
Computational Aspects of cf2 and stage2
Argumentation Semantics 1

Wolfgang DVOŘÁK a and Sarah Alice GAGGL b

a Research Group Theory and Applications of Algorithms, University of Vienna
b Institute of Information Systems 184, Vienna University of Technology.

Abstract. We consider two instantiations of the SCC-recursive schema for argu-
mentation semantics, cf2 , using maximal conflict-free sets as base semantics, and
stage2 , using stage extensions as base semantics. Both of them have been shown
to be in general of high complexity. We provide a detailed analysis of possible
tractable fragments for these semantics. Moreover we present a labeling based al-
gorithm for computing cf2 extension, which is complexity-sensitive w.r.t. one of
the tractable fragments.

Keywords. Abstract Argumentation, Computational Complexity, Algorithms.

1. Introduction

This work considers two instantiations of the SCC-recursive schema for argumentation
semantics [3], cf2 and stage2 semantics, which are based on maximal conflict-free sets,
so called naive sets. Complementing previous work [10,19,20], we address computa-
tional issues with first, a study of possible tractable fragments of the in general intractable
reasoning tasks and second, a labeling based algorithm for cf2 semantics.

Lately, the cf2 semantics attracted specific attention, as it provides a uniform treat-
ment of odd- and even-length cycles, and it fulfills most evaluation criteria proposed
in [2]. One big disadvantage of the cf2 semantics is that it produces questionable results
on AFs with cycles of length ≥ 6 [18,20]. This is due to the fact that the base semantics
of cf2 selects only naive sets. To this end, the stage2 semantics [10] has been introduced
as a combination of the SCC- recursive schema of cf2 semantics instantiated in the base
case with stage semantics [21]. This new semantics includes the advantages of both se-
mantics. The SCC-recursive schema of the cf2 semantics ensures that the directionality
criterion is satisfied, where the stage semantics in the base case repairs the shortcomings
arising with cf2 semantics.

The analysis of computational complexity and in particular identifying tractable
cases has always been an important issue in the analysis of argumentation seman-
tics [5,6,8,12,13,15,16] as such an analysis is indispensable for the implementation of
efficient algorithms and systems. Especially, the identification of tractable fragments can
help to improve the performance for easy instances of in general hard problems. How-

1This work has been funded by the Vienna Science and Technology Fund (WWTF) through project ICT08-
028.

Computational Models of Argument
B. Verheij et al. (Eds.)
IOS Press, 2012
© 2012 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-111-3-273

273

ever, while properties of cf2 and stage2 semantics are well-understood, a deeper com-
plexity analysis has somehow been neglected. Only the general hardness of the main
reasoning tasks was shown for cf2 [20] and stage2 [10]. To close this gap, we provide a
comprehensive analysis of possible tractable fragments regarding acyclic argumentation
frameworks (AFs), even cycle free AFs, bipartite AFs and symmetric AFs. Furthermore,
we briefly discuss fixed-parameter tractability for cf2 and stage2 semantics.

In the second part of the article, we focus on possible implementation methods for
the discussed semantics. It turned out that Logic Programming and especially Answer-
Set Programming (ASP) allows for rapid prototyping of argumentation systems while
providing a good run-time behavior (see [17] for a detailed description of the system
ASPARTIX). Furthermore, ASP solvers are developed further continuously which has a
positive influence on the performance of those systems.

On the algorithmic side, we present a labeling-based algorithm for cf2 semantics.
In contrast to the traditional extension-based approach, so called labelings (see e.g. [1])
distinguish two kinds of unaccepted arguments, those which are rejected by the extension
and those which are neither rejected nor accepted. This distinction is interesting from a
logic perspective but has also proven to be useful for algorithmic issues.

The remainder of the paper is organized as follows. In Section 2 we briefly present
the necessary background on abstract argumentation, argumentation semantics and com-
putational complexity. Then, in Section 3 we provide a complexity analysis of the typ-
ical tractable fragments for abstract argumentation. Section 4 introduces labelings for
cf2 and stage2 semantics and a labeling-based algorithm for cf2 semantics. Finally, we
conclude the paper with a discussion of the obtained results.

2. Preliminaries

In this section we introduce the basics of abstract argumentation, the semantics we need
for further investigations and necessary notions from complexity theory.

Abstract Argumentation. We start with a definition of abstract argumentation frame-
works following [7].

Definition 1 An argumentation framework (AF) is a pair F = (A,R), where A is a
finite set of arguments and R ⊆ A × A. The pair (a, b) ∈ R means that a attacks b. A
set S ⊆ A defeats b (in F) in symbols S � b, if ∃a ∈ S, s.t. (a, b) ∈ R. An a ∈ A is
defended by S ⊆ A (in F) iff, ∀b ∈ A, it holds that, if (b, a) ∈ R, then S defeats b (in
F). An a ∈ A is in conflict with a b ∈ A, if either (a, b) ∈ R or (b, a) ∈ R. Moreover,
given an AF F , we use AF to denote the set of it is arguments and resp. RF to denote its
attacks.

