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Abstract

Existential rules are a powerful formalism for describing implicit knowledge con-

tained within a knowledge base. Extracting such knowledge can be achieved with

the chase, which is a well-known algorithm for computing universal models. This

is done by exhaustively calculating the consequences of each given rule. However,

the order in which the rules are selected can have a significant impact on the run

time of the procedure as well as the number of derived facts. It was discovered

in recent work that core-stratified rule sets allow for a selection strategy that is

guaranteed to produce so-called core models, which correspond to the smallest

possible universal models if they are finite. The strategy is based on considering

certain syntactic relationships between the rules called reliances. These indicate

whether it is possible for a rule to produce facts used by another or if selecting a

rule in the wrong order may introduce redundant facts into the result.

In this work, we utilize these reliances to devise rule application strategies that

optimize the chase procedure based on the following criteria: First, we try to min-

imize the number of times rules are applied during the chase, aiming to improve

run times. Second, we want to avoid applying rules in a way which introduces

redundant facts. The goal here is to minimize the size of the resulting model,

ideally producing a core. While it is always possible to derive a core model in

core-stratified rule sets, we show situations where our approach is guaranteed

to produce cores even if the rule set is not stratified. Moreover, we give a de-

tailed description of the algorithms necessary for detecting a reliance relation-

ship between two given rules as well as prove their correctness. We implement

our approach into the rule reasoning engine VLog and evaluate its effectiveness

on several knowledge bases used for benchmarking as well as some real-world

data sets. We find a significant improvement in the run times for a small portion

of the considered knowledge bases and are able to match VLog in the remaining

ones.
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Chapter 1

Introduction

1.1 Existential Rules

Datalog extended with existential rules, also known as Datalog
±
or ∀∃-rules [6, 3],

is a powerful formalism that plays a huge role in the field of Knowledge Rep-

resentation and Reasoning. It was originally described as tuple-generating de-

pendencies where it represents integrity constraints [1], but is now used in logic

programming, for data exchange, and also for capturing implicit knowledge in

ontologies. Syntactically, existential rules are universally quantified implications,

which may contain existentially quantified variables in the implication’s conse-

quent. The following example shows a set of existential rules. We usually omit

universal quantifiers in the formulas.

Example 1.1.

leadingRole(a, r,m)→ stars(a,m) (ρ1)

stars(a,m) ∧ stars(b,m)→ costar(a, b,m) (ρ2)

bigBudget(m)→ ∃a. stars(a,m) ∧ famous(a) (ρ3)

The above set of rules might describe implicit knowledge in an ontology contain-

ing information about various movies and actors. The first rule states that if an

actor a plays a leading role r in a movie m, then this implies that a also stars in

m. If two actors star in the same movie, then the second rule tells us that they

are considered costars. The last rule asserts that any movie with a big budget has

to have, perhaps to justify the huge cost of production, at least one famous actor

staring in it. 4
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A set of rules together with a database form a knowledge base. A fundamen-

tal reasoning task over such knowledge bases is to answer boolean conjunctive

queries (BCQs).

Example 1.2. Given a knowledge base containing rules from Example 1.1 and a

databaseD = {role(“Alice”, “Rick”, “Electric Sheep”), bigBudget(“Electric Sheep”)},
the following boolean conjunctive query encodes the question of whether Alice

costars with a famous actor in any movie.

q = ∃b,m. costar(“Alice”, b,m) ∧ famous(b)

Although the database itself does not explicitly contain the required facts, we can

use the above set of rules to deduce new information. From the first rule we

know that since Alice played a major part in the movie “Electric Sheep” that she

therefore stars in it as well. “Electric Sheep” is a big budget production, which

means there has to be at least one famous actor staring in it as stated by the

third rule. Consequently, Alice and said famous actor (who ironically is unknown

to the database) both star in the same movie and are therefore costars by the

second rule. Hence, the query q is entailed by the knowledge base consisting of

the database D and the above set of rules. 4

BCQ entailment is equivalent to determining whether the given formula is satis-

fied in every model of the knowledge base. In practice however, it suffices to only

consider universal models [10]. These can be thought of as representative mod-

els, since they can be homomorphically mapped into any other model. Queries

that are entailed by a universal model are therefore also entailed by every other

model of the given knowledge base.

