Agenda

• Recap Tableau Calculus
• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations
• Classification
• Summary
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
Tableau Algorithm for ALC Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \textasciitilde makes rules simpler
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \rightarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcap-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcap-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
Tableau Algorithm for ALC Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcup-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
- C is satisfiable iff there is a successful tableau construction
Treatment of Knowledge Bases

we condense the TBox into one concept:
for \(T = \{ C_i \sqsubseteq D_i \mid 1 \leq i \leq n \} \), \(C_T = \text{NNF}(\bigwedge_{1 \leq i \leq n} \neg C_i \sqcup D_i) \)

we extend the rules of the \(\mathcal{ALC} \) tableau algorithm:

\(T \)-rule: for an arbitrary \(v \in V \) with \(C_T \notin L(v) \),
let \(L(v) := L(v) \cup \{ C_T \} \).

in order to take an ABox \(A \) into account, initialize \(G \) such that

- \(V \) contains a node \(v_a \) for every individual \(a \) in \(A \)
- \(L(v_a) = \{ C \mid C(a) \in A \} \)
- \(\langle v_a, v_b \rangle \in E \) iff \(r(a, b) \in A \)
Extensions of the Logic

- plus inverses ($ALCI$): inverse roles in edge labels, definition and use of r-neighbors instead of r-successors in tableau rules
- plus functional roles ($ALCIF$): merging of nodes to account for functionality

blocking guarantees termination:
- ALC subset-blocking
- plus inverses ($ALCI$): equality blocking
- plus functional roles ($ALCIF$): pairwise blocking
Agenda

- Recap Tableau Calculus
- **Optimizations**
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Optimizations

- Naïve implementation not performant enough
 - T-rule adds one disjunction per axiom to the corresponding node
 - ontologies may contain $>1,000$ axioms and tableaux may contain thousands of nodes
Optimizations

- Naïve implementation not performant enough
 - T-rule adds one disjunction per axiom to the corresponding node
 - ontologies may contain $> 1,000$ axioms and tableaux may contain thousands of nodes

- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - ...
Optimizations

- Naïve implementation not performant enough
 - T-rule adds one disjunction per axiom to the corresponding node
 - ontologies may contain $> 1,000$ axioms and tableaux may contain thousands of nodes

- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - ...
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Unfolding

- \(T \)-rule is not necessary if \(T \) is unfoldable, i.e., every axiom is:
 - definitorial: form \(A \sqsubseteq C \) or \(A \equiv C \) for \(A \) a concept name
 \((A \equiv C \) corresponds to \(A \sqsubseteq C \) and \(C \sqsubseteq A) \)
 - acyclic: \(C \) uses \(A \) neither directly nor indirectly
 - unique: only one such axiom exists for every concept name \(A \)
Unfolding

- \mathcal{T}-rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name
 $(A \equiv C$ corresponds to $A \sqsubseteq C$ and $C \sqsubseteq A$)
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A

- If \mathcal{T} is unfoldable, the TBox can be (unfolded) into a concept
Unfolding Example

• We check satisfiability of A w.r.t. the TBox \mathcal{T}

\[\mathcal{T}:
A \sqsubseteq B \sqcap \exists r.C \\
B \equiv C \sqcup D \\
C \sqsubseteq \exists r.D\]
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

\begin{align*}
\mathcal{T}: \\
A &\sqsubseteq B \sqcap \exists r.C \\
B &\equiv C \sqcup D \\
C &\sqsubseteq \exists r.D
\end{align*}
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$
\begin{align*}
A \\
\sim A \sqcap B \sqcap \exists r. C
\end{align*}
$$

\mathcal{T}:

$$
\begin{align*}
A & \sqsubseteq B \sqcap \exists r. C \\
B & \equiv C \sqcup D \\
C & \sqsubseteq \exists r. D
\end{align*}
$$
Unfolding Example

- We check satisfiability of A w.r.t. the TBox T.

\[
\begin{align*}
A \\
\sim A \cap B \cap \exists r.C \\
\sim A \cap (C \cup D) \cap \exists r.C
\end{align*}
\]

