A CSP is k-consistent iff for any consis-
tent assignment 0 over k — 1 wvariables, for any variables X not in xg, there
exists a value ax such that ' = 0 U {X — ax} is consistent.

If a consistent partial assignment over some k — 1 variables in a CSP cannot
be extended to another variable, then this partial assignment can soundly be
removed from the assignment search space. This pruning technique is termed
k-consistency.

4.7.5 Search Procedures

CSP algorithms construct an assignment solution {X;/a;} through a depth first
exploration of the assignment space (the substitution tree). The nodes are
variables X; with edges corresponding to the candidate value a; tentatively
assigned to X;. On each assignment consistency is checked; on failure, another
candidate value for the current node is considered; if no other value is available,
the search is backtracked.

Approaches to improve the backtracking procedure are look-back algorithms
like:

e Conflict directed BackJumping
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Look-back algorithms try to avoid the repeated exploration of the same substi-
tution subtree on backtracking.

Approaches to improve the choice of the next variable and candidate value
to consider are look-ahead like:

e Constraint propagation
e Forward checking
e Maintaining Arc Consistency

Look-ahead algorithms try to minimize the number of assignments considered.

Dynamic or static variable ordering can be used to. Dynamic variable or-
dering is generally based on the first fail principle, favoring the variable with
the smallest domain.

4.7.6 The implementation

The authors of Django have implemented their algorithm in C.

4.7.7 Bugs in the implementation

During the experimental evaluation, the implementation shows some strange
behaviour on some example. After reducing the examples to a minimal example,
and with correspondence with the authors of Django, it shows up, that there
are 2 bugs in their implementation.

The first bug deals with 2-Signatures. The following examples show the
problem ( 9SUBS 499° stands for the implementation of django):

e Not correct: p(X,Y), p(X, X) NOT SUBS Pi9m9°p(q, a). But obviously the
first clause subsumes the second by § = {X — a,Y — a}.

e Correct: p(X,Y),p(X, Z) 6SUBS Piengop(a, a).

So, Django with 2-Signatures is not soundly implemented. Thus, we used a
version of Django without 2-Signatures.

The second bug has to do with the arity of the predicates. If the arity is
3 or greater, then Django does not work properly, and the soundness is lost.
Consider the following examples:

e Not correct: ac(A0, parked, S4), ac(Al, airborne, S4) §SUBS Piange
ac(a0, airborne, s1), ac(al, parked, s4). But the first clause does not sub-
sume the second.

e Correct: acparked(AO, S4)7 ACqirborne (A]., 54) NOT SUBS Django
ACqirborne (a0, 81), acpariea(al, s4). On this example, the implementation
works correctly.

Especially in the AIRPORT domain, there are predicates with arity greater
than 2. So the comparison is not 100% fair, and the greater speed of execu-
tion of Django on some examples may partly due to this bug that renders the
implementation of Django not sound.
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4.8 Fastheta [6], [9]

Ferilli et al. developed an algorithm that searches all solutions to a given 6-
subsumption problem. They define a new concept termed multi-substitution, to
overcome the need of backtracking. Basically, a multi-substitution is a space-
efficient way to store multiple substitutions in a single structure.

In essence, their search is close to a breadth-first search, with the difference
of better storage of partial solutions.

4.8.1 Definitions

Definition 4.19 (Multibinding, Multi-substitution) (/9/)

A mutlibinding is denoted by X — T, where X is a variable and T is a non-
empty set of constants. A multi-substitution is a non-empty set of multibindings
0={X1—-"T,...X, = T,}, whereVi # j: X; # X;.

Multi-substitutions will be noted ©, =, or X.

Definition 4.20 (Split) (/9])

Given a multi-substitution © = {X; — Ty,..., X,, — Ty}, split(©) is the set
of all substitutions represented by: split(0) = {{X1 — ¢ ,...., Xn — ¢, } | V=
lomn:ey, €Ty Ni=1..|Tk|}.

Definition 4.21 (Union of multi-substitutions) (/9/)
The union of two multi-substitutions ©" = {X — T', X1 — T1,..., X, = T}
and " ={X -T". X, - T,..., X,, — T,} is the multi-substitution defined as

@/ U @” = {y — T/ U TH} U {Xz — Ti}lgign

Note that the two input multi-substitutions must be defined on the same set
of variables and must differ in at most one multibinding; otherwise © L1 ©" is
undefined.

4.8.2 Algorithms

The next definitions are based on algorithms that follow.

Definition 4.22 (Merge) (/9])
Given a set S of multi-substitutions on the same variables, merge(S) is the
set of multi-substitutions obtained according to Algorithm 6.

Algorithm 6: merge(S)
input : S: a set of multi-substitutions
output: ...
begin
while 30',0" € S such that ©' # ©" and ©' UO" = E is defined do
|5 (S\{0.0"}) U{E}
end
return S;
end
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Definition 4.23 (/9])

The intersection of two multi-substitutions ® = {X; — S1,..., Xp — Sp, Y1 —
Snt1s s Y = Spamt and © = {X; - T1, ... X, > T, Z1 — Zpy1, .., 2 —
Toyi}, where n,m,l > 0 and Vj, k : Y; # Zy, is the multi-substitution defined
as:

YN0 ={X; = 8iNTi}iz1.n U{Y; = Snij}iz=1.m U{Zr — Tk tr=1...
iff Vi=1..n:8;,NT; #0; otherwise it is undefined.

The M operator can be extended to the case of sets of multi-substitutions.
Specifically, given two sets of multi-substitutions & and 7, their intersection is
defined as the set of multi-substitutions obtained as follows:

SNT={N6e|seS,0eT}

Proposition 4.24 (/9])
Let C =1y,...,1, and Vi = 1..n : T; = merge(match(C,l;, D)); let S, = T4
andVi=2..n:8; =8;_1M7T;. C 0-subsumes D iff S, # 0.

This leads to the #-subsumption procedure reported in Algorithm 7.
Algorithm 7: matching(C, D)

Input: C =ly,la,....0,;D 1], 1,...,10,: two clauses
begin

Let S; = merge(match(C,ly, D));

for 1 — 2 to n do

| Si«— Si—1 Mmerge(match(C,l;, D));

end

return (S, # 0);
end

4.8.3 Adapting clauses with constants to work with FAS?¢

The algorithm developed by Ferilli et al. put some constraints on the input
clauses. Firstly, the first clause must only contain variables as arguments of
the predicates. Secondly, the second clause must only contain constants as
arguments of the predicates.

The second constraint does not restrain the number of clauses that the al-
gorithm can deal with.

The first constraint is more restrictive. But Ferilli et al. have proposed a
workaround. If the first clause contains a constant ¢, one has to replace all the
occurrences of ¢ by a fresh variable C, and add a literal ¢(C) to the first and ¢(c)
(¢/1 is a new predicate) to the second clause. By doing this, it is guaranteed
that the variable C is always bound to the constant c.

For example if the first clause is

C = p(X, Cl), Q(ba Y)
and the second

D = p(a, X)v Q(ba C)
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then C' becomes
C" =p(X,A),q(B,Y),a(A),b(B)

and D becomes
D' =p(a,z),q(b,c),a(a),b(b)

Complexity issues: For each constant in the first clause, one new variable
and one new predicate is added to each clause. The new predicate can only be
matched to the corresponding predicate in the other clause. Thus, in the best
case, already only a logarithmic increase in the time complexity would arise
(since searching an element in a list is done in O(logn)).

5 New approaches

5.1 AllTheta [17]

The general algorithm stays the same as in Algorithm 4 (Algorithm of GC)
except that the clique search is replaced by the ALLCLIQUE algorithm.

The search of all the cliques is done by a specialized depth-first-search. Recall
Definition 4.11 of a substitution graph: The vertices are all matching substitu-
tions from any term of the first clause C' to some term in second clause D. Each
vertice is augmented with the number of the originating literal, which is called
the layer.

The graph can thus been represented as successive layers of vertices, where
we call the top of the graph the first layer, and the bottom the last layer.

The depth-first search works as follows. Starting from layer 1, the graph is
traversed from top to bottom by visiting each layer successively. At each node,
the path which has been taken from the first layer to that node is memorised.
Each node is check for validity if visited. We say that a node is valid if following
condition is satisfied:

e The node must have at least one outgoing edge going into each layer,
except the layer in which it is;

If a node is not valid when it is visited, it is completely removed from the graph
as well as all the edges involving that node, and the search continues with the
previously visited node.

We will now present the algorithm in a formal way.

Algorithm 8: ALLCLIQUE(V, E)

input : V| F the vertices and edges of the substitution graph for clauses
Z1 and ZQ
output: The set of all cliques of size |Z1]| in the graph (V, E)
begin
paths «— (0;
currPath « 0;
foreach v = (u,1) € V do
| paths « findPath(V, E, paths, v, currPath, 1);
end
return paths;
end
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The algorithm ALLCLIQUES initializes the search. It selects the nodes from
the first layer and performs the path search from that node through the graph
to the last layer.

Algorithm 9: findPath(V, E, paths, v, currPath, i)
input : [inout] (V, E): The graph
[inout] paths: paths from first to last layer forming a clique
v: the currently visited node
currPath: the current path from first layer to current layer
i: current layer
output: Paths from first to last layer forming a clique

1 begin

2 if valid(v) then

3 currPath — currPath U {v};

4 if i = |Z;| then

5 ‘ paths «— paths U {currPath};

6 else

7 foreach u = (¢/,i+ 1) € V with (u,v) € E do
8 if clique(u,currPath) then

9 ‘ findPath(V,FE,paths,u,currPath,i+1);
10 end
11 end
12 end
13 else

14 | V=V {v}

15 end

16 return paths;

17 end

Experimental evaluations have shown that the construction of the substitu-
tion graph is costly. To overcome this problem, the graph can be constructed
progressively layer by layer. At each step in this construction process, the nodes
are checked for validity, where the validity for a node is slightly changed:

e A valid node must have at least one outgoing edge going into each previ-
ously constructed layer, except the layer in which it is;

5.2 Object-contexts

In the following section, we denote as objects the variables and constants of
clauses.

This approach is a similar approach as graph-context. The difference is that
the vertives of the created occurrence graph are the objects and not the literals.

Definition 5.1 (Object Occurrence Graph) The object occurrence graph
for a clause C is a labelled directed graph GC = (V, E, [), where

o the vertices V are objects of C, denoted as Obj(C);

o the labeled edges E are such that (01,09, (m1, 72, f)) € E iff (01,02) €
V x V and there is a literal | in C based on function symbol f such that

l[mi] = l[ma];
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e the labeling function [ : V — 2%F such that [(0) = {f/1 € S | f/1(0) €
C}, i.e., [ associates each object o with the set of unary function symbols
f/1 this object belongs to.