1.2 The Chase and Core Models

The chase refers to a class of algorithms that compute universal models for a

given knowledge base [20, 10]. This is achieved through a bottom-up materializa-

tion of “missing” facts by exhaustively computing the consequences of every rule

in the rule set. Conceptually, this mimics the reasoning we employed in Exam-

ple 1.2. In this work, we mainly consider the restricted chase, which also known

as the standard chase, though we also examine slight variations of it in the con-

text of practical implementation.
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The description of the standard chase does not restrict the order in which the

consequences of a given rule have to be computed in. Different orders of ma-

terializing said consequences may lead to different (non-isomorphic) universal

models. Amongst those, core models seem to be the most preferable. Intuitively,

core models are universal models that contain the least amount of redundancy

[16, 10]. Finite core models correspond to the smallest possible models and are

therefore desirable in regard to space efficiency. With the core chase, there exists

a variant of the chase algorithm that guarantees to produce coremodels for every

input [10]. However, since it relies on the computation of homomorphisms within

the whole augmented database, using this variant is computationally expensive

compared to just using the standard chase.

That being said, there are cases where the comparatively cheap restricted chase

produces core models without the need for any additional computation. Recent

work shows that core-stratified rule sets allow for a rule application strategy that

is guaranteed to produce a core [18]. But to the best of our knowledge, there

exists no reasoning engine which takes this into account.

1.3 The Rule Engine VLog

VLog is a rule-based reasoning engine, which supports existential rules [23, 24, 9].

It implements a parallel version of the restricted chase where each derivation step

calculates every consequence of a rule at once. VLog’s unique selling point is the

use of a column-based data structure for storing inferred facts. Columnar layouts

allow for certain data-compression strategies and improve the performance of

join algorithms employed during the derivations. However, the insertion of new

facts into a columnar table is significantly more time-consuming than with tradi-

tional row-based layouts. VLog avoids frequent insertions by storing new facts in

a separate table for each derivation. The entries of a predicate may therefore be

split over several blocks of data. But this can lead to considerable overhead when

joins need to be performed over multiple blocks. This problem is exacerbated

when rules are applied frequently and hence new blocks are introduced more

often. Rule application strategies that minimize the number of derivation steps

therefore promise to increase performance.
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1.4 Goal and Structure

The main goal of this thesis is to improve the restricted chase, particularly its

implementation in VLog, by optimizing the order in which rules are applied in. We

identify two dimensions along which to optimize:

1. Minimize the number of redundant derivations, producing core-models if

possible

2. Minimize the number of derived predicate-blocks by applying rules as rarely

as possible

Our strategy is based on analyzing certain syntactic relationships between rules,

called reliances [18], which impose an ordering on the given rule set. We also

implement our approach into VLog and evaluate its performance.

This work is structured as follows. Chapter 2 provides the basic definitions and

notions used throughout the thesis. This includes the chase algorithm, the con-

cept of reliances and core-stratification as well as some architectural aspects of

VLog. We dedicate the entirety of Chapter 3 to the derivation of algorithms for de-

tecting a reliance relationship between two rules. We further give detailed proofs

that show their correctness. In Chapter 4, we use utilize the result of the previ-

ously given computation to formulate a rule application strategy that optimizes

the restricted chase with respect to the goals mentioned above. We evaluate

the effectiveness of the given strategies in Chapter 5. This is done by measuring

the run time and number of derived facts on several knowledge bases used for

benchmarking as well some real-world data sets. We put potential improvemens

compared to the original strategy by VLog in relation the cost of calculating the

reliance relations.



Chapter 2

Preliminaries

This chapter provides the background on fundamental concepts necessary for

this work. We start by defining basic terms and notation used throughout the the-

sis in Section 2.1. We then introduce the chase in Section 2.2, including all of the

major variants considered here. The following section focuses on core models,

specifically on cases where they can be produced by the restricted chase without

any additional computation. Crucially, this section also defines the syntactic rela-

tionship between rules on which we build our application strategies in Chapter 4.

Lastly, Section 2.4 gives an overview over the rule execution engine VLog and how

the order of the application of rules may influence its performance.

2.1 Basic Notation and Existential Rules

A (directed) graph is an ordered pair G = 〈V,E〉 consisting of a finite set of nodes
V and a set of edges E ⊆ V × V . If 〈v, w〉 ∈ E, we refer to v as the predecessor
of w and to w as the successor of v. For any node v ∈ V , we define predG(v)

and succG(v) as the sets of all predecessors and successors of v inG respectively.