T:
\[
\begin{align*}
A &\subseteq B \cap \exists r.C \\
B &\equiv C \cup D \\
C &\subseteq \exists r.D
\end{align*}
\]
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

\[
\begin{align*}
A & \substack{\square \ \ A \sqcap B \sqcap \exists r. C \\
\rightarrow A \sqcap (C \sqcup D) \sqcap \exists r. C \\
\rightarrow A \sqcap ((C \sqcap \exists r. D) \sqcup D) \sqcap \exists r. (C \sqcap \exists r. D)
\end{align*}
\]

\mathcal{T}:

- $A \sqsubseteq B \sqcap \exists r. C$
- $B \equiv C \sqcup D$
- $C \sqsubseteq \exists r. D$
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

 \[
 \begin{align*}
 &\mathcal{T}: \\
 &A \subseteq B \cap \exists r.C \\
 &B \equiv C \cup D \\
 &C \subseteq \exists r.D \\
 &A \supseteq B \cap \exists r.C \\
 &A \cap (C \cap \exists r.D) \subseteq (C \cap \exists r.D) \\
 &\vdash A \equiv (C \cup D) \cap \exists r.(C \cap \exists r.D)
 \end{align*}
 \]

- A is satisfiable w.r.t. \mathcal{T} iff

 \[
 A \cap ((C \cap \exists r.D) \cup D) \cap \exists r.(C \cap \exists r.D)
 \]

 is satisfiable w.r.t. the empty TBox
Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
\[U = A \cap ((C \cap \exists r.D) \cup D) \cap \exists r.(C \cap \exists r.D) : \]

\[
\begin{align*}
L(v_0) &= \{U, A, (C \cap \exists r.D) \cup D, \\
&\quad \exists r.(C \cap \exists r.D), C \cap \exists r.D, \\
&\quad C, \exists r.D\} \\
L(v_1) &= \{C \cap \exists r.D, C, \exists r.D\} \\
L(v_2) &= \{D\} \\
L(v_3) &= \{D\}
\end{align*}
\]
Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
\[U = A \cap ((C \cap \exists r.D) \cup D) \cap \exists r.(C \cap \exists r.D): \]

Only one disjunctive decision left!
Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $T = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$
Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \cap \neg C$ w.r.t. $T = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \cap A \cap B \cap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \cap A \cap B \cap (\neg C \sqcup \neg A \sqcup \neg B)$

- better: apply NNF and unfold if needed, via corresponding tableau rules:
 - $A \equiv C \leadsto A \sqsubseteq C$ and $A \sqsupseteq C$

 \sqsubseteq-rule: For $v \in V$ such that $A \sqsubseteq C \in T$, $A \in L(v)$ and $C \notin L(v)$
 let $L(v) := L(v) \cup C$.

 \sqsupseteq-rule: For $v \in V$ such that $A \sqsupseteq C \in T$, $\neg A \in L(v)$ and $\neg C \notin L(v)$
 let $L(v) := L(v) \cup \{\neg C\}$.

 \neg-rule: For $v \in V$ such that $\neg C \in L(v)$ and $\text{NNF}(\neg C) \notin L(v)$,
 let $L(v) := L(v) \cup \{\text{NNF}(\neg C)\}$.
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCI, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - \mathcal{T}_g is treated via the \mathcal{T}-rule

- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u

- Nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCI, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - \mathcal{T}_g is treated via the \top-rule

- Absorption decreases \mathcal{T}_g and increases \mathcal{T}_u
 1. take an axiom from \mathcal{T}_g, e.g., $A \sqsubseteq B \sqsubseteq C$
 2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 3. if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 4. otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$,
 then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCl, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - \mathcal{T}_g is treated via the \mathcal{T}-rule

- absorption decreases \mathcal{T}_g and increases \mathcal{T}_u

1. take an axiom from \mathcal{T}_g, e.g., $A \sqcap B \sqsubseteq C$
2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
3. if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed; $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
4. otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u

- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCIIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - \mathcal{T}_g is treated via the \mathcal{T}-rule
- Absorption decreases \mathcal{T}_g and increases \mathcal{T}_u
 1. take an axiom from \mathcal{T}_g, e.g., $A \sqcap B \sqsubseteq C$
 2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 3. if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed; $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 4. otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u
- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u
- Nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r.A \in L(v)\)

\[v \quad \sqcap \text{-rule} \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r.A\} \]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \sqcap \forall r. A \in L(v) \)

\[
\begin{align*}
\sqcap \text{-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\exists r. \neg A, \forall r. A\} \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \quad \vdots \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_n\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)\)

\[
\begin{align*}
\setminus\text{-rule} \quad L(v) & := L(v) \cup \{ (C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. A \} \\
\sqcup\text{-rule} \quad L(v) & := L(v) \cup \{ C_i \} \\
\vdots & \vdots \vdots \\
\sqcup\text{-rule} \quad L(v) & := L(v) \cup \{ C_n \} \\
\exists\text{-rule} \quad L(w) & := \{ \neg A \}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \cup D_1) \cap \ldots \cap (C_n \cup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

\[
\begin{align*}
\sqcap\text{-rule} \quad L(v) &:= L(v) \cup \{(C_1 \cup D_1), \ldots, (C_n \cup D_n), \\exists r. \neg A, \forall r. A\} \\
\sqcup\text{-rule} \quad L(v) &:= L(v) \cup \{C_1\} \\
\vdots \quad \vdots \quad \vdots \\
\sqcup\text{-rule} \quad L(v) &:= L(v) \cup \{C_n\} \\
\exists\text{-rule} \quad L(w) &:= \{\neg A\} \\
\forall\text{-rule} \quad L(w) &:= \{\neg A, A\} \quad \text{clash}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)\)

\[
\begin{align*}
\text{⊓-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. A\} \\
\text{⊔-rule} & \quad L(v) := L(v) \cup \{C_i\} \\
\text{∃-rule} & \quad L(w) := \{\neg A\} \\
\text{∀-rule} & \quad L(w) := \{\neg A, A\} \text{ clash}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \lnot A \cap \forall r. A \in L(v)$

\[\begin{align*}
\forall \text{-rule} & \quad L(v) := L(v) \cup \{ (C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
\exists \text{-rule} & \quad L(v) := L(v) \cup \{ C_1 \}
\end{align*}\]

\[\begin{align*}
\forall \text{-rule} & \quad L(w) := \{ \lnot A \}, \\
\exists \text{-rule} & \quad L(w) := \{ \lnot A, A \} \quad \text{clash}
\end{align*}\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)\)

\[
\begin{align*}
\underline{\neg}\text{-rule} & \quad L(v) \ := \ L(v) \cup \{ (C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. A \} \\
\sqcup\text{-rule} & \quad L(v) \ := \ L(v) \cup \{ C_1 \} \\
\vdots & \quad \vdots \quad \vdots \\
\sqcap\text{-rule} & \quad L(v) \ := \ L(v) \cup \{ C_n \} \\
\exists\text{-rule} & \quad L(v) \ := \ L(v) \cup \{ \neg A \} \\
\forall\text{-rule} & \quad L(v) \ := \ L(v) \cup \{ D_n \} \\
\exists\text{-rule} & \quad L(w) \ := \ \{ \neg A \} \\
\end{align*}
\]

\(w\)
Despite those optimizations, search space often too big

Let $v \in V$ with $(C_1 \cup D_1) \cap \ldots \cap (C_n \cup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

\[
\begin{aligned}
\neg \text{-rule} \quad L(v) & := L(v) \cup \{(C_1 \cup D_1), \ldots, (C_n \cup D_n), \\
& \exists r. \neg A, \forall r. A\} \\
\sqcup \text{-rule} \quad L(v) & := L(v) \cup \{C_1\} \\
\vdots & \vdots \\
\sqcap \text{-rule} \quad L(v) & := L(v) \cup \{C_n\} \\
\exists \text{-rule} \quad L(w) & := \{\neg A\} \\
\forall \text{-rule} \quad L(w) & := \{\neg A, A\} \quad \text{clash} \\
\end{aligned}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

\[\begin{align*}
\sqcap \text{-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_1\} \\
\exists \text{-rule} & \quad L(w) := \{\neg A\} \\
\forall \text{-rule} & \quad L(w) := \{\neg A, A\} \quad \text{clash}
\end{align*}\]