The inherent conflicts between the arguments are solved by selecting subsets of argu-
ments, where a semantics σ assigns a collection of sets of arguments to an AF F . The
basic requirement for all semantics is that the sets are conflict-free.

Definition 2 Let F = (A,R) be an AF. A set S ⊆ A is said to be conflict-free (in F),
if there are no a, b ∈ S, such that (a, b) ∈ R. We denote the collection of sets which are
conflict-free (in F) by cf (F). A set S ⊆ A is maximal conflict-free or naive, if S ∈ cf (F)
and for each T ∈ cf (F), S �⊂ T . We denote the collection of all naive sets of F by
naive(F). For the empty AF F0 = (∅, ∅), we set naive(F0) = {∅}.

W. Dvořák and S.A. Gaggl / Computational Aspects of cf2 and stage2 Argumentation Semantics274

Towards definitions of the semantics we introduce the following formal concepts [7,21].

Definition 3 Given an AF F = (A,R) and let S ⊆ A. The characteristic function
FF : 2A → 2A of F is defined as FF (S) = {x ∈ A | x is defended by S}. We define
the range of a set S ⊆ A as S+

R = S ∪ {b | ∃a ∈ S, s. t. (a, b) ∈ R}.

Beside the naive, cf2 and stage2 semantics we consider the following semantics.

Definition 4 Let F = (A,R) be an AF. A set S ∈ cf (F) is said to be

• a stable extension (of F), i.e. S ∈ stable(F), if S+ = A;
• an admissible extension, i.e. S ∈ adm(F) if each a ∈ S is defended by S;
• the grounded extension (of F), i.e. the unique set S ∈ grd(F), is the least fixed

point of the characteristic function FF ;
• a stage extension (of F), i.e. S ∈ stage(F), if � ∃T ∈ cf (F) with T+

R ⊃ S+
R .

The cf2 and stage2 semantics are based on a decomposition along the strongly con-
nected components (SCCs) of an AF. Hence, we require some further formal machinery.
By SCCs(F), we denote the set of strongly connected components of an AF F = (A,R),
i.e. sets of vertices of the maximal strongly connected2 sub-graphs of F ; Moreover, for
an a ∈ A, we denote by CF (a) the component of F where a occurs in, i.e. the (unique)
set C ∈ SCCs(F), such that a ∈ C. It turns out to be convenient to use two different
concepts to obtain sub-frameworks of AFs. Let F = (A,R) be an AF and S ⊆ A. Then,
F |S = ((A ∩ S), R ∩ (S × S)) is the sub-framework of F wrt. S, and we also use
F − S = F |A\S . We note the following relation (which we use implicitly later on), for
an AF F and sets S, S′: F |S\S′ = F |S − S′ = (F − S′)|S . We now give the definition
of the cf2 semantics [3].

Definition 5 Let F = (A,R) be an AF and S ⊆ A. A b ∈ A is component-defeated by
S (in F), if ∃a ∈ S, s.t. (a, b) ∈ R and a /∈ CF (b). The set of arguments component-
defeated by S in F is denoted by DF (S).

Definition 6 Let F = (A,R) be an AF and S ⊆ A. Then, S ∈ cf2 (F), iff

• in case |SCCs(F)| = 1, then S ∈ naive(F),
• else, ∀C ∈ SCCs(F), (S ∩ C) ∈ cf2 (F |C −DF (S)).

In words, the recursive definition cf2 (F) is based on a decomposition of the AF F into
its SCCs depending on a given set S of arguments.

Recently, a new semantics, namely stage2 , has been defined [10]. It is a combination
of the concepts of stage and cf2 semantics, where the SCC-recursive schema of cf2 is
instantiated in the base case with stage semantics.

Definition 7 Let F = (A,R) be an AF and S ⊆ A. Then, S ∈ stage2 (F), iff

• in case |SCCs(F)| = 1, then S ∈ stage(F),
• else, ∀C ∈ SCCs(F), (S ∩ C) ∈ stage2 (F |C −DF (S)).

We illustrate the behavior of the introduced semantics in the following example.

2A directed graph is called strongly connected if there is a directed path from each vertex in the graph to
every other vertex of the graph.

W. Dvořák and S.A. Gaggl / Computational Aspects of cf2 and stage2 Argumentation Semantics 275

Example 1 Consider the following AF F = (A,R).

As a, b, c form an odd cycle, none of the admissible-based semantics accept any ar-
guments, hence grd(F) = adm(F) = {∅}; stable(F) = ∅; whereas stage2 (F) =
{{a, d, f, h}, {a, e, g, i}, {b, d, f, h}}; cf2 (F) = stage2 (F) ∪ {{a, f, i}, {a, d, g},
{a, e, h}}, and stage(F) = {{a, d, f, h}, {b, d, f, h}}; ♦

Towards alternative characterizations of cf2 and stage2 semantics we require a
parametrized notion of reachability [10,20].

Definition 8 Let F = (A,R) be an AF, B ⊆ A, and a, b ∈ A. Then, b is reachable in
F from a modulo B, in symbols a ⇒B

F b, if there exists a path from a to b in F |B , i.e.
there exists a sequence c1, . . . , cn (n > 1) of arguments such that c1 = a, cn = b, and
(ci, ci+1) ∈ R ∩ (B ×B), for all i with 1 ≤ i < n.