A series of nodes v1, . . . , vn with n ≥ 2 is a (directed) path from v1 to vn in G if

〈vi, vi+1〉 ∈ E for every i ∈ [n − 1]. If v1 = vn then the path is a cycle . A cycle

is proper if it contains at least two distinct vertices. We say a node w ∈ V is

reachable from a node v ∈ V in G, written reachG(v, w), if v = w or if there

exists a directed path from v to w in G. A graph G is acyclic if there is no cycle

in G. A topological sorting of G is a series of pairwise distinct nodes v1, . . . , vn

where n = |V | such that i < j implies that 〈vj, vi〉 /∈ E for every i, j ∈ [n]. A

graph G is topologically sortable if a topological sorting of G exists. This is the
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case if and only if the graph does not contain any proper cycles. A set of nodes

V ′ ⊆ V is strongly connected if reachG(v, w) for every v, w ∈ V ′. We write [v]G

for the strongly connected component containing v or simply [v] ifG is clear from

context. It is sometimes useful to think of any binary relation ≺ ⊆ A × A over

some set A as a graph. In this case, we write G(A,≺) := 〈A,≺〉 to refer to the
graph corresponding to A and ≺. We define A/≺ to be the set of all strongly
connected components in G(A,≺). We sometimes refer to a strongly connected

component in A/≺ as a ≺-group. Based on that, we define Ĝ(A,≺) := G(A/≺, ≺̂)

where [a] ≺̂ [b] iff a′ ≺ b′ for any a′ ∈ [a] and b′ ∈ [b]. Note that Ĝ(A,≺) cannot

contain any proper cycles and is therefore always topologically sortable.

LetA andB be sets and f : A→ B be a function. We call dom(f) := A the domain

and im(f) := {b ∈ B | ∃a ∈ A. f(a) = b} the image of f . The graph of f is the set
graph(f) := {a 7→ b | a ∈ dom(f), f(a) = b}. Given b ∈ B, we define f−1(b) :=

{a ∈ A | f(a) = b}. Let X ⊆ A be a set. Then f(X) := {f(x) ∈ B | x ∈ X}.

We construct first-order logic formulas over a vocabulary of countably infinite,

mutually disjoint sets V of variables, C of constants, N of labeled nulls and P of

predicate names. We further distinguish universally quantified variables V∀ ⊆ V

and existentially quantified variablesV∃ ⊆ V whereV∀ ∩V∃ = ∅. Predicate names
are assumed to have an arity ar(p) ≥ 1 for every p ∈ P. A term is an element of

the set T := V ∪C ∪N. We use t̄ to denote a list of terms t1, . . . , t|t̄|. An atom is

an expression p(t̄) where p ∈ P and t̄ is a list of terms such that |t̄| = ar(p). If A is
a set of atoms, then vars(A) is the set of all variables contained in A. We define
nulls(A) and terms(A) analogously. Furthermore, vars∀(A) and vars∃(A) are the

sets of all universal and all existential variables in A respectively. Atoms that do
not contain any variables are called facts. An interpretation is a (possibly infinite)

set I that only contains variable-free atoms. A finite interpretation without nulls
is called a database.

We now define existential rules. We use the notation ϕ[x̄] for x̄ ⊆ V to mean that

ϕ is a conjunction of atoms which exactly contains the variables in x̄.

Definition 2.1. An (existential) rule ρ is a first-order logic formula

ρ = ∀x̄, ȳ. ϕ[x̄, ȳ]→ ∃z̄.ψ[ȳ, z̄]

where x̄, ȳ ⊆ V∀ and z̄ ⊆ V∃ such that ϕ and ψ do not contain any nulls. We refer

to ϕ as the body and to ψ as the head of the rule.
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Rules that do not contain any existential variables are called datalog rules. In the

following, we treat conjunctions of atoms as sets. A knowledge base K = 〈R,D〉 is
an ordered pair consisting of rule set R and a database D.

A substitution σ is any function σ : S → T where S ⊆ T. Given a term t ∈ T,

the result of applying σ to t, written tσ, is σ(t) if t ∈ dom(σ) or t otherwise. A

substitution σ can applied to an atom p(t̄), written p(t̄)σ, by applying σ to each

term in t̄ and to a set of atoms A, written Aσ, by applying σ to each atom in A. If
dom(σ) ⊆ V and im(σ) ⊆ C ∪N, then σ is called a variable substitution. Similarly,

a null substitution is a substitution σ where dom(σ) ⊆ N and im(σ) ⊆ C ∪N. If

dom(σ) = T, then σ is called a total substitution. For a variable substitution σ

we write σ∀ := σ|V∀ and σ∃ := σ|V∃ as a shorthand for σ restricted to universal

and existential variables respectively. If σ and τ are substitutions then στ is the

substitution with the domain dom(στ) = dom(σ) ∪ dom(τ), which is obtained by

first applying σ and then τ . Clearly, we have that σ = σ∀σ∃ = σ∃σ∀ for any variable

substitution σ. We say that σ is a unifier of two atom setsA1 andA2 ifA1σ = A2σ.