- exponentially big search space is traversed
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept's “origin”
 - initially, all concepts are tagged with \emptyset
 - tableau rules combine and extend these tags
 - \sqcup-rule adds the tag $\{d\}$ to the existing tag, where d is the \sqcup-depth (number of \sqcup-rules applied by now)
 - when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a \sqcup-rule
Dependency-Directed Backtracking

• goal: recognize bad branching decisions quickly and do not repeat them
• most frequently used: backjumping
• backjumping works roughly as follows:
 – concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept’s “origin”
 – initially, all concepts are tagged with \emptyset
 – tableau rules combine and extend these tags
 – \sqcup-rule adds the tag $\{d\}$ to the existing tag, where d is the \sqcup-depth (number of \sqcup-rules applied by now)
 – when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 – jump back to the last relevant application of a \sqcup-rule
• irrelevant part of the search space is not considered
Dependency-Directed Backtracking Example

\((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)\) tagged with \(\emptyset\)
Dependency-Directed Backtracking Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\[\forall \text{-rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \quad \text{all with } \emptyset\]
Dependency-Directed Backtracking Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \text{ tagged with } \emptyset\]

\[\forall\text{-rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \text{ all with } \emptyset\]

\[\sqcup\text{-rule } L(v) := L(v) \cup \{C_1\} \text{ } C_1 \text{ tagged with } \{1\}\]

\[\vdots \text{ } \vdots \text{ } \vdots \]

\[\sqcup\text{-rule } L(v) := L(v) \cup \{C_n\} \text{ } C_n \text{ tagged with } \{n\}\]
Dependency-Directed Backtracking Example

\[(C_1 \sqsupseteq D_1) \sqcap \ldots \sqcap (C_n \sqsupseteq D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \text{ tagged with } \emptyset\]

\[
\begin{align*}
\sqcap \text{-rule} & \quad L(v) := L(v) \cup \{ (C_1 \sqsupseteq D_1), \ldots, (C_n \sqsupseteq D_n), \\
& \quad \exists r. \neg A, \forall r. A \} \quad \text{all with } \emptyset \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{ C_1 \} \quad C_1 \text{ tagged with } \{1\} \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{ C_n \} \quad C_n \text{ tagged with } \{n\} \\
\exists \text{-rule} & \quad L(w) := \{ \neg A \} \quad A, r \text{ tagged with } \emptyset
\end{align*}
\]
Dependency-Directed Backtracking Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \tag{tagged with \emptyset}\]

\[
\begin{align*}
\sqcap &-\text{rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \exists r. \neg A, \forall r. A\} \tag{all with \emptyset}\\
\sqcup &-\text{rule } L(v) := L(v) \cup \{C_1\} \tag{C_1 \text{ tagged with } \{1\}}\\
\vdots & \vdots \vdots \vdots \\
\sqcup &-\text{rule } L(v) := L(v) \cup \{C_n\} \tag{C_n \text{ tagged with } \{n\}}\\
\exists &-\text{rule } L(w) := \{\neg A\} \tag{A, r \text{ tagged with } \emptyset}\\
\forall &-\text{rule } L(w) := \{\neg A, A\} \tag{\neg A \text{ tagged with mit } \emptyset}
\end{align*}
\]
Dependency-Directed Backtracking Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \tag{tagged with }\emptyset\]