Definition 5.2 (Object Context) Let C' be a clause, o € Obj(C) and d €
N,d > 0. The object context of depth d of an object o in C, written objcon(o, C,d),
is a set of alternatinsequenceses of labels and tuples of the form (m, f,7') such
that

[l(oh)’ (7Ti17fi1,7721)7 l(0i2>7 (Trizv fi277r’£2)’ ) l(oidfl)’ (ﬂ-id’ fiwﬂ-;d)’ l(oid)] € Objcon(07 07 d)

iff the following walk exists in GC

o, (ﬂ'i]v.fiwﬂql;l)a Oiy (Trizv fi277.r£2)a w0 Oy 15 (ﬂ-idv fidvﬂgd)yoid

Example Let C = p(X,Y),p(Y,t),r(X),s(X),q(Y),u(Y). Then the object
context of variable X of depth 1 is

ObjCOTL(X, 1, C) = {[{Tv 5}7 (Lpu 2)7 {Q7u}]}

and the object context of depth 2 of X is

objeon(X,2,C) = {[{r,s}, (1, p,2),{q,u}, (1,p,2), {}], {r, s}, (1, p,2), {q, u}, (2,p, 1), {r, s}]}

Proposition 5.3 Let C' and D be clauses, X € var(C), o € Obj(D), and
d € N,d > 0. Let there be a matching substitution u such that Xpu = o. If
objecon(X,C,d) € objcon(o, D,d) then there exists no substitution 6 such that
Cub C D.

In other words, a variable X in C need not be matched against an object o
in D if the variable’s context cannot be embedded in the object’s context.

The algorithm for finding the substitutions is based on the idea of [28], and
is presented in Algorithm 10.
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Algorithm 10: OBJCON-ALLTHETA

function OneTheta(C, D)

input : C, D two clauses

output: true if C' 6SUBS D
false otherwise

begin
Match as many literals of C' deterministically to literals of D;
Substitute C' with the substitution found;

if some literal of C' does not match any literal of D then
| return false

end

end

begin

Match as many literals of C' object context based deterministically to
literals of D;

Substitute D with the substitution found;

if some literals of C does not match any literal of D then
| return false

end

end

begin

Set up the substitution graph (Vo p, Ec,p);

Delete all nodes (i, ¢) € Vo,p with Xy = o (for some

X € wvar(C),o0 € Obj(D)) such that objcon(X,d,C) & objcon(o,d, D);
return OneClique (Vo,p, Ec,p, |C|);

end

5.2.1 Bugs in the implementation

The implementation has kindly be given to us by Eldar Karabaev. The exper-
imental evaluation shows that on some rare examples, the implementation is
not sound, meaning that the implementation detects that a clause #-subsumes
another while they do not.

The following examples show the problem ( SUBS °%7¢°" stands for the im-
plementation of objcon):

e Not correct: p(X, X) 6SUBS °%7¢°"p(a, b), p(b, a). Obviously, the first clause
does not subsume the second.

e Correct: p(X, X) NOT OSUBS °¥7"p(c, b), p(b, a).

This shows that the implementation is not sound. The experimental evalu-
ation did not show any case in which objcon was not complete, so we believe
that it is complete.

6 Application domains

6.1 Planning

We adopt here a formalism near to the one presented in [15] which is based on the
conjunctive fluent calculus. A more general, and widely used representation are
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Markov Decision Processes?. We adopted the simpler representation here for the
sake of understandability. It would be of little use to overlaod this section with a
full description of MDPs, dealing with probabilities and complex algorithms for
finding optimal policies®. For the experimental evaluationn it is no difference,
since at the stage were #-subsumption comes into play, either representation
deals with literals or equivalent entities (e.g. fluents as in [14]). The aim is here
to give a general understanding of planning, and how #-subsumption is used in
that process.

Planning problem. A planning problem is a tuple (£, Zz, Zg, A), where
e Zis a set of (abstract) states (described below);
e 77 is the initial state;
e Zg is the goal state;

e A is a finite set of actions of the form A : Pre = Eff, where Pre =
{c1,...,cr} and Eff = {eq, ..., e} are sets of atoms and are called precondi-
tions and effects respectively.

An action A : Pre = Eff is applicable in a state Z iff Pre 0SUBS Z, i.e., there is
a substitution 6 such that Pred C Z.

The application of an action in a state Z gives rise to a new state Z’ defined
as follows: Z' = (Z \ Pref) UEflf. A sequence of actions [A, ..., 4,,] is called a
plan. A plan is a solution of a planning problem iff the successive application
of the actions in the plan transforms the initial state Z7 to the goal state Zg.

In the following, we adapt the representation from [14], where states were
represented using the Probabilistic Fluent Calculus, to our formalism of clauses.

Abstract states are represented by clauses containing only positive literals.
The difference to the Fluent Calculus representation is that literals cannot occur
multiple times in clauses (since clauses are sets of literals). This can by bypassed
by the following transformation

Transforming clauses with multiple occurrences of literals to clauses
without multiple occurrences but preserving #-subsumption: Let C
be a clause were literals can occur multiple times.

For each literal p(ay,...,a,) occurring multiple times (say & times) in C,
replace all

plai,...,an)
by all the elements of

{p(alau-yanvzi”i € {17 5k}}

2Markov Decision Processes (MDPs) have become the representational and computational
standard for planning problems and more generally for Decision Theoretic Planning (DTP)
[1]. DTP is an extension of the classical Al planning paradigm. It allows to model actions with
uncertain effects, as well as incomplete knowledge about the world. Furthermore, resource
consumption can be represented, i.e., an action consumes a certain amount of resources. In
addition, the goal may be given by a goal specification, i.e., the goal is not fully described,
only the relevant data is given.

3 A policy is a function from the set of states to the set of action. So a policy gives for each
state an action that can be applied
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and add the literals of the following set

{dlﬁ(ZhZ])h?] € {17 714:}7Z 5&.7}

For example, the clause with multiple occurrences

C =p(X),p(X),q(X)

would become

C =p(X, Z1),p(X, Z2),q(X), diff (Z1, Z2), diff (Z2, Z1)

Complexity issues: Let n be the size of the clause C, and let k& be the
maximum of the number of multiple occurrences of the literals. Then, the size
of the new clause C' is smaller than or equal to n’ and

n=n+ (k—1) + (k—1)?
—— ——
plav,an,Zs)  diff (2;,2;)

which is bound by O(n + k?).

Search for a plan In the following, we recast the algorithm described in [14]
to the search of a plan within our planning framework.

A forward search strategy is applied. The initial state is the root of the
search tree. A node is then chosen from the tree’s fringe, i.e., the set of all leaf
nodes, and all applicable actions are applied. Each action application extends
the plan by one step and generates a new state. The search ends when a state
is subsumed by the goal state. A solution plan can then be extracted from the
search tree. Forward search aims at finding a solution from the beginning to the
end by adding actions to the end of the current sequence od actions. Forward
search only considers states that can be reached from the initial state Z7.

Normalization The new set of states can then be pruned be removing redun-
dant state, this phase is called normalization ([14], [2]). As in [14], we deal with
abstract states. In essence, the normalization can be seen as the exhaustive
application of the following rule:

AR/

212 7, 6SUBS Zs

Z1

Example Let Z; = on(Xs,a) and Zy = on(X1,a), on(a,table), then we have
71 OSUBS Z5, so that the state Z; can be pruned.

In [14], it is shown that the normalization drastically shrinks the compu-
tational effort during the iterations of the forward search. For example, on a
simple planning problem, they demonstrate that after the seventh iteration, the
search space after the normalization is 11.6 times smaller than before. That
means that over ninety percent of the initial search space is redundant. They
show also that the computation time is orders of magnitude faster with the
normalization.
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6.2 ILP

Inductive logic programming (ILP) is a subfield of machine learning which uses
logic programming as a uniform representation for examples, background knowl-
edge and hypotheses. Given an encoding of the known background knowledge
and a set of examples represented as a logical database of facts, an ILP system
will derive an hypothesised logic program which entails all the positive and none
of the negative examples.

ILP systems commonly use #-subsumption as generality relation. The gen-
erality relation is used as the covering test to test whether a hypothesis covers
a training example.

6.3 Theorem proving (prover9)

Automated theorem proving, currently the most well-developed subfield of au-
tomated reasoning, is the proving of mathematical theorems by a computer
program. First-order theorem proving is one of the most mature subfields of
automated theorem proving. The logic is expressive enough to allow the specifi-
cation of arbitrary problems, often in a reasonably natural and intuitive way. On
the other hand, it is still semi-decidable, and a number of sound and complete
calculi have been developed, enabling fully automated systems.

prover9 is one of these automated theorem provers for first-order and equa-
tional logic developed by William McCune, it is the successor of the system
OTTER.

prover9 is applicable to statements in classical first-order logic with equality.
It accepts as input either clauses or quantified formulas. Quantified formulas
are transformed to clauses by usual normal form conversion and skolemisation.

prover9’s main inference rules are based on resolution or paramodulation.

The procedure of prover9 for processing a newly inferred clause new_cl fol-
lows; steps marked with * are optional. The details of the algorithm are beyond
the scope of this thesis. It is shown here to have an idea of where #-subsumption
is used in a theorem-proving engine. The interested reader is referred to [21] for
a comprehensive description.
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1. Renumber variables.
* 2. Output new_cl.
3. Demodulate new-_cl.
4. Orient equalities.
5. Apply unit deletion.
6.  Merge identical literals (leftmost copy is kept).
7. Apply factor-simplification.
8. Discard new_cl and exit if too many literals or variables.
9. Discard new_cl and exit if new_cl is a tautology.
10. Discard new_cl and exit if new_cl is too Theavy?.
11.  Sort literals.
12. Discard new_cl and exit if new_cl is subsumed by any clause in

usable, sos, or passive (forward subsumption). Steps

13. Integrate new_cl and append it to sos.

* 14.  Output kept clause.

15. If new_cl has 0 literals, a refutation has been found.

16. If new_cl has 1 literal, then search usable, sos, and passive for unit
conflict (refutation) with new_cl.

17.  Print the proof if a refutation has been found.

18. Try to make new_cl into a demodulator.

19. Back demodulate if Step 18 made new_cl into a demodulator.

20. Discard each clause in usable or sos that is subsumed by new_cl
(back subsumption).

* 21. Factor new_cl and process factors.
19-21 are delayed until steps 1-18 have been applied to all clauses inferred from
the active given clause.

* K| ¥ ¥

7 Experimental evaluation

7.1 Experimental settings

All experiments are done on a 1,4GHz Pentium M running under Linux Debian
("Etch”). The results are presented in the form depicted in Table 2. The
parameters will depend on the problem instance at hand. Not all subsumers
are applicable to all problems. The timing results p and o are the average time
needed for one subsumption attempt and the standard deviation, expressed in
seconds.

Parameters Subsumer
n v ¢ .. |ST DC GC Dj

,UST(UST) ,UDC(UDC) HGC(UGC) HDj (UDj)

Table 2: Format of the experimental results.
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7.2 Datasets
7.2.1 Random

The first dataset referred to as RANDOM is generated with the help of the
random generator.

For the experimental evaluation, we generate 100 clauses (which will be
enough for 10000 subsumption attempts) with following variable parameters

e n: Number of literals in each clause

e a,b: Minimal and maximal arity for predicates
e v: Number of different variables

e c: Number of different constants

e p: Number of different predicates

In this part, we analyse the influence of the parameters described above,
without any other particular structure. Only random literals are generated and
put together to obtain a clause of the desired size.