Definition 9 For an AF F = (A,R), D ⊆ A, and a set S of arguments, the operator
ΔF,S(.) is defined as ΔF,S(D) = {a ∈ A | ∃b ∈ S : b �= a, (b, a) ∈ R, a �⇒A\D

F b}. We
denote the least fixed point of ΔF,S(D) as ΔF,S .

Then, cf2 and stage2 extensions can be characterized as follows.

Proposition 1 ([10,20]) For any AF F , cf2 (F) = {S | S ∈ naive(F) ∩ naive([[F −
ΔF,S]])} and stage2 (F) = {S | S ∈ naive(F) ∩ stage([[F −ΔF,S]])}.

In [10] it has been shown that for any AF F , stable(F) ⊆ stage2 (F) ⊆ cf2 (F).

Computational Complexity. We now turn to complexity issues. We assume the reader
has knowledge about standard complexity classes, i.e. P, NP, coNP and logarithmic space
L. Nevertheless, we briefly recapitulate the concept of oracle machines and some related
complexity classes. Let C notate some complexity class. By a C-oracle machine we mean
a (polynomial time) Turing machine which can access an oracle that decides a given
(sub)-problem in C within one step. We denote the class of decision problems, that can
be solved by such machines, as PC if the underlying Turing machine is deterministic and
NPC if the underlying Turing machine is non-deterministic. The class ΣP

2 = NPNP, de-
notes the problems which can be decided by a non-deterministic polynomial time algo-
rithm that has access to an NP-oracle. The class ΠP

2 = coNPNP is defined as the com-
plementary class of ΣP

2 , i.e. Π
P
2 = coΣP

2 . The relations between the complexity classes
used in this work are P ⊆ NP (coNP) ⊆ ΣP

2 (ΠP
2).

We are interested in the following decision problems (for a semantics σ).

W. Dvořák and S.A. Gaggl / Computational Aspects of cf2 and stage2 Argumentation Semantics276

Table 1. Computational Complexity (C-c denotes completeness for class C).
naive stable stage cf2 stage2

Credσ in L NP-c ΣP
2 -c NP-c ΣP

2 -c

Skeptσ in L coNP-c ΠP
2 -c coNP-c ΠP

2 -c

Verσ in L in L coNP-c in P coNP-c

• Credσ: Given AF F = (A,R) and a ∈ A. Is a contained in some S ∈ σ(F)?
• Skeptσ: Given AF F = (A,R) and a ∈ A. Is a contained in each S ∈ σ(F)?
• Verσ: Given AF F = (A,R) and S ⊆ A. Is S ∈ σ(F)?

The complexity landscape for semantics based on maximal conflict-free sets is given
in Table (see [5,6,10,16,20]). The general complexity of cf2 has been studied in [20]
while the complexity of stage2 has been studied in [10].

3. Complexity Analysis

As already mentioned, both cf2 and stage2 semantics are computationally intractable,
i.e. the former is on the NP-layer while the latter is even on the second level of the poly-
nomial hierarchy, naturally the issue of identifying tractable instances arises. Towards
our analysis of tractable fragments we first identify a relation between credulous and
skeptical acceptance. By the following result, whenever credulous acceptance is tractable
we immediately get tractability for skeptical acceptance.

Proposition 2 Given an AF F = (A,R) and a ∈ A such that (a, a) /∈ R. Then, a is
skeptically accepted with cf2 (resp. stage2) iff no {b | (b, a) ∈ R or (a, b) ∈ R} is
credulously accepted with cf2 (resp. stage2).

Proof. For the proof we abstract from the concrete semantics cf2 , stage2 and consider
an arbitrary semantics σ with σ(F) ⊆ naive(F).
⇒: Consider E ∈ σ(F) with a ∈ E. As E ∈ cf (F), clearly {b | (b, a) ∈ R or (a, b) ∈
R} ∩ E = ∅.
⇐: Consider E ∈ σ(F) with {b | (b, a) ∈ R or (a, b) ∈ R} ∩E = ∅. As E ∈ naive(F)
and (a, a) �∈ R we have a ∈ E. �

In the following we consider different graph classes which where proposed as
tractable fragments for abstract argumentation in the literature and study the complexity
of stage2 and cf2 semantics on these graph classes.

Acyclic Argumentation Frameworks. One tractable fragment for argumentation is the
class of acyclic AFs. Tractability is due to the fact that on acyclic AFs most semantics
coincide with the grounded semantics [7]. This result extends to cf2 and stage2 .

Theorem 1 For acyclic AFs and σ ∈ {cf2 , stage2} the problems Credσ and Skeptσ
are in P.