\[
\begin{align*}
\sqcap &\text{-rule } L(v) &:=& L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& & & \exists r. \neg A, \forall r. A\} &\text{all with }\emptyset \\
\sqcup &\text{-rule } L(v) &:=& L(v) \cup \{C_1\} &C_1 \text{ tagged with }\{1\} \\
\exists &\text{-rule } L(w) &:=& \{\neg A\} &A, r \text{ tagged with }\emptyset \\
\forall &\text{-rule } L(w) &:=& \{\neg A, A\} &\text{clash} \\
\end{align*}
\]

\[
\begin{align*}
\exists &\text{-rule } L(w) &:=& \{\neg A\} &A, r \text{ tagged with }\emptyset \\
\forall &\text{-rule } L(w) &:=& \{\neg A, A\} &\text{clash} \\
\end{align*}
\]

\[
\begin{align*}
\exists &\text{-rule } L(w) &:=& \{\neg A\} &A, r \text{ tagged with }\emptyset \\
\forall &\text{-rule } L(w) &:=& \{\neg A, A\} &\text{clash} \\
\end{align*}
\]

\[
\begin{align*}
\exists &\text{-rule } L(w) &:=& \{\neg A\} &A, r \text{ tagged with }\emptyset \\
\forall &\text{-rule } L(w) &:=& \{\neg A, A\} &\text{clash} \\
\end{align*}
\]

\[
\begin{align*}
\exists &\text{-rule } L(w) &:=& \{\neg A\} &A, r \text{ tagged with }\emptyset \\
\forall &\text{-rule } L(w) &:=& \{\neg A, A\} &\text{clash} \\
\end{align*}
\]

\[
\begin{align*}
\exists &\text{-rule } L(w) &:=& \{\neg A\} &A, r \text{ tagged with }\emptyset \\
\forall &\text{-rule } L(w) &:=& \{\neg A, A\} &\text{clash} \\
\end{align*}
\]

\[
\begin{align*}
\exists &\text{-rule } L(w) &:=& \{\neg A\} &A, r \text{ tagged with }\emptyset \\
\forall &\text{-rule } L(w) &:=& \{\neg A, A\} &\text{clash} \\
\end{align*}
\]
Dependency-Directed Backtracking Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\[\text{\textbf{\textbf{\textcircled{\textbf{\textbf{v}}}}}} \quad \sqcap\text{-rule} \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \quad \text{all with } \emptyset\]

\[\text{\textbf{\textbf{\textcircled{\textbf{\textbf{r}}}}}} \quad \sqcup\text{-rule} \quad L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}\]

\[\text{\textbf{\textbf{\textcircled{\textbf{\textbf{w}}}}}} \quad \sqcap\text{-rule} \quad L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}\]

\[\exists\text{-rule} \quad L(w) := \{\neg A\} \quad A, r \text{ tagged with } \emptyset\]

\[\forall\text{-rule} \quad L(w) := \{\neg A, A\} \quad \text{clash} \quad \neg A \text{ tagged with mit } \emptyset\]

• \(\text{tag}(A) \cup \text{tag}(\neg A) = \emptyset\)
Dependency-Directed Backtracking Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \text{ tagged with } \emptyset\]

\[
\begin{array}{l}
\square\text{-rule} \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \quad \text{all with } \emptyset \\
\cup\text{-rule} \quad L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\} \\
\exists\text{-rule} \quad L(w) := \{-A\} \quad A, r \text{ tagged with } \emptyset \\
\forall\text{-rule} \quad L(w) := \{-A, A\} \quad \text{clash} \\
\end{array}
\]

- \(\text{tag}(A) \cup \text{tag}(\neg A) = \emptyset\)
- None of the \(\cup\)-rules has contributed to the contradiction
Dependency-Directed Backtracking Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

<table>
<thead>
<tr>
<th>Rule</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqcap)-rule</td>
<td>(L(v) := L(v) \cup {(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A}) all with (\emptyset)</td>
</tr>
<tr>
<td>(\sqcup)-rule</td>
<td>(L(v) := L(v) \cup {C_1}) (C_1) tagged with ({1})</td>
</tr>
<tr>
<td>(\sqcap)-rule</td>
<td>(L(v) := L(v) \cup {C_n}) (C_n) tagged with ({n})</td>
</tr>
<tr>
<td>(\exists)-rule</td>
<td>(L(w) := {\neg A}) (A, r) tagged with (\emptyset)</td>
</tr>
<tr>
<td>(\forall)-rule</td>
<td>(L(w) := {\neg A, A}) clash (\neg A) tagged with mit (\emptyset)</td>
</tr>
</tbody>
</table>

