### Answer Set Programming: Basics

Sebastian Rudolph

Computational Logic Group Technische Universität Dresden

Slides based on a lecture by Martin Gebser and Torsten Schaub. Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Sebastian Rudolph (TUD)

# Answer Set Programming – Basics: Overview



- 2 Semantics
- 3 Examples

#### 4 Reasoning modes

Sebastian Rudolph (TUD)

ASP Syntax

## Outline

#### 1 ASP Syntax

- 2 Semantics
- 3 Examples

#### 4 Reasoning modes

Sebastian Rudolph (TUD)

## Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules
A (normal) rule, r, is of the form

 $a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$ 

where  $0 \le m \le n$  and each  $a_i \in \mathcal{A}$  is an atom for  $0 \le i \le n$ 

 $nead(r) = a_0$   $body(r) = \{a_1, \dots, a_m, \neg a_{m+1}, \dots, \neg a_n\}$   $body(r)^+ = \{a_1, \dots, a_m\}$   $body(r)^- = \{a_{m+1}, \dots, a_n\}$   $atom(P) = \bigcup_{r \in P} \{\{head(r)\} \cup body(r)^+ \cup body(r)^-\}$   $body(P) = \{body(r) \mid r \in P\}$ program P is positive if  $body(r)^- = \emptyset$  for all  $r \in P$ 

Sebastian Rudolph (TUD)

### Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules
A (normal) rule, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where  $0 \le m \le n$  and each  $a_i \in A$  is an atom for  $0 \le i \le n$ Notation

$$head(r) = a_0$$
  

$$body(r) = \{a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n\}$$
  

$$body(r)^+ = \{a_1, \dots, a_m\}$$
  

$$body(r)^- = \{a_{m+1}, \dots, a_n\}$$
  

$$atom(P) = \bigcup_{r \in P} (\{head(r)\} \cup body(r)^+ \cup body(r)^-)$$
  

$$body(P) = \{body(r) \mid r \in P\}$$
  
roorram P is positive if  $body(r)^- = \emptyset$  for all  $r \in P$ 

Sebastian Rudolph (TUD)

## Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules
A (normal) rule, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where  $0 \le m \le n$  and each  $a_i \in A$  is an atom for  $0 \le i \le n$ Notation

$$head(r) = a_0$$
  

$$body(r) = \{a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n\}$$
  

$$body(r)^+ = \{a_1, \dots, a_m\}$$
  

$$body(r)^- = \{a_{m+1}, \dots, a_n\}$$
  

$$atom(P) = \bigcup_{r \in P} (\{head(r)\} \cup body(r)^+ \cup body(r)^-)$$
  

$$body(P) = \{body(r) \mid r \in P\}$$
  
program P is positive if  $body(r)^- = \emptyset$  for all  $r \in P$ 

Sebastian Rudolph (TUD)

A

Semantics

## Outline

#### 1 ASP Syntax





#### 4 Reasoning modes

Sebastian Rudolph (TUD)

Answer Set Programming: Basics

5/15

#### Stable models of positive programs

A set of atoms X is closed under a positive program P iff for any r ∈ P, head(r) ∈ X whenever body(r)<sup>+</sup> ⊆ X
 X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)

• Cn(P) corresponds to the  $\subseteq$ -smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Stable models of positive programs

A set of atoms X is closed under a positive program P iff for any r ∈ P, head(r) ∈ X whenever body(r)<sup>+</sup> ⊆ X
 X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)

• Cn(P) corresponds to the  $\subseteq$ -smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Stable models of positive programs

A set of atoms X is closed under a positive program P iff for any r ∈ P, head(r) ∈ X whenever body(r)<sup>+</sup> ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)

• Cn(P) corresponds to the  $\subseteq$ -smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Stable models of positive programs

A set of atoms X is closed under a positive program P iff for any r ∈ P, head(r) ∈ X whenever body(r)<sup>+</sup> ⊆ X
 X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)

• Cn(P) corresponds to the  $\subseteq$ -smallest model of P (ditto)

• The set Cn(P) of atoms is the stable model of a *positive* program P

#### Stable model of normal programs

The reduct, P<sup>X</sup>, of a program P relative to a set X of atoms is defined by

$$P^X = \{ head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset \}$$

• A set X of atoms is a stable model of a program P, if  $Cn(P^X) = X$ 

Note Cn(P<sup>X</sup>) is the ⊆-smallest (classical) model of P<sup>X</sup>
 Note Every atom in X is justified by an "applying rule from P"

Stable model of normal programs

The reduct, P<sup>X</sup>, of a program P relative to a set X of atoms is defined by

$$P^X = \{head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset\}$$

• A set X of atoms is a stable model of a program P, if  $Cn(P^X) = X$ 

Note Cn(P<sup>X</sup>) is the ⊆-smallest (classical) model of P<sup>X</sup>
 Note Every atom in X is justified by an "applying rule from P"