If a unifier of A1 and A2 exists, then they are considered to be unifiable.

LetA be a set of atoms and I an interpretation. A homomorphism fromA to I is a
variable substitution h such that Ah ⊆ I. If a homomorphism from A to I exists,
we write I |= A. A homomorphism h′ (existentially) extends h if h′(x) = h(x) for all

x ∈ V∀. This is equivalent to saying that that h
′ = h′∃h∀ = h∀h

′
∃ for some variable

substitution h′∃ : V∃ → T. A rule ρ = ϕ → ψ is satisfied over an interpretation I if
every homomorphism from ϕ to I can be extended to a homomorphism from ψ

to I.

Definition 2.2. Let K = 〈R,D〉 be a knowledge base. An interpretation I is con-
sidered amodel of K if

• D ⊆ I and

• every rule ρ ∈ R is satisfied over I.

A model I of a knowledge baseK is universal if for any (other) model J ofK there
exists a null substitution ν such that Iν ⊆ J .
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2.2 The Chase

The chase is a general term for various algorithms that compute universal models

for a given knowledge base [20, 10]. Starting from the initial database, the chase

iteratively derives new facts that are implied by the given rule set, which are then

added to the current interpretation. This process is repeated until every rule is

satisfied meaning that no new facts can be derived. There are, however, inputs

for which such a procedure fails to terminate and detecting such cases turns out

to be undecidable [4, 10, 14].

The details of each derivation step vary across different variants of the chase. In

this work, we are mainly concerned with the restricted or standard chase and its

practical implementation in the rule engine VLog, which is why we also introduce

the 1-parallel and Datalog-First chase.

2.2.1 The Restricted Chase

In the restricted chase, each derivation step consists of finding a variable substi-

tution that satisfies the body of a rule but not its head. We refer to such substitu-

tions as unsatisfied matches.

Definition 2.3. Let ρ = ϕ → ψ be a rule and I be an interpretation. A variable
substitution h is

• amatch for ρ over I if h is a homomorphism from ϕ to I and

• a satisfied match if h is a match and there exists a homomorphism h′ from ψ

to I which extends h. Otherwise, h is an unsatisfied match for ρ over I.

Given an interpretation I and a rule ρ, we say that ρ is applicable over I if an
unsatisfied match for ρ over I exists. The result of applying or satisfying a rule ρ
over I with the unsatisfied match h is an interpretation J = I ∪ ψh′ such that h′

existentially extends h by assigning unique and unused nulls to each existential

variable in ψ. Intuitively, each null represents an unknown entity that serves as

a placeholder. Starting from the initial database and continuously applying rules

results in a restricted chase sequence.

Definition 2.4. LetK = 〈R,D〉 be a knowledge base and (Ik) = I0, I1, . . . a series

of interpretations. We call (Ik) a restricted chase sequence for K if the following
properties hold:
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• I0 := D

• Validity: Ik is obtained by applying a rule ρ ∈ R over Ik−1 for all k > 0.

• Fairness: If h is an unsatisfied match over Ik for some rule ρ ∈ R and some
k ∈ N, then there exists k′ ∈ N such that h is a satisfied match for ρ over Ik′ .

The result of a chase sequence (Ik) is a interpretation I∞ :=
⋃
k∈N Ik. In this

context, we refer to each entry Ik as a chase step.

During a restricted chase run, there might be one or more rules which continu-

ously become applicable, thereby leading to an infinite sequence. Fairness en-

sures that each rule is satisfied at some point during the run, which guarantees

that the computed interpretations approach a universal model. On the other

hand, some rules cease to become applicable after a certain point in the chase.

Since they cannot influence the procedure once this is the case, they can be re-

moved from consideration.

Definition 2.5. Let R be a set of rules and I be an interpretation. A rule ρ ∈ R is
inactive over I and R if there does not exist a restricted chase sequence I0, I1, . . .

for 〈R, I〉 such that ρ is applicable over Ik for some k ∈ N.

As shown in the next proposition, determining the exact moment after which a

rule becomes inactive is undecidable. Nevertheless, there are still sufficient con-

ditions that prove that a rule is inactive at a certain time in the chase run, though

it might have been already the case earlier. To stress this fact, we refer to rules

that are not proven to be inactive at some point as potentially active.

Proposition 2.1. Let R be a set of rules and I be an interpretation. The problem of
determining if ρ is active over I and R is undecidable.