Proof.We first show that, on acyclic AFs, grounded, cf2 and stage2 semantics coincide.
Having a look at the SCC-recursive schema applied to acyclic AFs, then the base seman-

1

W. Dvořák and S.A. Gaggl / Computational Aspects of cf2 and stage2 Argumentation Semantics 277

Figure 1. AF Fϕ for the 3-CNF ϕ.

tics is only applied to AFs consisting of a single argument and no attack. Thus seman-
tics coincide if they coincide on these AFs. We have grd({a}, ∅) = naive({a}, ∅) =
stage({a}, ∅) = {{a}} and thus the assertion follows. Now the complexity results are
immediate by the fact that these problems are in P for grounded semantics. �

Even Cycle Free Argumentation Frameworks. By a result in [9], reasoning with
admissible-based semantics in AFs without even-length cycles is tractable. Unsurpris-
ingly this result does not extend to cf2 and stage2 semantics.

Theorem 2 For AFs without even-length cycles: Credcf2 is NP-complete, Skeptcf2 is
coNP-complete, Cred stage2 is NP-hard, and Skeptstage2 is coNP-hard.

Proof. The membership part for cf2 follows immediately from the complexity results
for arbitrary AFs. For the hardness part we reduce the NP-hard SAT (resp. coNP hard
UNSAT) problem to Cred (resp. Skept).

Given a 3-CNF formula ϕ =
∧m

j=1 Cj over atoms Z with Cj = lj1 ∨ lj2 ∨ lj3
(1 ≤ j ≤ m), the corresponding AF Fϕ = (Aϕ, Rϕ) is built as follows:

Aϕ = Z ∪ Z̄ ∪ Ẑ ∪ {C1, . . . , Cm} ∪ {ϕ,¬ϕ}
Rϕ = {(z, z̄), (z̄, ẑ), (ẑ, z) | z ∈ Z} ∪ {(Cj , ϕ) | 1 ≤ j ≤ m} ∪ {(ϕ,¬ϕ)} ∪

{(z, Cj) | j ∈ {1, . . . ,m}, z ∈ {lj1, lj2, lj3}} ∪
{(z̄, Cj) | j ∈ {1, . . . ,m},¬z ∈ {lj1, lj2, lj3}}

Figure 1 illustrates the AF Fϕ of the formula ϕ = (z1 ∨ z2 ∨ z3)∧ (¬z2 ∨¬z3 ∨¬z4)∧
(¬z1 ∨ z2 ∨ z4).

An SCC of Fϕ either consists of a single argument or is a cycle of length three
which is not attacked by another SCC. As stage and naive semantics coincide on both we
have cf2 (Fϕ) = stage2 (Fϕ). Thus, in the remainder of the proof we only consider cf2
semantics. We now claim that (1) ϕ is satisfiable iff (2) ϕ is credulously accepted in Fϕ

iff (3) ¬ϕ is not skeptically accepted in Fϕ.
(1) ⇒ (2): ϕ is satisfiable and thus it has a model M ⊆ Z. Consider now the set

E = M ∪ {z̄ | z ∈ Z \M} ∪ {ϕ}. We next show that E is a cf2 extension of Fϕ. It is
easy to check that E ∈ naive(Fϕ). So let us considerΔFϕ,E . AsM model of ϕ each Ci

W. Dvořák and S.A. Gaggl / Computational Aspects of cf2 and stage2 Argumentation Semantics278

is either attacked by a zi ∈ E or z̄i ∈ E, and as there are no attacks from Ci to Z ∪ Z̄
we obtain Ci ∈ ΔFϕ,E , 1 ≤ i ≤ m. Similarly, ¬ϕ is attacked by ϕ and as ¬ϕ has no
outgoing attacks also ¬ϕ ∈ ΔFϕ,E . Now consider Z ∪ Z̄ ∪ Ẑ. Those arguments are not
attacked from outside their SCCs, hence none of the arguments is contained in ΔFϕ,E .
Now consider F ′ = [[Fϕ−ΔFϕ,E]] = (Z∪Z̄∪Ẑ∪{ϕ}, {(z, z̄), (z̄, ẑ), (ẑ, z) | z ∈ Z}).
It is easy to see thatE ∈ naive(F ′) and thus we finally obtain thatE ∈ cf2 (Fϕ). Hence,
ϕ is credulously accepted.

(1) ⇐ (2): Let E ∈ cf2 (Fϕ) such that ϕ ∈ E. As E is conflict-free and ϕ ∈ E we
have Ci �∈ E for 1 ≤ i ≤ m. Moreover Ci ∈ ΔFϕ,E . Assume the contrary, then there
exists a Ci ∈ [[Fϕ − ΔFϕ,E]] and as Ci is not strongly connected to any argument, it
is an isolated argument in the separation and thus in any naive set of [[Fϕ −ΔFϕ,E]], a
contradiction. Now as Ci ∈ ΔFϕ,E , for each Ci there exists l ∈ Z ∪ Z̄ and l ∈ E such
that l attacks Ci (which is equivalent to l ∈ Ci). Notice, as E is conflict-free it can not
happen that {z, z̄} ⊆ E. Finally, we obtain thatM = E ∩ Z is a model of ϕ.

(2) ⇔ (3): This is by the fact that in Fϕ the argument ¬ϕ is only connected to ϕ
and thus each naive (resp. cf2) extension of Fϕ either contains ϕ or ¬ϕ. �

While even cycle free AFs are tractable for admissible-based semantics, in particular for
stable semantics, they are still hard for cf2 , stage2 and also for stage semantics [13].