Sebastian Rudolph (TUD)

Stable model of normal programs

The reduct, P<sup>X</sup>, of a program P relative to a set X of atoms is defined by

$$P^X = \{head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset\}$$

• A set X of atoms is a stable model of a program P, if  $Cn(P^X) = X$ 

Note Cn(P<sup>X</sup>) is the ⊆-smallest (classical) model of P<sup>X</sup>
Note Every atom in X is justified by an "applying rule from P"

Semantics

# A closer look at $P^X$

- In other words, given a set X of atoms from P,
  - $P^X$  is obtained from P by deleting
    - 1 each rule having  $\sim a$  in its body with  $a \in X$ and then
    - 2 all negative atoms of the form ~a in the bodies of the remaining rules

Note Only negative body literals are evaluated wrt X

Semantics

# A closer look at $P^X$

- In other words, given a set X of atoms from P,
  - $P^X$  is obtained from P by deleting
    - 1 each rule having  $\sim a$  in its body with  $a \in X$ and then
    - 2 all negative atoms of the form ~a in the bodies of the remaining rules
- Note Only negative body literals are evaluated wrt X

## Outline

#### 1 ASP Syntax





#### 4 Reasoning modes

Sebastian Rudolph (TUD)

### A first example

#### $P = \{p \leftarrow p, \ q \leftarrow {\sim}p\}$



#### A first example

#### $P = \{p \leftarrow p, \ q \leftarrow {\sim}p\}$

| X                       | $P^X$                              | $Cn(P^X)$ |
|-------------------------|------------------------------------|-----------|
| { }                     | $p \leftarrow p$                   | $\{q\}$ X |
|                         | $q \leftarrow$                     |           |
| { <i>p</i> }            | $p \leftarrow p$                   | Ø×        |
| { q}                    | $p \leftarrow p$<br>$q \leftarrow$ | $\{q\}$ V |
| { <i>p</i> , <i>q</i> } | $p \leftarrow p$                   | Ø×        |

$$P = \{p \leftarrow p, \ q \leftarrow \neg p\}$$



$$P = \{p \leftarrow p, \ q \leftarrow \neg p\}$$



$$P = \{p \leftarrow p, \ q \leftarrow \neg p\}$$



$$P = \{p \leftarrow p, \ q \leftarrow \neg p\}$$



$$P = \{p \leftarrow p, \ q \leftarrow \neg p\}$$



#### A second example

#### $P = \{p \leftarrow \neg q, \ q \leftarrow \neg p\}$



Sebastian Rudolph (TUD)

Answer Set Programming: Basics

11 / 15

#### A second example

$$P = \{p \leftarrow {\sim}q, \ q \leftarrow {\sim}p\}$$



Sebastian Rudolph (TUD)

Answer Set Programming: Basics

 $11 \, / \, 15$ 

#### A second example

$$P = \{p \leftarrow \neg q, \ q \leftarrow \neg p\}$$



#### A second example

$$P = \{p \leftarrow \neg q, \ q \leftarrow \neg p\}$$



#### A second example

$$P = \{p \leftarrow \neg q, \ q \leftarrow \neg p\}$$



Sebastian Rudolph (TUD)

Answer Set Programming: Basics

 $11 \, / \, 15$ 

#### A second example

$$P = \{p \leftarrow \neg q, \ q \leftarrow \neg p\}$$



Sebastian Rudolph (TUD)

### A third example

 $P = \{p \leftarrow \sim p\}$ 



Sebastian Rudolph (TUD)

Answer Set Programming: Basics

12 / 15

### A third example

$$P = \{p \leftarrow {\sim} p\}$$



### A third example

$$P = \{p \leftarrow {\sim} p\}$$



### A third example

$$P = \{p \leftarrow {\sim} p\}$$



# Some properties

#### A logic program may have zero, one, or multiple stable models!

- If X is a stable model of a logic program P, then X is a model of P (seen as a formula)
- If X and Y are stable models of a normal program P, then X ∉ Y

# Some properties

- A logic program may have zero, one, or multiple stable models!
- If X is a stable model of a logic program P, then X is a model of P (seen as a formula)
- If X and Y are stable models of a *normal* program P, then  $X \not\subset Y$

Reasoning modes

## Outline

#### 1 ASP Syntax

- 2 Semantics
- 3 Examples

#### 4 Reasoning modes

Sebastian Rudolph (TUD)

Reasoning modes

# Reasoning Modes

- Satisfiability
- Enumeration<sup>†</sup>
- Projection<sup>†</sup>
- Intersection<sup>‡</sup>
- Union<sup>‡</sup>
- Optimization
- and combinations of them

 $^{\dagger}$  without solution recording

<sup>‡</sup> without solution enumeration

Sebastian Rudolph (TUD)