In the following we will shortly describe the combinations that have been
tested.

Varying size of the clauses The first series is obtained by varying the size
of the clauses, all other parameters staying the same. We fixed the number of
predicates to 5, the arity is set to two, no constants are allowed and the number
of variables is set to 5. We set the number of predicates and variables to a small
number for having many possible matches for each literal.

The size of the clauses varies from 5 to 2000 with increasing steps.

Tables 3 and 4 show the results.

Table 3: Dataset: RANDOM, Problem:

10000 subsumption attempts.

Parameters Django GC Allo DC ST Res Metric

size  pred wvars © (ms) w1 (ms) o (ms) o (ms) o (ms) pos K

5 5 5 0,003 0,006 0,008 0, 081 0,043 38 1

10 5 5 0,005 0,018 0,012 0, 492 0,235 0 0,57
15 5 5 0, 008 0,041 0,016 0, 858 1,286 4 0,32
20 5 5 0,010 0, 090 0,019 2,947 1,155 2 0,14
30 5 5 0,018 1,052 0,053 5,255 2,408 0 -0,11
50 5 5 0,074 3,567 0,284 34,754 10, 280 100 -0,43
70 5 5 0,356 11, 659 42,144 500 | -0,64
100 5 5 2,779 2400 -0,86
150 5 5 22,966 5500 -1,11
200 5 5 1,29
500 5 5 -1,86
700 5 5 -2,07
1000 5 5 -2,29
2000 5 5 -2,72

YesNo, Variing: size of clauses size.

The configuration of the clause renders a small probability of successful
subsumption for small clauses (about 0.1%). Django gives the best results with
a gain factor ranging from 2 to 32 to the second best. The second best algorithm

is ALLTHETA.

The variation of the size only does change the behaviour of the algorithms

as the clauses do not have a special structure due to the random generation.




Table 4: Dataset: RANDOM, Problem: ALL, Variing:

subsumption attempts.

Parameters FASY ObjCon ALLTHETA Results Metric

size  pred wars | p (ms) o (ms) o (ms) pos nbSubst | K

5 5 5 0,036 0,307 0,020 38 45 1

10 5 5 0,031 0,080 0,017 0 0,57
15 5 5 0,043 0,091 0,024 4 5 0,32
20 5 5 0,054 0,103 0,029 2 2 0,14
30 5 5 0,092 0,129 0,090 0 -0,11
50 5 5 0,234 0,293 0,519 100 100 -0,43
70 5 5 0,438 2,125 16,729 500 514 -0,64
100 5 5 0,933 2400 2804 -0,86
150 5 5 2,455 5500 10876 1,11
200 5 5 6,452 8600 46276 -1,29
500 5 5 0 -1,86
700 5 5 0 -2,07
1000 5 5 0 -2,29
2000 5 5 0 -2,72

size of clauses size. 10000

GC has to be treated specially as it is not complete and overlooks some of
the positive subsumption tests. This can clearly be seen here, as it gives the
wrong number of positive results most of the time. In the following we will not
consider GC in the comparison, since it would not be a fair comparison.

Varying number of predicate In this series, the influence of the number of
predicates is investigated. The number of predicates varies from 2 to 100 with
increasing steps. Two different settings for the other parameters are taken: the
first with clauses of size 100, and the second with clauses of size 500. The
number of constants and variables is fixed to zero and five respectively. The
arity of the predicate is set to two.

Tables 5 and 6 show the results

Parameters Django GC Allo DC ST Res Metric
size  pred wvars o (ms) © (ms) o (ms) o (ms) o (ms) pos K
50 2 5 7,045 46, 267 9300 | -0,17
50 5 5 0,073 3,565 0, 286 34,774 10, 299 100 -0,43
50 7 5 0,038 1,274 0,061 14,907 4,857 0 0,6
50 10 5 0,037 0,259 0,032 7,663 2,214 0 -0,86
50 15 5 0,037 0,131 0,028 4,354 0,992 0 41,29
50 20 5 0,042 0,104 0,028 3,000 0,716 0 1,72
50 30 5 0,045 0,059 0,027 1,811 0,387 0 22,58
50 50 5 0,044 0,033 0,027 1,121 0,244 0 4,31
50 100 5 0,044 0,021 0,023 0,693 0, 166 0 -8,61
500 2 5 -0,74
500 5 5 -1,86
500 7 5 2,61
500 10 5 -3,72
500 15 5 22 538 600 | -5,58
500 20 5 5,364 0 -7,45
500 30 5 3,676 2,016 0 -11,17
500 50 5 3,324 23,231 0,273 0 -18,61
500 70 5 3,218 7,701 0,279 43,759 0 -26,06
500 100 5 3,696 4,815 0,697 26,143 0 37,23
500 150 5 3,635 2,132 0,314 11,829 0 55,84
500 200 5 3,838 1,406 0,346 8,353 0 74,45
500 300 5 4,179 0,912 0,433 5,026 0 111,68
500 500 5 4,415 0,514 0,312 40, 202 3,469 0 -186,14
500 1000 5 5,628 0,476 0, 399 26,318 2,821 0 -372,27

Table 5: Dataset: RANDOM, Problem: YesNo, Variing: number of predicates
pred. 10000 subsumption attempts.
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Parameters FASY ObjCon ALLTHETA Results Metric
size  pred wvars | p (ms) 1 (ms) 1 (ms) pos nbSubst | K
50 2 5 1,978 9300 80839 -0,17
50 5 5 0,243 0,337 0,573 100 100 0,43
50 7 5 0,158 0,169 0,103 0 -0,6
50 10 5 0,135 0,150 0, 046 0 -0,86
50 15 5 0,146 0,143 0,038 0 -1,29
50 20 5 0,150 0,146 0,036 0 -1,72
50 30 5 0,158 0,138 0,033 0 2,58
50 50 5 0,170 0,163 0,034 0 4,31
50 100 5 0,218 0,156 0,028 0 8,61
500 2 5 0 -0,74
500 5 5 0 -1,86
500 7 5 48,923 10000 976100 -2,61
500 10 5 14,547 7600 21889 -3,72
500 15 5 4,235 600 600 -5,58
500 20 5 3,429 0 7,45
500 30 5 2,242 1,819 0 -11,17
500 50 5 1,831 0,318 0 18,61
500 70 5 2,094 0,325 0 -26,06
500 100 5 2,488 0,423 0 -37,23
500 150 5 3,199 0,333 0 -55,84
500 200 5 3,854 0,331 0 -74,45
500 300 5 4,884 0, 345 0 -111,68
500 500 5 6,338 0,343 0 -186,14
500 1000 5 9,018 0, 395 0 -372,27

Table 6: Dataset: RANDOM, Problem: ALL, Variing: number of predicates
pred. 10000 subsumption attempts.

For few different predicates, Django outperforms the others. With increasing
number of different predicates, ALLTHETA becomes the best algorithm, Django
still been the second most of the time.

Surprisingly, the execution speed of ST faster and faster for large clauses
with many different predicates. This could be explained by the fact that the
probability that a literal in the first clause matches a literal in the second one
goes near to zero, so that the order of the literals, on which ST heavily depends
on, matters less and less.

The low probability of matching seem to be a key factor for the superior
efficiency of the graph-contexts in ALLTHETA over arc consistency in Django.
Even though theoretically both are equivalent, graph-contexts are faster when
it comes to detect that a clause does not subsume another.

Varying ratio size of clauses and number of predicates In this series,

. size . . .

the ratio —————— varies. A ratio greater than one means that the size is
nbPrediate

greater than the number of predicates. The probability of successful subsump-
tion will increase, as there are more possible matches for each literal. The results
show that the factor must be 10.0 for having an effect. On the other hand, a
ratio less than one means more different predicates, reducing the successful
subsumption probability.

The other parameters are set as follows: arity to 2, number of constants to
zero, number of variables to 5.

Table 7 and 8 present the obtained results.

The two best competitors are ALLTHETA and Django. The observation
from the previous paragraph seem to be valid here too. Django outperforms
ALLTHETA when there are more positive subsumption results, and vice versa.
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Parameters Django GC Allg DC ST Res Metric
size  pred wvars 1 (ms) v (ms) 1 (ms) 1 (ms) 1 (ms) pos | K
5 5 5 0,003 0,006 0,008 0, 081 0, 042 38 [ 1
7 7 5 0, 004 0,008 0,008 0,129 0,059 2 1,11
10 10 5 0,005 0,009 0,011 0,227 0,089 0 1,14
15 15 5 0,007 0,012 0,011 1,030 0,244 0 0,95
20 20 5 0, 009 0,016 0,014 0, 543 0, 146 0 0,55
30 30 5 0,017 0,021 0,018 0,553 0,156 0 20,68
50 50 5 0,044 0,033 0,027 1,100 0,242 0 -4,31
70 70 5 0,074 0,049 0,056 2,040 0,365 0 -8,96
100 100 5 0,159 0,066 0, 050 2,580 0,581 0 117,23
10 5 5 0,005 0,018 0,012 0, 490 0,233 0 0,57
4 7 5 0,007 0,023 0,013 0,908 0,685 0 0.5
20 10 5 0, 009 0,030 0,014 1,192 0,327 0 0,28
30 15 5 0,016 0,045 0,020 1,182 0,317 0 -0,34
40 20 5 0,025 0,055 0,024 1,610 0,423 0 -1,17
60 30 5 0,051 0,078 0,034 3,014 0,562 0 -3,26
100 50 5 0,135 0,137 0,049 7,885 1,174 0 8,61
140 70 5 0,283 0,266 0, 069 8,641 1,339 0 214,99
200 100 5 0, 547 0,364 0,103 14, 144 2,044 0 25,84
25 5 5 0,014 0,182 0,032 3,343 1,485 1 0
35 7 5 0,022 0,182 0,029 4,542 1,597 0 -0,29
50 10 5 0,037 0,258 0,031 7,667 2,219 0 20,36
75 15 5 0,074 0,379 0,051 14,514 3,191 0 -2,05
100 20 5 0,127 0,515 0,051 16,135 4,914 0 -3,45
150 30 5 0,277 1,041 0,081 32,351 5,653 0 -6,68
250 50 5 0,807 1,682 0,122 10, 808 0 -14,31
350 70 5 1,538 2,340 0,194 13,766 0 792,96
500 100 5 3,277 3,903 0,378 23,331 0 -37,23
50 5 5 0,073 3,575 0,283 34,815 10, 301 100 | -0,43
70 7 5 0,101 2,111 0,267 38,874 14, 699 100 | -0,9
100 10 5 0,174 3,374 0,197 25,975 100 | -1,72
150 15 5 0,285 5,928 0,125 29,513 0 3,34
200 20 5 0,481 7,846 0,125 40,277 0 5,17
300 30 5 1,110 10, 454 0,159 53,467 0 -9,26
500 50 5 3,162 18,979 0,267 0 -18,61
700 70 5 6, 380 25,958 0, 430 0 28,99
1000 100 5 32,969 0,740 0 -45,84
5 10 5 0,008 0,005 0,007 0,058 0,027 0 2
7 14 5 0, 004 0,005 0,008 0,080 0,034 0 2,21
10 20 5 0, 005 0, 006 0,011 0,139 0,052 0 2,28
15 30 5 0,007 0, 008 0,011 0,516 0,115 0 1,9
20 40 5 0,010 0,010 0,013 0,334 0, 086 0 1,11
30 60 5 0,018 0,014 0,019 0,355 0,104 0 1,36
50 100 5 0,046 0,021 0,023 0,693 0,166 0 -8,61
70 140 5 0,092 0,030 0,082 1,177 0,240 0 217,01
100 200 5 0,186 0,043 0,051 2,130 0,375 0 34,45
5 25 5 0,003 0,004 0,007 0,042 0,019 0 5
7 35 5 0,004 0,004 0,007 0,057 0,024 0 5,54
10 50 5 0,005 0,005 0,011 0,092 0,033 0 5,69
15 75 5 0,008 0,006 0,010 0,219 0, 060 0 4,76
20 100 5 0,011 0,007 0,012 0,195 0,059 0 2,77
30 150 5 0,020 0,010 0,018 0,237 0,078 0 3.4
50 250 5 0,049 0,016 0,027 0, 455 0,127 0 221,53
70 350 5 0,091 0,024 0,041 0,757 0,184 0 44,78
100 500 5 0,183 0,040 0,057 1,213 0,291 0 -86,14
Table 7: Dataset: RANDOM, Problem: YesNo, Variing: ratio size/pred. 10000