Proof. The proof is a reduction from BCQ answering, which is known to be unde-

cidable [4]. Let q = ∃x̄. ϕ[x̄] be a boolean conjunctive query. We can append to R

the rule ρq = ϕ[x̄] → ∃v. r(v) where r is some new unary predicate. Determining

whether or not ρq is active over D is equivalent to determining whether or not q
is entailed by K.

Throughout the thesis we will consider different algorithms that compute re-

stricted chase sequences to which we will refer to as chase algorithms. In gen-

eral, those will be non-deterministic procedures which allow for different (non-

isomorphic) universal models. However, we do not require that every possible
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restricted chase sequence should be a possible outcome of a chase algorithm.

In fact, we oftentimes specifically exclude certain potential chase sequences with

the intention of optimizing the actual computation. In the following, we present

the basic restricted chase algorithm on top of which further improvements will be

built.

Algorithm 2.1: restricted chase

Input: KnowledgeBase K = 〈R,D〉
Output: Chase result for K

1 Function applyRule(Rule ρ = ϕ→ ψ, Interpretation I):
2 Find an unsatisfied match h for ρ over I;
3 h′ := h∀ ∪ {v 7→ nv | v ∈ vars∃(ψ)} where nv is a unique null unused in I;
4 I ′ := I ∪ ψh′;
5 return I ′;

6 I := D;
7 while R contains a rule which is applicable over I do
8 ρ := select(R);
9 I := applyRule(ρ, I);

10 end

11 return I

The procedure shown in Algorithm 2.1 mainly consists of a single while-loop that

continuously selects a rule from the given rule set. In each step, a match of the

selected rule over the current interpretation I is satisfied by calling the function
applyRule. It extends said match with unique and unused nulls and adds the

resulting facts into the current interpretation. Here, we assume that select is a

function that picks a (applicable) rule in a fair manner. For practical purposes, we

will also consider algorithms that may violate fairness in the non-terminating case

and only require that every rule is satisfied over finite results. We refer to such

procedures as semi-fair chase algorithms. Infinite sequences of interpretations

that result from such semi-fair chase run are no longer guaranteed to approach a

universal model. However, we deem this property to be of little value in practical

applications and instead shift our focus to the finite case.

We show a possible run of the restricted chase on the rule set from the introduc-

tory example. Here, we purposefully choose an inefficient ordering for applying

rules with the intention to demonstrate potential optimizations.
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Example 2.1. Assume the rule set from the introductory Example 1.1 and the

database

D = {leadingRole(“Alice”, “Rick”, “Electric Sheep”),

bigBudget(“Electric Sheep”), famous(“Alice”)}.

The following sequence of chase steps constitutes a possible restricted chase run.

Starting with I0 := D, we get the following sequence of interpretations:

I1 := I0 ∪ {stars(n, “Electric Sheep”, famous(n))} (ρ3)

I2 := I1 ∪ {costar(n, n, “Electric Sheep”))} (ρ2)

I3 := I2 ∪ {stars(“Alice”, “Electric Sheep”)} (ρ1)

I4 := I3 ∪ {costar(“Alice”, “Alice”, “Electric Sheep”)} (ρ2)

I5 := I4 ∪ {costar(“Alice”, n, “Electric Sheep”)} (ρ2)

I6 := I5 ∪ {costar(n, “Alice”, “Electric Sheep”)} (ρ2)

From this point onward, every rule is satisfied and the algorithm terminates. The

null n introduced in the beginning of the chase run serves as a placeholder for

any famous actor who stars in “Electric Sheep”. However, we point out that since

Alice is famous themselves and plays a leading role in said move, the placeholder

n could also refer to them as well. This indicates a redundancy in the chase result

which, as we will see, was introduced due to the order we applied the rules in. 4

The main computational task performed by the restricted chase algorithm shown

in this section is finding unsatisfied matches for every selected rule. This prob-

lem has been shown to be ΣP2-complete w.r.t. the size of the rule [14]. Basically,

it involves first finding a homomorphism from the body of the rule to the inter-

pretation which is a NP-complete problem. Then, another NP-oracle is needed to

verify that the given match is unsatisfied.

2.2.2 1-Parallel Chase

In the restricted chase, individual matches are satisfied one at the time. Bench-

marks have shown that applying rules in batches, i.e. satisfying every match of

a given rule at once, may lead to better overall performance [5]. This leads to a

chase variant known as the 1-parallel chase, which is the variant implemented in

VLog.
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Let I be an interpretation and ρ = ϕ→ ψ a rule. We define

A(I, ρ) = {h : vars(ϕ)→ T | h is applicable forρ over I}

as the set which contains every (relevant) unsatisfied match for ρ over the inter-

pretation I.