Bipartite Argumentation Frameworks. Bipartite AFs have been shown to be tractable
for admissible based semantics [8]. In the following we show that they are also tractable
for cf2 and stage2 semantics.

Theorem 3 For bipartite AFs the problems Credcf2 , Skeptcf2 , Vercf2 are in P.

Proof. Given a bipartite AF (A1, A2, R) with A = A1 ∪ A2. Start with E1 = A1 and
E2 = ∅, iterating (1) E2 := E2 ∪ {b ∈ A2 | E1 �� b} and (2) E1 := E1 \ {a ∈
E1 | E2 � a} until E1, E2 reach a fixed point. By results in [8] the above algorithm
works in polynomial time and results the stable extension E1 ∪ E2, with E1 being the
set of credulously accepted arguments (w.r.t. stable semantics) in A1. We next show that
this algorithm also applies to cf2 . To this end let C1 be the set of credulously accepted
arguments in A1 and S2 the set of skeptically accepted arguments in A2. We claim that
after each iteration step it holds that (i)E1 ⊇ C1, (ii)E2 ⊆ S2 and (iii)A1\E1 ⊆ ΔF,S2

.
As an induction base observe that E1 = A1 and E2 = ∅ trivially satisfies (i)-(iii).

Now for the induction step assume (i)-(iii) holds before applying the iteration step, we
have to show that it also holds afterwards.

First consider (ii): E2 is only changed if there is a b ∈ A2 and E1 �� b. But by (iii)
this means that for all E ∈ cf2 (F) all attackers of b are contained in ΔF,E . Hence, for
each E ∈ cf2 (F), the argument b is isolated in the AF [[F − ΔF,E]] and thus clearly
b ∈ E. Hence, b ∈ S2 and (ii) is satisfied. Now consider (i): By (ii) an argument a is
only removed from E1 if it is attacked by an skeptically accepted argument. But then a
can not be credulously accepted, i.e. a �∈ C1, and thus still E1 ⊇ C1. Finally consider
(iii): If an argument a is removed from E1 it is attacked by an argument b such that for
E ∈ cf2 (F) all attackers of b are contained inΔF,E . But then clearly a �⇒A\ΔF,E

F b and
thus a ∈ ΔF,E . Now using thatE1∪E2 is a stable extension, the fixed point of the above
algorithm is also a cf2 extension. Thus, E1 = C1 and E2 = S2. By symmetry we finally
obtain that in bipartite AFs, the credulously (resp. skeptically) accepted arguments w.r.t.

W. Dvořák and S.A. Gaggl / Computational Aspects of cf2 and stage2 Argumentation Semantics 279

cf2 coincide with the credulously (resp. skeptically) accepted arguments w.r.t. stable3.
Hence, the P results for stable semantics in [8] carry over to cf2 semantics. �

Even though credulous and skeptical acceptance of cf2 and stable semantics coin-
cide on bipartite AFs, they propose different extensions. For instance consider a cycle
of length 6 with ({0, 1, 2, 3, 4, 5}, {(i, i + 1 mod 6) | 0 ≤ i ≤ 5}). This is certainly
a bipartite AF and proposes the cf2 extension {0, 3} which is not stable. However, for
stage2 and stable semantics, also the extensions coincide.

Theorem 4 For bipartite AFs Cred stage2 , Skeptstage2 , Ver stage2 are in P.

Proof. Bipartite AFs are odd cycle free and therefore coherent [7]. Hence stable and
stage semantics coincide. We show that also stable(F) = stage2 (F). The relation
stable(F) ⊆ stage2 (F) holds in general [10]. Now let us consider S ∈ stage2 (F).
As S ∈ naive(F), to show S ∈ stable(F) it suffices to show that S+ = A. Clearly
ΔF,S ⊆ S+. 4 Now let us consider the AF [[F − ΔF,S]] which is also odd cycle free
(the class of bipartite AFs is closed under the deletion of arguments). Hence, the con-
dition S ∈ stage([[F − ΔF,S]]) is equivalent to S ∈ stable([[F − ΔF,S]]) and thus
A\ΔF,S ⊆ S+. Finally we obtain A ⊆ S+ and hence S ∈ stable(F). Now the theorem
follows from stable(F) = stage2 (F) and the results for stable semantics in [8]. �

Symmetric AFs. Finally we consider symmetric AFs, which where studied in [5]. In
symmetric AFs all SCCs are isolated in the sense that there is no attack from one SCC
to another (otherwise by symmetry, there would be an attack back and thus, those SCCs
would merge to just one). Hence, cf2 coincides with naive semantics while stage2 co-
incides with stage semantics. We immediately obtain the complexity result for cf2 and
stage2 by the corresponding results for naive and stage. In the first case this clearly leads
to tractability. In the latter one we have to be more careful. If we follow [5] and assume
that symmetric AFs are also irreflexive then, we have tractability by the fact that such
AFs are coherent and stable semantics are tractable. However, without the assumption of
irreflexiveness, the tractability results for stable and stage semantics do not hold. Thus,
they do not hold for stage2 as well.