- \(\text{tag}(A) \cup \text{tag}(\neg A) = \emptyset\)
- None of the \(\sqcup\)-rules has contributed to the contradiction
- Output \text{false} (unsatisfiable)
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, e.g., \(A \cap (B \cap C) \equiv \cap \{A, B, C\}, \forall r. C \equiv \neg \exists r. \neg C \)
 - simplification, e.g., \(\cap \{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r. \bot \equiv \bot, \forall r. \top \equiv \top \)
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, e.g., $A \cap (B \cap C) \equiv \cap\{A, B, C\}, \forall r. C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\cap\{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r. \bot \equiv \bot, \forall r. \top \equiv \top$

- **caching**
 - prevents the repeated construction of equal subtrees
 - $L(v)$ initialized with $\{C_1, \ldots, C_n\}$ via \exists- and \forall-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \cap \ldots \cap C_n$, update the cache
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, e.g., \(A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\} \), \(\forall r.C \equiv \neg \exists r.\neg C \)
 - simplification, e.g., \(\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r.\bot \equiv \bot, \forall r.\top \equiv \top \)

- **caching**
 - prevents the repeated construction of equal subtrees
 - \(L(v) \) initialized with \(\{C_1, \ldots, C_n\} \) via \(\exists \)- and \(\forall \)-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of \(C_1 \sqcap \ldots \sqcap C_n \), update the cache

- **heuristics**
 - try to find good orders for the “don’t care” nondeterminism
 - e.g., \(\sqcap, \forall, \sqcup, \exists \)
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, e.g., \(A \cap (B \cap C) \equiv \cap \{A, B, C\} \), \(\forall r.C \equiv \lnot \exists r.\lnot C \)
 - simplification, e.g., \(\cap \{A, \ldots, \lnot A, \ldots\} \equiv \perp \), \(\exists r.\perp \equiv \perp \), \(\forall r.\top \equiv \top \)

- **caching**
 - prevents the repeated construction of equal subtrees
 - \(L(v) \) initialized with \(\{C_1, \ldots, C_n\} \) via \(\exists \)- and \(\forall \)-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of \(C_1 \cap \ldots \cap C_n \), update the cache

- **heuristics**
 - try to find good orders for the “don’t care” nondeterminism
 - e.g., \(\cap, \forall, \sqcup, \exists \)

- ...
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is **classification**

- compute all subclass relationships between atomic concepts in \mathcal{T}
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T} together with the ABox $(C \cap \neg D)(a)$ (or, equivalently: $C(a), (\neg D)(a)$)
 - \rightsquigarrow if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - \rightsquigarrow if \top is unsatisfiable: subsumption holds (no counter-model exists)

naïve approach needs n^2 subsumption checks for n concept names

normally cached in the concept hierarchy graph
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T} together with the ABox $(C \cap \neg D)(a)$ (or, equivalently: $C(a), (\neg D)(a)$)
 - \models if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - \models if \top is unsatisfiable: subsumption holds (no counter-model exists)

- naïve approach needs n^2 subsumption checks for n concept names
- normally cached in the concept hierarchy graph
Optimizing Classification

most wide-spread technique is called enhanced traversal
Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts
Optimizing Classification

most wide-spread technique is called **enhanced traversal**

- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts
- transitivity of \sqsubseteq used to save checks

If $A \sqsubseteq B$ and $C \sqsubseteq D$ hold,
- then $B \sqsubseteq C \rightarrow A \sqsubseteq D$
- and $A \not\sqsubseteq D \rightarrow B \not\sqsubseteq C$
Enhanced Traversal Example

already created hierarchy:

\[
\begin{array}{c}
\top \\
\downarrow \\
\text{Disease} \\
\downarrow \\
\text{JuvDisease} \\
\downarrow \\
\text{Arthritis} \\
\downarrow \\
\text{JuvArthritis} \\
\end{array}
\]