subsumption attempts.
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Parameters FASY ObjCon ALLTHETA Results Metric
size  pred wars | p (ms) o (ms) o (ms) pos nbSubst | k
5 5 5 0,030 0,311 0,023 38 45 1
7 7 5 0,023 0,075 0,011 2 2 1,11
10 10 5 0,032 0,079 0,014 0 1,14
15 15 5 0,047 0,087 0,014 0 0,95
20 20 5 0,062 0, 098 0,017 0 0,55
30 30 5 0,095 0,116 0,021 0 -0,68
50 50 5 0,172 0, 150 0,034 0 -4,31
70 70 5 0,249 0,182 0,061 0 -8,96
100 100 5 0,390 0,221 0,058 0 217,23
10 5 5 0,033 0, 085 0,019 0 0,57
4 7 5 0, 041 0,090 0,017 0 0.5
20 10 5 0,058 0, 096 0,019 0 0,28
30 15 5 0,088 0,117 0,025 0 -0,34
40 20 5 0,119 0,126 0,029 0 -1,17
60 30 5 0,186 0,159 0,041 0 -3,26
100 50 5 0,337 0,217 0,058 0 -8,61
140 70 5 0,513 0,281 0,082 0 14,99
200 100 5 0, 846 0,365 0,119 0 25,84
25 5 5 0,072 0,114 0,052 1 1 0
35 7 5 0,090 0,132 0,041 0 -0,29
50 10 5 0,137 0,148 0,047 0 -0,86
75 15 5 0,209 0,182 0,066 0 22,05
100 20 5 0,289 0,227 0,067 0 -3,45
150 30 5 0,464 0,295 0,100 0 -6,68
250 50 5 0,881 0,467 0,149 0 -14,31
350 70 5 1,418 0,574 0,228 0 22,96
500 100 5 2,503 0, 440 0 -37,23
50 5 5 0,237 0,292 0,528 100 100 -0,43
70 7 5 0,277 0,308 0, 488 100 100 -0,9
100 10 5 0,318 0,333 0,337 100 100 -1,72
150 15 5 0,438 0, 380 0,190 0 -3,34
200 20 5 0,579 0,427 0,172 0 5,17
300 30 5 0,940 0, 586 0,206 0 -9,26
500 50 5 1,836 0,337 0 -18,61
700 70 5 3,036 0, 490 0 -28,99
1000 100 5 5,414 0,823 0 -45,84
5 10 5 0,019 0,070 0,008 0 2
7 14 5 0,025 0,076 0,009 0 2,21
10 20 5 0,034 0,085 0,012 0 2,28
15 30 5 0, 050 0,087 0,012 0 1,9
20 40 5 0,067 0,104 0,015 0 1,11
30 60 5 0,104 0,116 0,021 0 -1,36
50 100 5 0,193 0,154 0,027 0 -8,61
70 140 5 0, 309 0,176 0,088 0 -17,91
100 200 5 0,527 0,225 0,057 0 34,45
5 25 5 0,020 0,073 0,007 0 5
7 35 5 0,027 0,075 0,008 0 5,54
10 50 5 0,037 0, 085 0,012 0 5,69
15 75 5 0,055 0,090 0,011 0 4,76
20 100 5 0,076 0,104 0,014 0 2,77
30 150 5 0,132 0,120 0,020 0 -3,4
50 250 5 0,273 0,155 0,030 0 221,53
70 350 5 0, 458 0,198 0,045 0 44,78
100 500 5 0, 849 0,239 0,063 0 -86,14

Table 8: Dataset: RANDOM, Problem: ALL, Variing: ratio size/pred. 10000
subsumption attempts.
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Varying number of variables This time, the influence of the number of

different variables is analysed. The number of variables varies from 5 to 100.

The arity is set to 2. The number of constants is zero. The tests are done for

various combinations for the size of the clauses and the number of predicates.
Table 9 shows the results.

Parameters Django GC Allo DC ST Res Metric
size pred wvars o (ms) © (ms) # (ms) o (ms) o (ms) pos K
5 5 2 0, 004 0,007 0,008 0,085 0,036 203 20,8
5 5 5 0,003 0,006 0,008 0,081 0,043 38 1
5 5 7 0,003 0,007 0,009 0,080 0,055 22 0,84
5 5 10 0,003 0,008 0,010 0,079 0,057 33 0,65
5 5 15 0,003 0, 009 0,012 0,075 0,071 108 0,47
5 5 20 0,003 0,010 0,017 0,087 0,083 285 0,37
5 5 30 0,003 0,011 0,019 0,089 0,087 345 0,25
5 5 50 0, 004 0,012 0,028 0,092 0,089 689 0,16
5 5 70 0,004 0,013 0,050 0, 106 0,094 1316 0,12
5 5 100 0,004 0,014 0,060 0,113 0,099 1338 | 0,08
50 5 2 3,927 1,101 3,234 0,823 8009 | 9,11
50 5 5 0,074 3, 569 0,284 34,830 10, 315 100 -0,43
50 5 7 0,039 2,345 0,145 34,291 39,472 0 -0,01
50 5 10 0,039 4,420 0,101 38,042 0 0,15
50 5 15 0,037 26, 489 0,056 29,948 0 0,19
50 5 20 0,037 0,055 18, 849 0 0,17
50 5 30 0,038 0,100 11, 555 0 0,14
50 5 50 0,038 0,072 5,144 0 0,1
50 5 70 0,035 0,077 0 0,08
50 5 100 0,033 0, 100 0 0,06
500 5 2 2,604 2, 881 0,827 10000 | -17,41
500 5 5 -1,86
500 5 7 -0,85
500 5 10 -0,35
500 5 15 48,514 1100 -0,1
500 5 20 27,237 300 -0,02
500 5 30 13, 240 0 0,03
500 5 50 5,433 0 0,04
500 5 70 4,162 0 0,04
500 5 100 3,629 0 0,03
50 50 2 0,060 0,030 0,023 0,861 0,185 0 oT,1
50 50 5 0,046 0,034 0,027 1,101 0,242 0 -4,31
50 50 7 0,036 0,037 0,028 1,094 0,274 0 -0,07
50 50 10 0,034 0, 046 0,030 1,146 0, 345 0 1,51
50 50 15 0,032 0,055 0,029 1,163 0,397 0 1,85
50 50 20 0,032 0,063 0,033 1,142 0,492 0 1,74
50 50 30 0,032 0,075 0,037 0, 954 0, 602 0 1,42
50 50 50 0,032 0,116 0,041 0,603 0,877 0 1
50 50 70 0,032 0,125 0,042 0, 681 0, 869 0 0,77
50 50 100 0,032 0,138 0,045 1,252 0,992 0 0,58
500 50 2 5,421 17,455 200 -174,14
500 50 5 3,402 20,048 0,270 0 -18,61
500 50 7 2, 862 27,355 0,317 0 -8,53
500 50 10 2,501 0,325 0 -3,49
500 50 15 2,351 0,289 0 -0,98
500 50 20 2,418 0,287 0 -0,19
500 50 30 2,486 0,347 0 0,29

Table 9: Dataset: RANDOM, Problem: YesNo, Variing: number of variables
vars. 10000 subsumption attempts.

With small clauses, having few or many variables, Django is the fastest.
With increasing size of the clauses, the gain of Django becomes less important.
This is again due to the fact that fewer subsumption tests succeeds. ALLTHETA
detects earlier that a clause does not subsume another and is thus faster in that
case.

We can observe some interesting cases in which ST outperforms all other
systems. This time it is not due to the negative case, but on the contrary to an
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extremely high probability of success for the subsumption test. This suggests
that in those cases, no matter which literal is selected first and matched against
another, there is no need to backtrack since the match would result in a solution
with high probability.

Due to bugs and limitations of the implementations, we did not test out
all possibilities. In particular, we set the arity of the predicates to two in all
dataset generated randomly since Django do not work correctly if the arity is 3
or greater.

Due to the limitation of FASY in respect to constants in the first clauses, we
did not introduce constants in the first clause and handled only the case where
variables occur.

The experimentation on randomly generated clauses shows that when the
clauses are generated randomly according to a uniform distribution, the simple
look at the basic parameters (number of variables, number of predicate, size of
the clause) can give us a clue on which algorithm is the best one.

In their work on Django, Maloberti and Sebag [20], have ported the s pa-
rameter from CSP to #-subsumption:

m - (2logy L — logy N)

n - logy L

where n denotes the number of variables in C, L is the number of constants and
variables in D, and m is the number of different predicate symbols.

In the #-subsumption problems from the RANDOM domain, the x parameter
can easily be calculated. We can make the following observation in 99% of the
cases:

e In case kK > 2, Django is best

e Incase k < —2, ALLTHETA is best (nearly: in some special cases discussed
above, ST may outperform ALLTHETA)

e In case —2 < k < 2, it is not known a priori which algorithm is better
suited.

The the cases in which all solution have to be found, the best competitors
were FASY and ALLTHETA. One could observe that ALLTHETA outperform the
others in most of the cases. This is due to the fact that randomly generated
clauses ofter do not subsume each other. As stated earlier, ALLTHETA detects
very soon, that one clause cannot subsume another due to the graph-context
build for the clauses.