Further Considerations & Related Work. An other interesting approach towards
tractability comes from parametrized complexity theory. For so called fixed-parameter
tractability (fpt), one identifies problem parameters, for instance parameters measuring
the graph structure, such that computational costs heavily depend on the parameter but
are only polynomial in the size of the instance. Now, if only considering problem in-
stances with bounded parameter, one obtains a polynomial time algorithm.

First investigation for fixed-parameter tractability regarding abstract argumentation
where undertaken for the graph parameters tree-width [8,12] and clique-width [15]. The
work in [14] shows that also reasoning with cf2 semantics is fpt w.r.t. tree-width and
clique-width. Moreover, using the building blocks provided there, one can easily con-
struct a monadic second order logic encoding for stage2 semantics, and by the results
presented in [14] this implies fpt w.r.t. tree-width and clique-width.

3By stable(F) ⊆ stage2 (F) ⊆ cf2 (F) and Proposition 2 this also extends to stage2 semantics. However
this does not cover the complexity of the Verstage2 problem.
4In general, S ∈ stable(F) iff S ∈ naive(F) ∩ stable([[F −ΔF,S]]).

W. Dvořák and S.A. Gaggl / Computational Aspects of cf2 and stage2 Argumentation Semantics280

Another approach towards fpt is the so called backdoor approach, using the distance
to a tractable fragment as parameter [13]. In particular it was shown that the backdoor
approach does not help in the case of stage semantics and as the counter examples for
stage semantics immediately carry over to stage2 semantics5 there is no benefit in apply-
ing the backdoor approach to stage2 semantics. However, in the case of cf2 semantics
and the tractable fragments of acyclic AFs and symmetric AFs, the backdoor approach
looks promising.

4. Computing Extensions & Labelings

In this section we focus on the computation of extensions and labelings for cf2 and
stage2 semantics. The advantage of using ASP for the computation of the extensions is
that one can first guess all possible assignments/labelings and then check if the guesses
fulfill all requirements for the specific semantics.

The ASP encodings for the cf2 semantics, according to the alternative characteriza-
tion of Proposition 1, have been published in [19]. Due to the lack of space we only sketch
how we adapted the cf2 encodings for stage2 , where the modularity of ASP encodings
makes this modification quite simple6. To be more precise, the checking module is mod-
ified from checking whether S ∈ naive([[F − ΔF,S]]), to S ∈ stage([[F − ΔF,S]]),
where the ASP encodings for stage semantics can be found in [11].

Labelings for cf2 and stage2 . Now, we turn to the general labeling-based approach.
For an overview about labelings w.r.t. most argumentation semantics we refer to [1],
where also a labeling for cf2 semantics is included. However, we give a slightly different
definition of a cf2 labeling which reflects more of the intuition of cf2 semantics.

Definition 10 Let F = (A,R) be an AF. A labeling is a total function L : A →
{in, out , undec}.

Then, a labeling can be denoted as a triple L = (Lin ,Lout ,Lundec), where Ll = {a ∈
A | L(a) = l}. The following definition of a naive labeling slightly differs from the
traditional definition, as there are no arguments labeled out . We need this special form
of the naive labeling for the definition of the cf2 labeling.

Definition 11 Let F = (A,R) be an AF. Then, L ∈ naiveL(F), iff

• for all a ∈ Lin there is no b ∈ Lin such that (a, b) ∈ R,
• Lundec = {a ∈ A \ Lin} and Lout = ∅,
• for all a ∈ Lundec there is an argument b ∈ Lin , such that a is in conflict with b.

Next, we define cf2 labelings, where an argument is labeled out iff it is attacked by an
argument labeled in which does not belong to the same SCC.

Definition 12 Let F = (A,R) be an AF. Then, L ∈ cf2L(F), iff

5Adding an argument that attacks itself and has a symmetric conflict with the original arguments does not
change stage semantics, but ensures that stage semantics coincides with stage2 semantics. Indeed such an
operation just increases the distance to a tractable fragment by one.
6All ASP encodings have been incorporated in the system ASPARTIX and are online available at

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/.

W. Dvořák and S.A. Gaggl / Computational Aspects of cf2 and stage2 Argumentation Semantics 281

• in case |SCCs(F) = 1|, then L ∈ naiveL(F).
• otherwise, ∀C ∈ SCCs(F),L|C\DF (Lin) ∈ cf2L(F |C −DF (Lin)),

and ∀a ∈ DF (Lin) ⇔ L(a) = out .

It is easy to see that there is a one-to-one mapping between cf2 extensions and labelings,
s.t. each extension S corresponds to a labeling L with Lin = S and Lout = ΔF,S .

To define the stage2 labeling, we start with the conflict-free and stage labeling ac-
cording to [1].

Definition 13 Let F = (A,R) be an AF. Then, L is a conflict-free labeling of F , i. e.
L ∈ cf L(F), iff

• for all a ∈ Lin there is no b ∈ Lin such that (a, b) ∈ R,
• for all a ∈ Lout there exists a b ∈ Lin such that (b, a) ∈ R

Then, L is a stage labeling of F , i. e. L ∈ stageL(F), iff L ∈ cf L(F) and there is
no L′ ∈ cf L(F) with L′

undec ⊂ Lundec . Then, L is a stage2 labeling of F , i. e. L ∈
stage2L(F), iff L ∈ cf L(F) ∩ stageL([[F −ΔF,Lin

]]), where ΔF,Lin
⊆ Lout .