Definition 2.6. Let (Ik) = D, I1, I2, . . . be a fair sequence of chase steps for a

knowledge base K = 〈R,D〉. The sequence (Ik) is a 1-parallel chase sequence if

• for every k > 0 we have Ik =
⋃
h∈A(Ik−1,ρ) Ih such that Ih was obtained by

applying ρ ∈ R over Ik−1 for the match h.

We obtain a 1-parallel chase algorithm by replacing the call to applyRule in Algo-

rithm 2.1 with a call to the following function.

1 Function apply-1-parallel(Rule ρ = ϕ→ ψ, Interpretation I):
2 ∆ := ∅;
3 foreach unsatisfied match h : vars(ϕ)→ T for ρ over I do
4 h′ := h ∪ {v 7→ nv | v ∈ vars∃(ψ)} where nv is a null unused in I ∪∆;
5 ∆ := ∆ ∪ ψh′;
6 end

7 I ′ := I ∪∆;
8 return I ′;

For theoretical purposes, we will treat the 1-parallel chase as a restricted chase al-

gorithm that always satisfies every match of a rule before moving on to the next.

This view is technically incorrect, since applying the same rule in separate steps

may cause matches to become satisfied. But it will allow us to use certain defini-

tions already provided in the literature and simplify theoretical arguments.

2.2.3 Datalog-First Chase

The variants of the chase considered thus far do not impose any restriction on

the order that rules are applied in as long as the chosen order is fair. This allows

for chase sequences of varying length. In particular, the chosen order of rule

application might influence whether a chase sequence is finite or infinite as seen

in the next example.
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b0 a0 b1 a1 b2
. . .

1. ρ1 2. ρ2 4. ρ1 6. ρ2 8. ρ1

3. ρ3 5. ρ3 7. ρ3 9. ρ3 11. ρ3

Figure 2.1: Infinite chase sequence for the knowledge base shown in Exam-

ple 2.2. Arrows represent the writtenBy and authorOf relationship.

A solid line implies the introdoction of a new null.

Example 2.2. Consider the following set of rules.

book(x)→ ∃v.writtenBy(x, v) ∧ author(v) (ρ1)

author(x)→ ∃w. authorOf(x,w) ∧ book(w) (ρ2)

authorOf(x, y)→ writtenBy(y, x) (ρ3)

writtenBy(x, y)→ authorOf(y, x) (ρ4)

The first two rules encode that every bookmust have an author and similarly, that

every author must have written a book. The last two are datalog rules which sim-

ply state that authorOf is the inverse relation of writtenBy and vice versa. Start-

ing with D = {book(b0)} it is possible to obtain an infinite restricted chase se-
quence by alternating between applying ρ1 and ρ2 while occasionally satisfying ρ3

and ρ4 on older matches to guarantee fairness. The resulting sequence is visu-

alized in Figure 2.1 However, prioritizing the datalog rules ρ3 and ρ4 – applying

them as soon as an unsatisfied match is available – ensures that the resulting se-

quence will be finite. In our case, this results in the following finite interpretation

I = D ∪ {writtenBy(b0, a0), author(a0), authorOf(a0, b0)}. 4

The previous example motivates a strategy for selecting rules that prefers the

application of datalog rules over others [7]. Since a datalog rule ρ = ϕ → ψ does

not contain any existential variables, an unsatisfied match h can only be satisfied

by introducing ψh into the chase result. Therefore, delaying the application of a

datalog rule cannot prevent the consequence of that rule from being added into

the resulting model. However, applying the rule early might still satisfy a non-

datalog rule. We can implement a Datalog-First strategy by replacing the generic

function select from Algorithm 2.1 with the following function selecDLF.
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1 Function selectDLF(RuleSet R):
2 R∃ := {ρ = ϕ→ ψ ∈ R | vars∃(ψ) 6= ∅};
3 Rdl := R \R∃;
4 if Rdl contains a rule which is applicable over I then
5 return select(Rdl)
6 end

7 else

8 return select(R∃)
9 end

This results in a Datalog-First restricted or a Datalog-First 1-parallel chase algo-

rithm. We note that this is still a fair selection strategy because the exhaustive

application of datalog rules can only introduce a finite number of new facts.

Needless to say, we do not obtain any benefit from using a Datalog-First strategy

on rule sets that do not contain any datalog rules.