The k-parameter allows us to state the following in 99% of the cases:

o If Kk >2o0r k <0, then ALLTHETA is the best in the random case.

e if 0 < k < 2, then we cannot tell in advance which is better on the
presented experimental results.
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7.2.2 Blocksworld

The blocksworld domain is the typical toy example when dealing with planning

problems. It consists of a table on which various cubic blocks are placed. A

block can be on top of another block. For moving the block, there is a robotic

arm that can grasp one block at a time, move it around, and place it on the

table or on top another block. Given an initial situation (an initial state), the

aim is to move the blocks around to get to a given final situation (a final state).
A state is represented by a clause. There are several predicates:

e on/2: Given two blocks by and by, the meaning of on (b1, bs) is that block
by is situated on block bs.

e ontable/1: Given a block b, the meaning of ontable(b) is that block b is
on the table.

e clear/1: Given a block b, clear(b) indicates that there is no block ontop
of b.

e holding/1: Given a block b, holding(b) means that the robotic arm is
holding the block b.

e empty/0: Means that the robotic arm is not holding anything.

Four actions can be performed on the states, defined as follows

Action pickup : clear(V'), ontable(V'), empty = holding(V)

Action unstack : clear(V),on(V, W), empty = holding(V'), clear(W)

Action putdown : holding(V') = clear(V), ontable(V), empty
e Action stack : holding(V'), clear(W) = on(V, W), clear(V'), empty
Example The state defined by
ontable(a),on(b, a), clear(b), empty
would be transformed into the state
ontable(a), holding(b), clear(a)

by the application of the action unstack.

7.2.3 Pipesworld

The PIPESWORLD domain models the flow of oil-derivative liquids through
pipeline segments connecting areas, and is derived by applications in the oil
industry [22].

Batches of a certain size models the liquids. A segment must allways be full,
i.e., they contain allways the same number of batches. Batches can be pushed
into pipelines from either side, which has as effect that the batch at the other
side of the segment will be pushed out of the segment and fall into the incident
area. Batches have associated product types. Certain type of liquid must never
be adjacent in a pipeline. Areas may have constraints on how many batches of
a certain product type they can hold.

Formally, the PIPESWORLD is defined as follows.
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Definition 7.1 (Pipesworld [13]) Let P = {lco, gasoline,rata,ocal,oclb}
be a set of products. Two products p,p’ € P are called compatible unless
p =rata and p’ € {ocal, oclb} or vice versa.

A PIPESWORLD task is given by:

e finite sets of areas A and pipeline segments S,
e a finite set ob batches B, each with a product type b* € P,

e for each pipeline segment s € S, a start area s~ € A and an end area
st € A and a segment length |s| € Ny,

e an area capacity function ¢: A x P — Ny,

e a goal contents function Cg : A — 2B such that for each batch b € B, we
have b € Cg(a) for at most one area a € A, and

e an initial state: a state is defined by an area contents function Cy : A —
2B and a pipeline segment contents function Cg : S — B* such that

— for each batch b € B either b € Ca(a) for exactly one area a € A,
or b € Cs(s) for exactly one segment s € S (meaning that a batch
exists exactly once, and must be localized either in an area or in a
segment),

— for all areas a € A and products p € P, Cx(a) contains at most
c(a,p) batches of product type p, and

— for all pipeline segments s € S, |Cs(s)| = |s| (the segments are
allways completely full with some products) and any two adjacent
batches in Cg(s) can interface, i.e., have compatible product types.

A state is a goal state iff Ca(a) C Ca(a) for all a € A.

The only action in the task is the push action. If s € S is a pipeline segment
with contents by...bjs) and b € Ca(s™) is a batch that can interface with by,
then b can be pushed into s. This results in a state where the new contents
of segment s are bby...bs_1, b is no longer in Ca(s™), and byy is in Ca(sT).
Similarly, b € Ca(s™) can be pushed into s if it can interface with bs|, leading
to a state where the contents of s are by...bs\b, b is no longer in Ca(s™), and
by is in Ca(s™). Pushing a batch into a pipeline segment is only allowed if the
state obtained after the action application would not violate the area capacity
constaints.

Formally, the PIPESWORLD can be represented based on [22] in clausal form
as follows.

e The positioning of batches is done with 5 predicates:

— first/2,last/2, follow/2: these predicates are used to define the con-
tent of the pipelines. first(batch, pipe) means that batch is situated
at the first position is the pipeline pipe. Similarly, last(batch, pipe)
indicates the last batch in the pipeline. follow(batchy,batchs) is used
to construct a list of batches that are located one after the other in
the pipes.
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— on/2: on(batch,tank) indicates that the batch batch is on the tank
tank

— isProduct/2: isProduct(batch, product) indicates the product of a
batch.

e Areas and tanks are defined through the predicates tankInArea/2 and
tankProduct/2: tankInArea(tank,area) means that tank is located in
the area area, and tank Product(tank, product) means that tank can hold
only products of type product.

e Segments are defined through the predicate connect: connect(areay, areas, pipe)
means that the area area; is connected to area areas by a pipeline segment

pipe.

e Finally, the compatibility of products is done with the predicate mayInter face/2:
maylInter face(producty, producty) mean that product; and products are
compatible and can thus interface.

e In our representation, the capacity constraints are not modeled.

Example Consider the following PIPESWORLD problem
e There are two areas a; and as,
e There is one segment s of length 3 connecting a; and as,
e There are two tank in each area for product type lco and rata
e The batches are called by, bs, ... and are of type lco

A state of this problem could be:

connect(ay,az, s),

first(by, s), follow(by, ba), follow(ba, bs), last(bs, s),
tankInArea(t1, a1), tankProduct(ti,lco),
tankInArea(ti2, a1), tankProduct(ti2, rata),
tankInArea(tar, as), tank Product(ta1, lco),
tankInArea(tes, az), tank Product(tee, rata),
isProduct(by,lco),isProduct(bs, lco),is Product(bs,lco).

Planning in the Pipesworld domain is NP-hard [13].

7.2.4 Airport

The AIRPORTdomain is another real world planning problem.

Planning in the AIRPORT domain is PSPACE-equivalent [13].

The results of the experimental evaluation in the AIRPORT domain is re-
ported in Tables 11 and 12 for the problem of finding all solutions for a given
subsumption problem. Tables 13 and 14 reports the result for the problem of
finding out whether the subsumption test holds or not.
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Parameters fastheta objcon alltheta Results
a p n o (ms) o (ms) o (ms) o (ms) o (ms) pos  total  subst
5 2 10 0,418 0,650 Z,000 0,614 1,077 3 10 10
3 2 10 0,979 0,733 10, 000 40, 879 40, 528 8 10 56
4 2 10 0,783 0, 340 6,000 74,547 115,101 6 10 44
5 2 10 1,223 0,772 14,000 459, 250 536, 665 7 10 46
6 2 10 1,496 0,615 26,000 1045,079 910, 516 10 10 86

7 2 10 5,246 2,952 57,000 9868, 951 6765, 917 10 10 197
8 2 10 6,674 5,811 8388, 000 14992, 975 16477,516 10 10 202
9 2 10 68,030 85,750 52075, 000 10 10 361
10 2 10 68,013 78,929 10087, 000 10 10 311
11 2 10 116, 261 181,514 10 10 394
12 2 10 480, 642 481,925 10 10 529
13 2 10 4438, 062 7488, 458 10 10 707
5 3 10 0,469 0,611 5,000 0,407 0, 441 2 10 6
3 3 10 0,767 0,381 5,000 20,233 20,883 6 10 39
4 3 10 0, 846 0,185 6,000 122,624 92,700 7 10 51
5 3 10 1,752 0,697 18,000 1647, 827 1095,073 9 10 139
6 3 10 3,162 1,241 109, 000 10419, 058 8222,374 10 10 183
7 3 10 4,584 1,907 90, 000 24929, 049 15535, 528 10 10 319
8 3 10 21,757 12,632 168, 000 10 10 446
9 3 10 29,734 24,524 231, 000 10 10 485
10 3 10 121,037 179, 257 47240, 000 10 10 546
11 3 10 191,012 202,041 10 10 610
12 3 10 1020, 407 918,470 10 10 1008
13 3 10 2651, 414 2244, 462 10 10 1181
2 4 10 0,531 0,121 4,000 5,273 8,323 4 10 30
3 4 10 0,823 0,484 8,000 60, 393 104, 345 4 10 29
4 4 10 0,979 0,197 9,000 405, 741 425,469 8 10 71
5 4 10 1,572 0,635 9,000 2135, 726 2241,159 8 10 117
6 4 10 3,738 1,907 140, 000 24688, 936 14969, 441 10 10 271
7 4 10 7,336 5,449 152,000 57867,035 24896, 689 10 10 297
8 4 10 26,311 27,850 402,000 10 10 455
9 4 10 130, 094 101,810 16065, 000 10 10 575
10 4 10 269, 114 221,963 830,000 10 10 876
11 4 10 1552, 104 2113, 759 10 10 965
12 4 10 1843, 696 3563, 665 2758, 000 10 10 1116
13 4 10 3865, 117 3168, 594 10 10 1375
2 5 10 0, 345 0,284 5,000 1,036 1,812 2 10 8
3 5 10 0, 858 0,275 6,000 150, 781 127,769 5 10 104
4 5 10 1,281 0,469 7,000 1039, 189 934,671 8 10 143
5 5 10 1,844 0,506 12, 000 6638, 105 4877, 151 9 10 155
6 5 10 4,319 3,188 55,000 28419, 917 21922, 619 10 10 370
7 5 10 9,263 9, 005 174,000 10 10 485
8 5 10 26, 818 22,216 564, 000 10 10 539
9 5 10 43,623 48,804 10659, 000 10 10 518
10 5 10 291, 444 298,725 4472,000 10 10 907
11 5 10 934, 835 1302, 319 5371, 000 10 10 1145
12 5 10 3284, 922 8180, 932 10 10 959