Again there is a one-to-one mapping between stage2 extensions and labelings, and each
extension S corresponds to a labeling L with Lin = S and Lout = S+ \ S.
A Labeling Algorithm for cf2 . In the following we present a labeling-based algorithm
computing cf2 -labelings/extensions. This algorithm is complexity-sensitive in the fol-
lowing sense. From Theorem 1 we know that on acyclic AFs, cf2 coincides with the
grounded semantics and thus can be computed in polynomial time. To this end, the fol-
lowing algorithm is designed in the way that on acyclic AFs, there is no need for re-
cursive calls. Notice that the other tractable fragments, i.e. symmetric and bipartite AFs,
may propose an exponential number of extensions (the tractability for reasoning tasks
was via some shortcut preventing us from computing all extensions) and thus not allow
for an efficient computation of all extensions.

The following proposition identifies two rules to propagate already computed labels.

Proposition 3 For AF F = (A,R) and labeling L = (Lin ,Lout ,Lundec) ∈ cf2 (F).
Let a ∈ A, then att(a) = {b ∈ A | (b, a) ∈ R} denotes all attackers of a.

1. For every a ∈ A: if att(a) ⊆ Lout ∧ (a, a) �∈ R then a ∈ Lin .
2. For every a ∈ A: if ∃b ∈ Lin , O ⊆ Lout : (b, a) ∈ R∧a �⇒A\O

F b then a ∈ Lout .

Proof. (1) As mentioned above a ∈ Lout iff a ∈ ΔF,Lin
. If all attackers of a are inΔF,Lin

we get that {a} is an isolated argument in [[F−ΔF,S]]. Now, asL ∈ naive([[F−ΔF,S]])
and (a, a) �∈ R we finally get a ∈ Lin . (2) Using ∃b ∈ Lin , O ⊆ Lout : (b, a) ∈ R ∧
a �⇒A\O

F b andO ⊆ Lout = ΔF,Lin
, we obtain that ∃b ∈ Lin : (b, a) ∈ R∧a �⇒A\Lout

F b.
As ΔF,Lin is a fixed point we obtain that a ∈ ΔF,Lin and thus also a ∈ Lout . �

Description of Algorithm 1. The cf2 labeling algorithm requires as input an AF
F = (A,R) and a labeling L = (Lin ,Lout ,Lundec). If cf2L(F,L) is started with the
initial labeling L = (∅, ∅, A), it returns all cf2 labelings of F . At the beginning, the two
sets X and Y are computed. Where X identifies those arguments in Lundec which can
directly be labeled with in , and Y identifies those arguments in Lundec which can di-

W. Dvořák and S.A. Gaggl / Computational Aspects of cf2 and stage2 Argumentation Semantics282

Algorithm 1 cf2L(F,L)
Require: AF F = (A,R), labeling L = (Lin ,Lout ,Lundec);
Ensure: Return all cf2 labelings of F .
1: X = {a ∈ Lundec | att(a) ⊆ Lout};
2: Y = {a ∈ Lundec | ∃b ∈ Lin , (b, a) ∈ R, a �⇒A\Lout

F b};
3: while (X ∪ Y) �= ∅ do

4: Lin = Lin ∪X,Lout = Lout ∪ Y,Lundec = Lundec \ (X ∪ Y);
5: update X and Y ;
6: end while

7: B = {a ∈ Lundec | Lin ∪ {a} ∈ cf (F)};
8: if B �= ∅ then

9: C = {a ∈ B |� ∃b ∈ B : b ⇒A\Lout

F a, a �⇒A\Lout

F b};
10: E = ∅;
11: for all L′ ∈ naiveL(F |C) do

12: update L with L′;
13: E = E ∪ cf2L(F,L);
14: end for

15: return E ;
16: else

17: return {(Lin ,Lout ,Lundec)};
18: end if

rectly be labeled with out according to Proposition 3. These new labeling modifications
are performed in the “while-loop” till a fixed point is reached. Next, the set B identifies
all arguments which are labeled undec and are not in conflict with the arguments in Lin .
Then, if B �= ∅, the set C identifies the next SCCs to be labeled. Note here, C does
not contain all arguments of an SCC, but all arguments which can be labeled in . To be
more precise, self-attacking arguments are omitted in C. Next, in Line 11 a separated
procedure identifies all naive labelings of the sub-framework F |C . For each naive label-
ing L′ we update the actual labeling L with L′ and call cf2L(F,L) recursively. Note,
this step is a branch between different cf2 -extensions. Finally, the algorithm returns all
cf2 labelings of F .