Example 2.3. Consider a slight variation on the rule set from Example 2.2.

book(x)→ ∃v, i.writtenBy(x, v, i) ∧ author(v) (ρ1)

author(x)→ ∃w, i. authorOf(x,w, i) ∧ book(w) (ρ2)

authorOf(x, y, j)→ ∃i.writtenBy(y, x, i) (ρ3)

writtenBy(x, y, j)→ ∃i. authorOf(y, x, i) (ρ4)

Here, a new existential variable is introduced into every rule. A Datalog-First chase

therefore behaves the same as a normal restricted or 1-parallel chase would on

the same rule set. Nevertheless, a strategy that prioritizes ρ3 and ρ4 is still able to

break infinite cycles caused by the first two rules. We show a way to detect this

case in Chapter 4. 4

2.3 Cores and Core-Stratification

As seen in Example 2.2, one knowledge base may admit several non-isomorphic

universal models. Of those, core models seem to be the most preferable. In-

tuitively, a core model is a universal model which cannot be embedded into a

smaller substructure of itself [16, 10]. Although there might exist multiple non-

isomorphic infinite core models [8], in the finite case, cores corresponds to the

smallest possible universal models. This makes computing core models attrac-

tive as an optimization since any materialization of a core model consumes the



2. Preliminaries: Cores and Core-Stratification 20

least amount of space possible. In addition, core models are of particular interest

in a data exchange setting [11]. Formally, we define them as follows.

Definition 2.7 (Embeddings and core models). Let I be an interpretation. A null
substitution ν : nulls(I)→ N is called

• a pre-embedding of I if Iν ⊆ I.

• an embedding of I if it is a pre-embedding, injective and if p(t̄)ν ∈ I implies
that p(t̄) ∈ I.

An interpretation I is a core if every pre-embedding over I is also an embedding.

For a given interpretation I , we define core(I) to be an interpretationJ such that
J ⊆ I and J is a core.

Example 2.4. Recall the knowledge base from Example 2.2 which admits the in-

finite chase sequence shown in Figure 2.1. This is not a core model since the null

substitution ν = {bi 7→ b0 | i > 0} ∪ {ai 7→ a0 | i ≥ 0} is a pre-embedding which is
not an embedding. This suggests that every fact in the chase result containing ai

or bi with i > 0 is redundant. In contrast, using the Datalog-First strategy over the

same knowledge base results in a core since the only possible pre-embedding is

ν = {a0 7→ a0}, which is clearly an embedding. 4

An important aspect of core models is their relation to chase termination. The

connection stems from the fact that no knowledge base that admits a finite uni-

versal model can at the same time have an infinite core [10].

Lemma 2.2. Let K be a knowledge base. If there exists a finite universal model for K
then there cannot exist a infinite core model for K as well.

This implies that every procedure that guarantees to produce a core model for

a given knowledge base K terminates if any finite universal model for K exists.
This is achieved by the core chase [10]. As the name suggests, it is a variant of the

chase which produces universal core models. In each derivation step, every un-

satisfied match of all rules is satisfied in parallel and the resulting interpretation

is reduced to a core.

Definition 2.8. Let (Ik) = D, I1, I2, . . . be a fair sequence of chase steps for a

knowledge base K = 〈R,D〉. The sequence (Ik) is a core chase sequence if

• for every k > 0 we have Ik = core(
⋃
ρ∈R

⋃
h∈A(Ik−1,ρ) Iρ,h) such that Iρ,h was

obtained by applying ρ over Ik−1 for the match h.
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Deciding whether an interpretation is the core of another is complete for DP w.r.t.

to the size of the given interpretations, meaning that it can be expressed as the

intersection of a NP-complete and a coNP-complete problem [11]. It is worth

emphasizing that this is with respect to the whole interpretation, which in practice

may contain millions of entries. This is in contrast to the restricted chase where

finding unsatisfiedmatches is on the second level of the polynomial hierarchy but

only w.r.t. the size of the rule. Implementing the core chase as described above

therefore does not lead to practical algorithm. Thankfully, there are situations

where the comparatively cheap restricted chase may produce core models, which

was recently observed by Krötzsch [18]. Roughly speaking, a restricted chase run

produces a core model, if no application of a rule makes the earlier application

of another rule redundant. We can capture this intuition formally through the

concept of alternative matches.

Definition 2.9. Let Ia ⊆ Ib be interpretations such that Ia was obtained by ap-
plying the rule ρ = ϕ→ ψ for the extended match h. A match hA is an alternative

match for ρ and h over Ib if

• h and hA agree on all universal variables and

• h(vars∃(ψ)) 6= hA(vars∃(ψ)).