Goal: insertion of JointDisease

Top-Down Phase:

\[
\begin{array}{c}
\downarrow \\
\text{JointDisease} \\
\downarrow \\
\text{JointDisease} \\
\downarrow \\
\text{JointDisease} \\
\end{array}
\]

Bottom-Up Phase:
Enhanced Traversal Example

already created hierarchy:

```
⊤
  /  \
Disease  Joint
  / \
JuvDisease  JointDisease
     /  \
    Arthritis  JuvArthritis
```

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊑ ? Disease

Bottom-Up Phase:
already created hierarchy:

```
⊤
   /\        
Disease   Joint
   /\        
JuvDisease JointDisease
   /\        
Arthritis
   /\        
JuvArthritis
```

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊑ Disease
- JointDisease ⊑ ? JuvDisease

Bottom-Up Phase:
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \subseteq Disease
- JointDisease $\not\subseteq$ JuvDisease
- JointDisease \subseteq? Arthritis

Bottom-Up Phase:
Enhanced Traversal Example

already created hierarchy:

\[
\begin{array}{c}
\top \\
\text{Disease} & \text{Joint} \\
\text{JuvDisease} & \text{JointDisease} & \text{Arthritis} \\
\text{JuvArthritis} & \\
\bot
\end{array}
\]

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \subseteq Disease
- JointDisease \not \subseteq JuvDisease
- JointDisease \not \subseteq Arthritis
- JointDisease \not $?$ Joint

Bottom-Up Phase:
Enhanced Traversal Example

 already created hierarchy:

```
 ⊤
 / \
Disease Joint
 /   
JuvDisease JointDisease
 /     
Arthritis
 /     
JuvArthritis

```

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊑ Disease
- JointDisease ⊄ JuvDisease
- JointDisease ⊄ Arthritis
- JointDisease ⊄ Joint

Bottom-Up Phase:

- JuvArthritis ⊑ JointDisease
Enhanced Traversal Example

already created hierarchy:

```
⊤
  |   |
 Disease Joint
  |   |   |
 JuvDisease JointDisease Arthritis
  |   |   |
 JuvArthritis
```

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease ⊑ Disease
- JointDisease ⊬ JuvDisease
- JointDisease ⊬ Arthritis
- JointDisease ⊬ Joint

Bottom-Up Phase:
- JuvArthritis ⊑ JointDisease
- JuvDisease ⊬ JointDisease
Enhanced Traversal Example

already created hierarchy:

```
⊤
  └── Disease
    └── JuvDisease
        └── Arthritis
            └── JuvArthritis
                └── ⊥

  └── Joint
    └── JointDisease
```

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease \not\sqsubseteq JuvDisease
- JointDisease \not\sqsubseteq Arthritis
- JointDisease \not\sqsubseteq Joint

Bottom-Up Phase:

- JuvArthritis \sqsubseteq JointDisease
- JuvDisease \not\sqsubseteq JointDisease
- Arthritis \sqsubseteq ? JointDisease
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \subseteq Disease
- JointDisease $\not\subseteq$ JuvDisease
- JointDisease $\not\subseteq$ Arthritis
- JointDisease $\not\subseteq$ Joint

Bottom-Up Phase:

- JuvArthritis \subseteq JointDisease
- JuvDisease $\not\subseteq$ JointDisease
- Arthritis \subseteq JointDisease
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Summary

- we have a tableau algorithm for \mathcal{ALCIF} knowledge bases
 - ABox treated like for \mathcal{ALC}
 - number restrictions are treated similar to functionality and existential quantifiers
- termination via cycle detection
 - becomes harder as the logic becomes more expressive
- naive tableau algorithm not sufficiently performant
- diverse optimizations improve average case
- specific methods for classification
 - enhanced traversal
- tableaux algorithms or variants modifications thereof are the basis of many OWL reasoners