Table 10: Timing results for the PIPESWORLD domain. Actions-States config-
uration. The parameters are: a for the number of areas, p for the number of

products, n for the number of clauses
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Parameters FASY ObjCon ALLTHETA Results
ac s t p b | p(ms) o (ms) o (ms) pos  total nbSubst
2 2 1 0 1 0,015 4,833 0,021 19 60 21
2 2 1 1 0 0,015 5,111 0,017 13 45 15
2 2 1 1 1 0,014 3,500 0,017 23 80 25
2 3 1 0 0 0,015 4,667 0,018 19 60 21
2 3 1 1 1 0,014 4,833 0,019 18 60 20
2 3 2 0 0 0,015 4,667 0,017 19 60 21
2 3 2 0 1 0,015 4,667 0,017 19 60 21
2 3 2 0 2 0,013 2,833 0,019 34 120 42
2 3 2 1 0] 0,015 5,000 0,019 19 60 21
2 3 2 1 1 0,012 2,833 0,019 30 120 37
2 3 2 1 2 0,015 3,238 0,058 34 105 39
2 3 2 2 0 0,015 6,444 0,018 13 45 15
2 3 2 2 1 0,016 6,444 0,037 13 45 15
2 3 2 2 2 0,013 3,500 0,037 29 100 32
2 4 1 1 1] 0,002 11, 500 0,015 0 20 0
2 4 2 2 0 0,011 6, 000 0,016 13 65 15
2 4 2 2 1 0,015 3,030 0,019 53 165 60
2 4 2 2 2 0,513 7,556 0,018 13 45 15
2 4 3 0 0 0,014 3, 889 0,040 26 90 33
2 4 3 0 1 0,013 3,167 0,019 34 120 42
2 4 3 0 2 0,015 2,917 0,019 38 120 46
2 4 3 0 3 0,015 6, 000 0,018 13 45 15
2 4 3 1 0 0,030 4,083 0,020 39 120 45
2 4 3 1 1 0,015 4,667 0,036 19 60 21
2 4 3 1 2 0,013 5,000 0,020 15 60 20
2 4 3 2 0 0,001 20,000 0,015 0 10 0
2 4 3 2 1 0,015 4,833 0,017 19 60 21
2 4 3 2 2 0,719 4,000 0,020 38 120 46
2 4 3 2 3 0,021 3,000 0,020 61 220 69
2 4 3 3 0 0,014 3,125 0,025 50 160 56
2 4 3 3 1 0,014 3,778 0,048 26 90 30
2 4 3 3 2 0,015 7,333 0,020 13 45 15
2 4 3 3 3 0,015 3,333 0,019 40 120 45
2 5 1 1 0 0,016 5,111 0,017 13 45 15
2 5 2 0 0 0,015 4,667 0,017 19 60 21
2 5 2 1 0 0,015 4,833 0,019 19 60 21
2 5 2 2 0 0,015 5,778 0,019 13 45 15
2 5 2 2 2| 0,011 3, 400 0,015 24 100 27
2 5 3 0 0 0,015 6,444 0,018 13 45 15
2 5 3 0 1 0,015 6,444 0,018 13 45 15
2 5 3 0 2 0,016 4,000 0,018 30 85 33
2 5 3 0 3 0,015 5,778 0,018 13 45 15
2 5 3 1 2 0,015 6,444 0,020 13 45 15
2 5 3 1 3 0,010 4,462 0,022 12 65 12
2 5 3 2 0 0, 006 6,571 0,015 2 35 2
2 5 3 2 3 0,015 5,800 0,019 5 50 18
2 5 3 3 1 0,015 3,083 0,022 36 120 42
2 5 3 3 3 0,013 3,077 0,021 33 130 42
2 5 4 0 0 0,008 5,600 0,014 8 50 8
2 5 4 0 1 0,015 6,667 0,019 13 45 15
2 5 4 1 0 0,011 7,667 0,018 6 30 6
2 5 4 1 1] 0,015 4,833 0,024 19 60 21
2 5 4 1 3 0,017 4,667 0,021 18 60 21
2 5 4 1 4 0,013 3,778 0,020 23 90 30
2 5 4 2 0 0,012 3,778 0,019 23 90 30
2 5 4 2 1 0,015 1,875 0,022 78 240 94
2 5 4 2 3 0,002 23,000 0,015 0 10 0
2 5 4 2 4 0,016 1,855 0,022 94 275 119
2 5 4 3 0 0,015 2,963 0,021 41 135 51
2 5 4 3 1 0, 008 2,500 0,016 26 160 28
2 5 4 3 3 0,015 2,222 0,020 57 180 67
2 5 4 3 4 0,015 6,222 0,018 13 45 15
2 5 4 4 0 0,013 1,962 0,019 70 260 87
2 5 4 4 1 0,015 5,231 0,019 21 65 24
2 5 4 4 3 0,012 2,318 0,017 58 220 73
2 5 4 4 4 0,013 2,250 0,018 59 200 67
3 3 1 0 0 0,018 1,889 0,025 69 180 87
3 3 1 1 0 0,007 6, 000 0,023 4 50 4
3 3 1 1 1 0,002 11,500 0,021 0 20 0
3 3 2 0 0 0,017 1,667 0,029 84 240 116

Table 11: Dataset: AIRPORT(1), Configuration:
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Parameters FASY ObjCon ALLTHETA Results
ac s t p b | p(ms) 1 (ms) © (ms) pos  total nbSubst
3 3 2 0 1 0,025 2,222 0,028 57 180 84
3 3 2 1 0 0,011 2,909 0,023 22 110 26
3 3 2 1 1 0,016 1,667 0,029 84 240 116
3 3 2 2 0 0,019 1,387 0,042 148 375 180
3 4 1 0 1 0,001 7,000 0,021 0 40 0
3 4 2 0 0 0,030 2,370 0, 026 47 135 63
3 4 2 0 1 0,019 2,222 0,027 69 180 87
3 4 2 0 2 0,042 174 420 219
3 4 2 1 0 0,018 1,324 0,027 129 340 165
3 4 2 1 1 0,001 11,500 0,020 0 20 0
3 4 2 1 2 0,017 1,789 0,037 103 285 140
3 4 2 2 0 0,016 4,250 0,049 26 80 30
3 4 2 2 1 0,002 13,000 0,021 0 20 0
3 4 2 2 2 0,017 1,204 0,026 176 465 211
3 4 3 0 0] 0,019 1,778 0,028 88 225 111
3 4 3 0 1 0,018 2,429 0,029 56 140 65
3 4 3 0 2 0,019 1,911 0,028 88 225 111
3 4 3 0 3 0,026 1,875 0,027 97 240 120
3 4 3 1 0 0,015 2,424 0, 069 52 165 63
3 4 3 1 1 0,001 23,000 0,021 0 10 0
3 4 3 1 2 0,017 1,789 0,030 102 285 127
3 4 3 2 0 0,023 1,358 0,049 159 405 213
3 4 3 2 1 0,017 2,581 0,026 56 155 62
3 4 3 2 2 0,020 1,425 0,030 168 400 219
3 4 3 3 0 0,019 1,700 0,036 126 300 156
3 4 3 3 1 0,023 0, 685 0,033 532 1065 678
3 4 3 3 2 0, 020 0,793 0,033 367 870 465
3 5 1 1 0 0,001 5,750 0,021 0 40 0
3 5 1 1 1 0,001 11,500 0,021 0 20 0
3 5 2 0 1 0,002 11,500 0,020 0 20 0
3 5 2 0 2 0,013 2,581 0,026 40 155 42
3 5 2 1 0 0,018 1,342 0,037 154 380 216
3 5 2 1 1 0,019 1,778 0,028 88 225 111
3 5 2 1 2 0,002 11,500 0,021 0 20 0
3 5 2 2 0 0,020 0,795 0,029 326 780 449
3 5 2 2 1 0,037 1,729 0,025 94 295 110
3 5 2 2 2 0,009 1,818 0,020 48 220 48
3 5 3 0 0 0,012 2,051 0,023 48 195 50
3 5 3 0 2 0,014 1,667 0,024 73 270 87
3 5 3 1 0 0,014 4,000 0,025 24 85 28
3 5 3 1 1] 0,025 1,545 0,041 141 330 180
3 5 3 1 2 0,009 4,250 0,023 16 80 16
3 5 3 1 3 0,019 1,700 0,029 124 300 153
3 5 3 2 0 0,012 3,579 0,023 22 95 24
3 5 3 2 2 0,021 1,109 0,031 231 505 294
3 5 3 2 3 0,018 1,292 0,031 185 480 246
3 5 3 3 0 0,020 1,821 0,028 124 280 153
3 5 3 3 1 0,019 0,482 0,047 669 1700 913
3 5 3 3 2 0,015 2,250 0,024 58 200 62
3 5 3 3 3 0,008 1,729 0,027 44 295 44
3 5 4 0 0 0,022 1,226 0,032 186 465 246
3 5 4 0 1 0,016 1,731 0,036 83 260 112
3 5 4 0 3 0,021 0,838 0,052 295 800 424
3 5 4 0 4 0,011 1,683 0,033 74 315 78
3 5 4 1 0 0,017 1,594 0,029 112 320 153
3 5 4 1 1 0,019 1,120 0,029 198 500 258
3 5 4 1 3 0,024 0,954 0,033 294 650 381
3 5 4 1 4 0,021 1,583 0,032 154 360 198
3 5 4 2 1 0,019 1,700 0,028 120 300 148
3 5 4 2 3 0,019 1,889 0,030 99 270 132
3 5 4 2 4 0,020 1,556 0,030 148 360 189
3 5 4 3 0 0,012 2,045 0,022 52 220 54
3 5 4 3 1 0,019 2,222 0,029 66 180 87
3 5 4 3 3 0,026 0,771 0,033 408 1025 547
3 5 4 3 4 0,019 1,048 0,033 236 620 322
3 5 4 4 0 0,025 0,492 0,038 963 1850 1286
3 5 4 4 1 0,018 2,963 0,027 47 135 63
3 5 4 4 3 0,019 1,825 0,043 102 285 137

