Logical Modeling

The IDP³ System and the FO(·) Language

Research Seminar, SoSe 2017

Lukas Schweizer
mailto:lukas.schweizer@tu-dresden.de

April 19, 2017
The IDP3 System and the FO(·) Language

Overview

- IDP3: *Inductive Definition Programming*
- FO(·): *First Order + Extensions*

https://dtai.cs.kuleuven.be/software/idp
FO(·) formulae differ from FO formulae in two ways:
The IDP3 System and the FO(\cdot) Language

FO(\cdot) in Detail

FO(\cdot) formulae differ from FO formulae in two ways:

▶ it is a many-sorted logic
The IDP\(^3\) System and the FO(·) Language

FO(·) in Detail

FO(·) formulae differ from FO formulae in two ways:

- it is a many-sorted logic
- terms are extended by aggregate terms
The IDP3 System and the FO(·) Language

FO(·) in Detail

FO(·) formulae differ from FO formulae in two ways:

▶ it is a many-sorted logic
▶ terms are extended by aggregate terms

Many-sorted Logic (informally)

▶ variables have an associated type, and
▶ each type has an associated domain.
The IDP3 System and the FO(·) Language

FO(·) in Detail

FO(·) formulae differ from FO formulae in two ways:

- it is a many-sorted logic
- terms are extended by aggregate terms

Many-sorted Logic (informally)

- variables have an associated type, and
- each type has an associated domain.

Aggregate Terms

- functions over a set of domain elements and associated num. values,
- mapped e.g. to the sum, cardinality, minimum value of the set.
An FO(·) specification consists of several named logical components:
The IDP³ System and the FO(·) Language

FO(·) in Detail

An FO(·) specification consists of several named logical components:

- **Vocabularies**
 - Declare a set of types and typed symbols.
 - Predicate names (types) and (typed) constants.
The IDP³ System and the FO(·) Language

FO(·) in Detail

An FO(·) specification consists of several named logical components:

- **Vocabularies**
 - Declare a set of types and typed symbols.

 ▶ Predicate names (types) and (typed) constants.

- **Theories**
 - Consist of sentences and definitions over a vocabulary.

 ▶ Definitions are of the form $\forall \bar{x} : p(\bar{x}) \leftarrow \phi[\bar{x}]$, where ϕ is an FO(·) formula.
The IDP3 System and the FO(·) Language

FO(·) in Detail

An FO(·) specification consists of several named logical components:

- **Vocabularies**
 - Declare a set of types and typed symbols.
 - Predicate names (types) and (typed) constants.

- **Theories**
 - Consist of sentences and definitions over a vocabulary.
 - Definitions are of the form $\forall \bar{x} : p(\bar{x}) \leftarrow \phi[\bar{x}]$, where ϕ is an FO(·) formula

- **Structures**
 - Specify factual data over some vocabulary.
 - Thus, a (partial) interpretation of the symbols in its vocabulary.
The \(\text{IDP}^3 \) System and the FO(\(\cdot \)) Language

\(\text{IDP}^3 \) main inference tasks

The *model expansion* inference

Given a theory \(\mathcal{T} \) and a vocabulary \(\Sigma \), a partial interpretation \(\mathcal{I} \) over \(\Sigma \) and an “output” vocabulary \(\Sigma_{\text{out}} \subseteq \Sigma \).

- Search for interpretation of \(\Sigma_{\text{out}} \) such that an extension exists to \(\Sigma \) that also extends \(\mathcal{I} \) and is a model of \(\mathcal{T} \).