Due to space limitations we only discuss briefly the necessary modifications of Al-
gorithm 1 for computing stage2 labelings. As each stage2 extension is also a cf2 ex-
tension we can apply Proposition 3 to stage2 as well, but we have to take into account
the different definition of Lout . To be more precise, we have to modify the definition of
the sets X,Y such that {a} ∪ Lin ∈ cf (F). Moreover, in Line 11 we have to replace
naiveL(F |C) by stageL(F |C).

Finally, we highlight that although the worst case run-time of the algorithm is ex-
ponential in the size of the AF, it is polynomial if one considers both the number of
extensions and the size of the AF.

5. Conclusion

We discussed two computational aspects for the cf2 and stage2 semantics, namely com-
putational complexity and implementation methods. We studied the typical tractable

W. Dvořák and S.A. Gaggl / Computational Aspects of cf2 and stage2 Argumentation Semantics 283

fragments for argumentation semantics for cf2 and stage2 semantics, where it turned
out that the acyclic, bipartite and irreflexive symmetric AFs are tractable while even cy-
cle free AFs remain hard. Furthermore, we proposed labelings for cf2 and stage2 and to
complete the picture, we provided a labeling algorithm for cf2 semantics.

Considering other characterizations of semantics like the equational approach [18]
may allow for further tractable fragments and provide different algorithms. Hence a care-
ful comparison of the different approaches would be an interesting topic for future re-
search. Finally let us mention that as both cf2 and stage2 semantics satisfy the direc-
tionality property [3,10] they are amenable for the splitting techniques presented in [4].

References

[1] P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation semantics. Knowledge
Eng. Review, 26(4):365–410, 2011.

[2] P. Baroni and M. Giacomin. On principle-based evaluation of extension-based argumentation semantics.
Artif. Intell., 171(10-15):675–700, 2007.

[3] P. Baroni, M. Giacomin, and G. Guida. Scc-recursiveness: A general schema for argumentation seman-
tics. Artif. Intell., 168(1-2):162–210, 2005.

[4] R. Baumann. Splitting an argumentation framework. In J. P. Delgrande and W. Faber, ed., Proc. LPNMR
2011, volume 6645 of LNCS, 40–53. Springer, 2011.

[5] S. Coste-Marquis, C. Devred, and P. Marquis. Symmetric argumentation frameworks. In L. Godo, ed.,
Proc. ECSQARU 2005, volume 3571 of LNCS, 317–328. Springer, 2005.

[6] Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and default theories. Theor.
Comput. Sci., 170(1-2):209–244, 1996.

[7] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

[8] P. E. Dunne. Computational properties of argument systems satisfying graph-theoretic constraints. Artif.
Intell., 171(10-15):701–729, 2007.

[9] P. E. Dunne and T.J.M. Bench-Capon. Complexity and combinatorial properties of argument systems.
Technical report, Dept. of Computer Science, University of Liverpool, 2001.

[10] W. Dvořák and S. A. Gaggl. Incorporating stage semantics in the scc-recursive schema for argumentation
semantics. In . Proc. NMR 2012, 2012.

[11] W. Dvořák, S. A. Gaggl, J. P. Wallner, and S. Woltran. Making use of advances in answer-set program-
ming for abstract argumentation systems. CoRR, abs/1108.4942, 2011.

[12] W. Dvořák, R. Pichler, and S. Woltran. Towards fixed-parameter tractable algorithms for abstract argu-
mentation. Artificial Intelligence, 186(0):1 – 37, 2012.

[13] W. Dvořák, S. Ordyniak and S. Szeider. Augmenting tractable fragments of abstract argumentation.
Artificial Intelligence, 186(0):157–173, 2012.

[14] W. Dvořák, S. Szeider, and S. Woltran. Abstract Argumentation via Monadic Second Order Logic.
Accepted for SUM 2012 (available as Technical Report DBAI-TR-2012-79, TU Wien)

[15] W. Dvořák, S. Szeider, and S. Woltran. Reasoning in argumentation frameworks of bounded clique-
width. In P. Baroni, F. Cerutti, M. Giacomin, and G. R. Simari, ed., Proc. COMMA 2010, FAIA, 219–
230, IOS Press, 2010.

[16] W. Dvořák and S. Woltran. Complexity of semi-stable and stage semantics in argumentation frame-
works. Inf. Process. Lett., 110(11):425–430, 2010.

[17] U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings for argumentation frame-
works. In Argument and Computation, 1(2):147–177, 2010.

[18] Dov M. Gabbay. The equational approach to cf2 semantics. CoRR, abs/1203.0220, 2012.
[19] S. A. Gaggl and S. Woltran. cf2 semantics revisited. In P. Baroni, F. Cerutti, M. Giacomin, and

G. R. Simari, ed., Proc. COMMA 2010, FAIA, 243–254. IOS Press, 2010.
[20] S. A. Gaggl and S. Woltran. The cf2 argumentation semantics revisited. Journal of Logic and Compu-

tation, 2012, doi: 10.1093/logcom/exs011.
[21] B. Verheij. Two approaches to dialectical argumentation: admissible sets and argumentation stages. In

J. Meyer and L. van der Gaag, ed., Proc. NAIC’96, 357–368, 1996.

W. Dvořák and S.A. Gaggl / Computational Aspects of cf2 and stage2 Argumentation Semantics284