Table 12: Dataset: AIRPORT(2), Configuration:
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Parameters Django GC ALLTHETA DC ST Results
ac s t p b o (ms) 1 (ms) o (ms) 1 (ms) v (ms) pos  total
5 2 1 1 1 0,005 0,007 0,035 0,007 0,039 9 81
2 3 1 1 o0 0,003 0,005 0,011 0, 094 0,029 12 144
2 3 2 0 0 0,007 0, 006 0,019 0, 054 0,057 15 81
2 3 2 0 1 0,005 0,006 0,015 0,103 0,037 32 225
2 3 2 0 2 0,004 0,006 0,026 0,143 0,052 12 144
2 3 2 1 2 0, 006 0,011 0,014 0,110 0,061 9 81
2 3 2 2 0 0,007 0,007 0,019 0,184 0,043 52 400
2 3 2 2 1 0,005 0,007 0,018 0,152 0,051 12 144
2 3 2 2 2 0,023 0,027 0,038 0, 334 0,123 6 16
2 4 1 1 0 0,003 0, 005 0,019 0,050 0,033 33 441
5 4 2 0 1 0,007 0,007 0,020 0,119 0,037 30 225
2 4 2 1 1 0,006 0, 007 0,016 0,079 0,041 21 144
2 4 3 0 0 0,005 0,012 0,029 0,090 0,071 15 81
2 4 3 0 1 0,004 0,012 0,017 0,127 0,090 18 324
2 4 3 0 3 0,006 0,007 0,020 0,176 0,065 35 729
5 4 3 1 0 0,003 0,008 0,016 0,070 0,052 84 1296
2 4 3 1 1 0,007 0,012 0,018 0,118 0,089 11 81
2 4 3 1 3 0,009 0,012 0,032 0,309 0,067 16 144
2 4 3 2 0 0,033 0,042 0,024 0,371 0,161 22 100
2 4 3 3 0 0,008 0,015 0,018 0,322 0,083 9 81
2 4 3 3 1 0,004 0,010 0,019 0,121 0,063 31 961
2 4 3 3 2 0,020 0,027 0,061 0,722 0,179 5 25
2 4 3 3 3 0,009 0,017 0,018 0,278 0,092 18 196
2 5 2 2 0 0,010 0,020 0,022 0,156 0,116 13 49
2 5 2 2 1 0,005 0,008 0,015 0,162 0,056 32 784
2 5 2 2 2 0,017 0,024 0,037 0,450 0,117 10 36
2 5 3 0 0 0,003 0,006 0,028 0,051 0,033 21 144
2 5 3 0 1 0,005 0,009 0,037 0,083 0,050 21 144
2 5 3 0 2 0,005 0,009 0,021 0,105 0,056 54 576
2 5 3 1 0 0,007 0,020 0,027 0,093 0,048 21 144
5 5 3 1 3 0,017 0,056 0,069 0,604 0,299 30 144
2 5 3 2 0 0,013 0,012 0,152 0,132 0,139 6 16
2 5 3 2 3 0,007 0,020 0,015 0,202 0,120 12 144
2 5 3 3 0 0, 006 0,012 0,031 0,319 0,085 12 144
2 5 3 3 1 0,009 0,015 0,020 0,308 0,078 9 81
2 5 3 3 2 0,007 0,019 0,029 0,414 0,112 12 144
2 5 3 3 3 0,003 0,010 0,013 0,184 0,093 69 4761
2 5 4 0 3 0,005 0,019 0,016 0,141 0,137 12 144
2 5 4 0 4 0,009 0,025 0,034 0,376 0, 147 36 484
2 5 4 1 0 0,005 0,010 0,021 0,104 0,057 14 144
2 5 4 1 1 0,009 0,028 0,019 0,300 0,105 17 144
2 5 4 2 0 0,004 0,011 0,017 0,164 0,090 54 1296
2 5 4 2 1 0,005 0,026 0,020 0,186 0,177 37 729
o 5 4 2 3 0,007 0,019 0,030 0,432 0,136 142 3600
2 5 4 2 4 0,006 0,013 0,016 0,718 0,151 85 2500
5 5 4 3 0 0,006 0,021 0,059 0,156 0,270 9 81
2 5 4 3 1 0,009 0,008 0,025 0,231 0,135 21 225
2 5 4 4 0 0,031 0,023 0,084 0,375 0,107 47 225
2 5 4 4 1 0,005 0,022 0,023 0,568 0, 140 36 1296
2 5 4 4 3 0,006 0,026 0,015 0,373 0,172 60 2116
2 5 4 4 4 0,009 0,031 0,037 0,491 0,199 33 676
3 3 1 0 0 0,013 0,017 0,066 0,100 0,076 1 16
3 3 1 0 1 0,004 0,011 0,028 0,071 0,072 81 1296
3 3 1 1 0 0,003 0,010 0,017 0,079 0,075 69 2304
3 3 1 1 1 0,003 0,013 0,016 0,088 0,090 36 1296
3 3 2 0 0 0,003 0,009 0,023 0,091 0,071 141 3249
3 3 2 0 1 0,007 0,013 0,042 0,113 0,080 302 2304
3 3 2 0 2 0,018 0,045 0,067 0, 524 0,214 16 49
3 3 2 1 0 0,006 0,016 0,021 0,116 0,101 109 1296
3 3 2 1 1 0, 004 0,018 0,017 0,274 0,114 33 676
3 3 2 1 2 0,004 0,014 0,022 0,267 0,103 234 5184
3 3 2 2 0 0,004 0,014 0,024 0,293 0,117 175 8281
3 3 2 2 1 0,006 0,021 0,027 0,351 0,125 93 1296
3 3 2 2 2 0,003 0,015 0,017 0,266 0,118 138 6561

Table 13: Dataset: AIRPORT(1), Configuration: States/States.
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Parameters Django GC ALLTHETA DC ST Results
ac s t p b o (ms) 1 (ms) o (ms) w1 (ms) o (ms) pos  total
3 4 1 0 0 0, 004 0,013 0,039 0,073 0,076 129 729
3 4 1 0 1 0,003 0, 009 0,019 0,072 0,068 111 2304
3 4 1 1 1 0,004 0,016 0,021 0, 086 0,105 57 729
3 4 2 0 0 0, 008 0,014 0, 045 0,108 0,067 139 529
3 4 2 0 2 0,003 0,018 0,018 0,095 0,116 36 1296
3 4 2 1 0 0,003 0,014 0,020 0,223 0,101 173 3969
3 4 2 1 2 0,005 0,030 0,022 0,263 0,186 35 400
3 4 2 2 0 0,003 0,013 0,022 0,118 0,109 327 10000
3 4 2 2 1 0,006 0,015 0,030 0,190 0,127 99 1296
3 4 2 2 2 0,004 0,015 0,020 0,219 0,107 74 3600
3 4 3 0 0 0,007 0,016 0,036 0,257 0,109 471 3600
3 4 3 0 1 0, 004 0,019 0,023 0,297 0,131 129 4356
3 4 3 0 2 0, 004 0,022 0,018 0,225 0,137 51 1296
3 4 3 0 3 0,004 0,022 0,029 0,190 0,204 132 3969
3 4 3 1 1 0,010 0,018 0, 040 0,162 0,093 452 3600
3 4 3 1 2 0,005 0,016 0,019 0,203 0,126 159 3600
3 4 3 1 3 0,003 0,019 0,018 0,434 0,221 115 10000
3 4 3 2 0 0, 005 0,025 0,022 0,429 0,172 95 2304
3 4 3 2 1 0,018 0,061 0,050 0,639 0,320 31 225
3 4 3 2 2 0,005 0,017 0,018 0,337 0,143 67 2500
34 3 2 3 0,004 0,019 0,021 0,466 0,229 63 2025
3 4 3 3 0 0,011 0,018 0, 044 0,183 0,177 195 2304
3 4 3 3 1 0,004 0,014 0,020 0,278 0,223 156 5776
3 4 3 3 2 0,003 0,020 0,018 0, 844 0,295 116 10000
3 4 3 3 3 0, 004 0,023 0,015 0,186 0,159 48 2304
3 5 1 0 0 0, 005 0,017 0, 045 0,084 0,112 26 64
3 5 2 0 2 0,003 0,023 0,015 0,107 0,155 27 729
3 5 2 1 0 0,003 0,015 0,026 0,085 0,084 141 1296
3 5 2 1 1 0,003 0,020 0,027 0,121 0,126 57 729
3 5 2 1 2 0,005 0,032 0,022 0,186 0,214 30 400
3 5 2 2 0 0,003 0,014 0,020 0,097 0,104 144 5184
3 5 2 2 1 0, 006 0,034 0,029 0,285 0,209 19 256
3 5 2 2 2 0,004 0,017 0,027 0,273 0,105 43 1156
3 5 3 0 0 0,020 0,027 0,052 0,193 0,180 22 144
3 5 3 0 1 0,005 0,016 0,027 0,316 0,111 197 3969
35 3 0 2 0,014 0,060 0, 081 0,223 0,378 2 144
3 5 3 0 3 0,003 0,026 0,019 0,285 0,253 190 10000
3 5 3 1 0 0,023 0,174 0,093 0,245 0, 406 6 16
3 5 3 1 1 0, 004 0,031 0,032 0,235 0,204 70 1296
3 5 3 1 2 0,013 0, 044 0,039 0,348 0,244 47 484
3 5 3 1 3 0,030 0,099 0,091 1,004 0,514 16 49
3 5 3 2 0 0, 004 0,020 0,017 0, 250 0,129 49 1225
3 5 3 2 1 0,003 0,018 0,016 0,211 0,190 177 10000
3 5 3 2 2 0,004 0,033 0,017 0,377 0,268 80 3136
3 5 3 2 3 0,003 0,022 0,015 0,674 0, 359 138 10000
3 5 3 3 0 0,003 0,014 0,018 0,280 0, 146 100 10000
3 5 3 3 1 0,003 0,023 0,017 0,183 0,177 72 5184
3 5 3 3 2 0,006 0,029 0,027 0, 407 0,171 34 841
3 5 3 3 3 0,008 0,025 0,041 0,313 0,473 27 484
3 5 4 0 1 0, 005 0,028 0, 065 0, 399 0,253 372 10000
35 4 0 3 0,004 0,030 0,026 0,449 0,322 196 10000
3 5 4 1 0 0,004 0,022 0,038 0,255 0,171 241 7396
3 5 4 1 1 0,004 0,019 0,025 0,383 0,144 99 4761
3 5 4 1 3 0, 004 0,029 0,034 0,352 0,177 36 1296
3 5 4 1 4 0, 004 0,025 0,028 4,921 0,762 150 10000
35 4 2 0 0,003 0,015 0,038 0,214 0,222 98 7921
3 5 4 2 1 0,003 0,018 0,017 0, 260 0,239 111 10000
3 5 4 2 3 0,003 0,024 0,020 2,659 0,585 129 10000
3 5 4 2 4 0, 008 0,025 0,047 0,490 0,189 154 3249
3 5 4 3 0 0, 004 0,031 0, 029 0,477 0, 345 180 10000
3 5 4 3 1 0,021 0,076 0,111 1,080 0,438 22 121
3 5 4 3 3 0, 004 0,033 0,028 4,210 0,738 191 10000
3 5 4 3 4 0,004 0,027 0,023 2,365 0,630 117 10000
3 5 4 4 0 0,005 0,021 0,025 1,903 0,351 213 10000
3 5 4 4 1 0, 004 0,019 0, 035 4,339 0, 564 127 10000
3 5 4 4 3 0,004 0,029 0,018 4,206 0,624 109 10000
3 5 4 4 4 0,005 0,044 0,023 1,351 0,841 167 10000

Table 14: Dataset: AIRPORT(2), Configuration: States/States.
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7.2.5 Mutagenesis

The problem concerns identifying mutagenic compounds using only the atomic
and bond structure of the compounds [31], [19]. Mutagenic compounds are
often known to be carcinogenic and cause damage to the DNA. So it is of high
interest to the pharmaceutical industry to find out what are the key features in
a compound having mutagenic activity.

The dataset used usually for testing ILP techniques and algorithms consist
of 230 compounds listed in [4]. The atom and bond structure of the drugs were
obtained from the standard molecular modelling package QUANTA. For each
compound, the atoms, bonds, bond types (e.g. aromatic, single, double), atom
types e.g. aromatic carbon, aryl carbon), and the partial charges on atoms are
given.

This data is put into clausal form as follows:

e bond(compound, atom1, atom2, bondtype) stating that compound has a
bond of type bondtype between the atoms atom1 and atom2.

e atm(compound, atom, element, atomtype, charge) stating that in compound
atom has element element of type atomtype and partial charge charge.

For example
atom(127,127_1,¢,22,0.191)
bond(127,127_1,127.6,7)

means that in compound 127, atom number 1 is a carbon atom of QUANTA
type 22 with a partial charge of 0.101, and atoms 1 and 6 are connected by a
bond of type 7 (aromatic). This representation can be used to encode arbitrary
chemical structures.

The hypotheses are generated randomly using a fixed schemata, approaching
the hypotheses generated in real ILP systems. The varying parameters used for
the generation are the size n of the clauses and the number of variables v. The
size of the clauses must be greater than the number of variables.

The general form of the hypotheses clauses is:

active(Mol),
bond(Mol, X, X1, Xinty),
bond(Mol, X1, Xo, Xinty),

bond(Mol, X,,—o, X,—1, Xint,_1),

followed by randomly generated literals of the form bond(Mol, X;, X;, Xinty),
where i,j € {0..v — 1} and k is increased with each new literal added, starting
at k =v.

Example A hypothesis clauses for v = 3 variables and n = 4 literals could be:

active(Mol),

bond(Mol, Xo, X1, Xinty),
bond(Mol, X1, Xo, Xinty),
bond(Mol, X1, Xo, Xints),
bond(Mol, X2, Xy, Xints)

The data used for the example clauses is the real mutagensis data in clausal
form, as presented above.
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Parameters GC ALLTHETA DC ST Django Res

lit var 1 (ms) 1 (ms) © (ms) © (ms) o (ms) pos total
2 2 0,169 7,257 0,361 0,294 0,334 23000 23000
3 2 0,677 8,212 10, 803 15,594 0,614 12190 23000
5 2 1,506 2,280 0,789 2990 23000
10 2 2,702 0,557 0,762 0 23000
20 2 4,380 0, 584 0,815 0 23000
3 3 0, 969 18,610 17,134 24, 849 1,271 14490 23000
5 3 3,554 15,805 2,902 2530 23000
10 3 6,173 8,917 2,253 0 23000
15 3 7,677 5,988 1,603 0 23000
20 3 8,657 0,634 1,397 0 23000
5 5 7,201 4,385 14170 23000
10 5 10, 861 313 23000
15 5 4,421 0 23000
20 5 4,540 0 23000
30 5 0,818 2,171 0 23000
50 10 15,198 0 23000
70 10 9,909 4,915 0 23000
100 10 1,600 4,580 0 23000

Table 15: Dataset: MUTAGENESIS, Variing: number of literals lit and number

of variables var in the hypothesis-clause.

Parameters GC ALLTHETA DC ST Django Res

lit var o (ms) o (ms) o (ms) o (ms) o (ms) pos total
2 2 0,005 61, 309 1,930 1,774 0,097 23000 23000
3 2 0,631 24,622 14,157 21,572 0,237 12190 23000
5 2 1,226 8, 806 0,481 2990 23000
10 2 1,555 3,620 0, 387 0 23000
20 2 5,015 3,913 1,007 0 23000
3 3 1,882 38,590 29,790 40,679 2,528 14490 23000
5 3 3,244 23,830 3,621 2530 23000
10 3 8,040 45,607 8,607 0 23000
15 3 9, 818 65,273 2,820 0 23000
20 3 5,221 4,142 1,713 0 23000
5 5 11,611 6,703 14170 23000
10 5 10, 364 313 23000
15 5 7,458 0 23000
20 5 9, 305 0 23000
30 5 5,240 1,890 0 23000
50 10 49,039 0 23000
70 10 30, 646 6,251 0 23000
100 10 10,091 5,128 0 23000

Table 16: Standard deviations. Dataset: MUTAGENESIS, Variing: number of

literals [it and number of variables var in the hypothesis-clause.
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7.2.6 Prover9

In the domain of theorem proving, a real theorem prover prover9 has been used
to generate clauses. Various theorems have been proved with it, and the clauses
and (first-order) terms that have been generated and tested for subsumption
have been flattened and dumped to a separated file. The #-subsumption algo-
rithms have then been run over these clauses. That way, the algorithms are put
in a real theorem proving context.

Table 18 presents the results of the performance of the 8-subsumption algo-
rithms.

Problem Django GC ALLTHETA DC ST Results
instance © (ms) 1 (ms) © (ms) © (ms) wu (ms) pos total
al 2,100 0, 500 2,860 4,160 148 500
a2 2,220 0,520 3,380 4,360 145 500
AD 0,000 0,000 5,000 0,000 0,000 4 4
BA2 0,220 0,080 0, 640 2,800 0,820 99 500
dep-2b 0, 180 0, 040 0,520 0,980 0, 380 63 500
dist-long-short 0,240 0,060 0, 660 1,840 0,540 37 500
dist-short-long 0, 200 0,060 0, 560 2,380 0, 460 45 500
dnl 1,500 0,380 2,240 28,240 3,360 105 500
H27d 0,000 0,000 0,000 0,000 0, 000 2 2
H42 3,480 0,920 5,420 11,000 201 500
mckenzic 0,140 0,040 0, 340 1,100 0, 400 76 500
MOL-A 0, 600 0,120 1,060 1,700 66 500
mol-ss1 0,431 0,062 0,554 14, 585 1,354 41 325
na-ring-1 0, 440 0,140 0,740 34,780 1,640 352 500
oml-4basis 0,280 0,080 0, 660 11,140 1,640 180 500
omlsax2 0,780 0,240 1,300 41, 860 2,800 351 500
pair-def 0,200 0, 060 0,620 1,520 0,540 128 500
quot-comm 0,060 0,020 0,220 0,420 0,280 318 500
quot-general 0, 060 0,020 0, 240 0,460 0, 360 312 500
quot-xy3b 0,140 0,020 0, 280 0,900 0,220 313 500
shl 0,900 0,180 1,360 2,980 55 500
t4.12 3,360 1,760 4,420 11,060 408 500
uc 0,000 0,000 0,000 0,000 0,000 2 2
x2 0,000 0,000 0,156 0,313 0,156 31 64
x3-ring 0,320 0,080 0, 580 1, 460 0,600 287 500
xcb-reflex 1,600 0,640 4,100 11, 400 6, 660 386 500

Table 17: Average time for one subsumption. Datasets: proverd.

We can observe, that GC has the best performance in most of the cases.
This result has again to be relativated due to the non-completeness of the im-
plementation of GC.

Django is the second best algorithm for this domain, immediately followed
by ALLTHETA.

The #-subsumption problems generated by the theorem prover are relatively
hard problems, compared to the RANDOM domains and the Planning Problems,
since the average execution time for a subsumption is about 100 times longer
for the theorem proving domain.

7.3 Discussion

Django gave good performances on various domains. It inherits the efficiency of
well known CSP algorithms and the computational overhead due to the trans-
formation from a @-subsumption problem to a CSP-problem is often negligible.
Django may be qualified the best allaround subsumer for our tested cases.
Besides, for #-subsumption problems that tends to give a negative answer
(C does not G-subsume D), ALLTHETA outperforms Django up to one order
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Problem Django GC ALLTHETA DC ST Results
instance o (ms) o (ms) o (ms) o (ms) o (ms) pos total
al 0,235 0,504 0,721 5,591 148 500
a2 0,308 0,613 0,766 5,949 145 500
AD 0, 009 0, 006 0,008 0,063 0, 008 4 4
BA2 0,074 0, 286 0,105 7,252 2,163 99 500
dep-2b 0,024 0, 042 0,062 1,306 0, 342 63 500
dist-Tong-short 0,019 0,038 0,393 12,980 0,706 37 500
dist-short-long 0,014 0,016 0,055 3,729 0,570 45 500
dnl 0,240 0, 665 4,219 76, 646 4,817 105 500
H27d 0,040 0,056 0,065 0,647 0,151 2 2
H42 0,273 0, 625 0,801 10, 502 201 500
mckenzie 0,024 0,033 0,071 2,571 0,400 76 500
MOL-A 0,104 0,163 0,415 2,849 66 500
mol-ssl 0,063 0, 085 0,254 101, 483 2,418 41 325
na-ring-1 0,145 0,251 0,420 547, 414 2, 689 352 500
oml-4basis 0,025 0,039 0,103 15,157 2,809 180 500
omlsax? 0,306 0,169 0,208 194, 226 2,791 351 500
pair-def 0,022 0,023 0,049 7,284 0,632 128 500
quot-comm 0,004 0,004 0, 009 0,933 0,781 318 500
quot-general 0,007 0,009 0,307 0,975 0,906 312 500
quot-xy3b 0,022 0,091 0,079 5,624 0,378 313 500
shi 1,075 0,352 0,969 5,590 55 500
t4.12 0, 547 0, 885 8,625 13,542 408 500
uc 0,014 0,005 0,001 0,006 0, 004 2 2
x2 0,010 0, 009 0,028 0,279 0,035 31 64
x3-ring 0,028 0, 035 0,070 1,931 0,812 287 500
xcb-reflex 0,068 0,228 7,731 21,269 7,984 386 500

Table 18: Standard deviations. Datasets: prover.

of magnitude faster. ALLTHETA invests more time in advance for constructing
graph-contexts for literals which shows up to be very efficient in the negative
cases.

The k-parameter can give us a clue how probable a successful subsumption
is. The lower the x value, the less probable.

Although the authors of Django claimed that Django is “orders of magni-
tudes” faster than GC, this could only be observed in some rare cases. GC gives
competitive results but is often solely the second choice. It has to be pointed
out again, that the implementation of GC is not complete, and the correction
might render GC slower.

The older algorithms ST and DC stay ofter far behind in computational cost
than the others. ST relies heavily on the order of the literals. And the literals
cannot be sorted optimally without doing a full subsumption-like check.

DC did rarely outperform ST. This may partly be due to our implementation
of DC which could surely be further optimized. (By the way: we also imple-
mented ST.) No other experimental result than ours is available to the best of
our knowledge for DC. What is known is the better worse case complexity of
DC. So even an optimized implementation of DC may be slower in the average
case. One has to note that in our real domains, the #-subsumption problems
were not often decomposable into simpler independent subproblems—which is
the key idea of DC.

For the problem of finding all solutions, ALLTHETA is best for detecting the
negative cases. FASY is clearly better suited if many substitutions are expected
as result. This is particularly the case for real problems from the planning
domain for calculating successor and predecessor states.
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8 Conclusion

We have given a survey of the most popular §-subsumption algorithms based
on a deep study of the literature.

These algorithms were developed for different purposes. A unified framework
and logical formalism was formally defined in order to have a common basis for
comparison. Some authors imposed special restrictions on the input clauses, so
that adaptations had to be applied.

Most of the algorithms were not presented in a formal way. Mainly the new
feature were described in depth but not completely formally. For that reason,
the correctness proofs given by the authors were often only proof-sketches and
correctness ideas. We provided formal proofs for the correctness of the main
parts of the algorithms where such were not available.

Furthermore, we provided a full scale experimental analysis with data from
various domains. Most of the data had either been transformed into clausal
form or been generated by specially developed generators.

Particular care has been put in either having data that was extracted from
real problems (e.g. we extracted exactly those clauses that were really check for
subsumption in a real theorem proving engine); or having artificial data very
similar to real cases.

We analysed the results and provided arguments when a particular subsump-
tion implementation should best be used.

Besides, this experimental analysis showed up to be useful for uncovering
some hidden bugs in the implementations.

8.1 Future work

In some cases however, a deeper analysis would be required to determine the
best algorithm.

A method would be to take the output of our experimental result as input
to a learning system. It is not said that an easy to evaluate heuristic (the
computational cost of the heuristic should only be some negligible part of the
overall cost for the whole subsumption) could be derived from such a learning.

Another way could be to guess a function (in the spirit of the x-parameter)
with the basic parameters that are common to all domains, namely the size of the
clause, the number of variables, the number of constants, the arity. Such guesses
should be preceded by probabilistic considerations in order to find plausible
useful functions.
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