Example 2.5. Recall the restricted chase run shown in Example 2.1. At the start,

we apply ρ3 with the extended match h = {m 7→ “Electric Sheep”, a 7→ n}, in-
troducing the facts stars(n, “Electric Sheep”) and famous(n) into the database. In

the third step, we derive stars(“Alice”, “Electric Sheep”) from ρ1 while the initial

database already contains the fact famous(“Alice”). Therefore, the substitution

hA = {m 7→ “Electric Sheep”, a 7→ “Alice”} is an alternative match for ρ3 and h over

I3. The existence of h
A
implies that h would have been a satisfied match for ρ1 if

its application was delayed after the third step. The introduction of new nulls by

ρ3 hence proved to be unnecessary. 4

As shown in the above example, the presence of alternative matches in a chase

sequence suggest that the application of some rule introduced redundant facts

into the result. Conversely, chase runs without alternative matches therefore al-

ways produce core models.

Theorem 2.3 ([18, Theorem 2]). If a restricted chase sequence is free of alternative

matches then the resulting interpretation is a core.
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However, it is important to note that a core model can still result from restricted

chase sequences that contain alternative matches. The absence of alternative

matches is therefore only a sufficient condition for a particular chase run to re-

sult in a core. And even then, determining if a knowledge base admits a chase se-

quence free of alternative matches is undecidable [18]. For this reason Krötzsch

introduces a way of detecting situations where the application of a rule may pos-

sibly lead to alternative matches [18].

Definition 2.10. A rule ρ1 = ϕ1 → ψ1 restrains a rule ρ2 = ϕ2 → ψ2, written

ρ1 ≺� ρ2, if there are interpretations Ia ⊆ Ib such that

1. Ib was obtained by applying ρ1 with the extended match h1,

2. Ia was obtained by applying ρ2 with the extended match h2,

3. there exists an alternative match hA for h2 and ρ2 over Ib and

4. hA is not an alternative match for h2 and ρ2 over Ib \ ψ1h1.

Intuitively, a rule restrains another if applying the second before the first may lead

to (new) alternative matches. In the rule set from the introduction, for instance,

we have that ρ1 ≺� ρ3. Violating this restraint by applying the rules ρ3 before ρ1

causes the alternative matches in the run depicted in Example 2.1.

We slightly deviate from the definition provided in the original paper which states

4. there are no alternative matches for h2 and ρ2 over Ib \ ψ1h1

as the last condition. This allows a rule ρ1 to restrain a rule ρ2 even if ρ1 never

introduces the first alternative match w.r.t. ρ2. The definition stated here more

closely represents our goal of avoiding alternative matches, which is independent

of whether they already occurred earlier in the run. The relaxed version of the def-

inition also simplifies the computation of determining the existence of restraint

reliances between rules, as we will describe in more detail in Chapter 3.

Note that it is also possible for a rule to restrain itself, which can happen for

two reasons. For one, the application of a rule might immediately produce an

alternative match over the resulting interpretation. Another possibility is that an

additional application of a rule introduces an alternative match w.r.t. to an earlier

application of the same rule. We show an example for either case.
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Example 2.6. Consider the following two rules.

a(x)→ ∃v. b(x, v) ∧ c(x) (ρ1)

d(x, y)→ ∃v, w. e(x, v, w) ∧ e(x, y, v) (ρ2)

For the first example, we set Ĩa := {a(1), b(1, 2)}. Applying ρ1 over Ĩa we obtain
Ia := Ĩa ∪ {b(1, n), c(1)}. This directly results in the following alternative match
{x 7→ 1, v 7→ 2} over Ia. Setting Ib := Ia therefore satisfies Definition 2.10. In the
second case, we set Ia := {d(1, 2), e(1, nv, nw), e(1, 2, nv)}, which results from ap-
plying the second rule over {d(1, 2)}. At this point, no alternativematch is present.
However, applying ρ2 once more but this time over Ĩb := Ia ∪ {d(1, nv)} results in
Ib := Ĩb ∪ {e(1,mv,mw), e(1, nv,mw)}. The corresponding alternative match w.r.t.
the first application is {x 7→ 1, y 7→ 2, v 7→ nv, w 7→ mw}. 4

Given two applicable rules ρ1 and ρ2 with ρ1 ≺� ρ2, a chase algorithm should

preferably satisfy ρ1 first in order to prevent potential alternative matches. How-

ever, this alone might not guarantee a core model, since ρ1 could become appli-

cable again at some later point in the chase run. To account for that, we also

consider a second type of reliance, called positive reliances, which was defined by

Deutsch, Nash, and Remmel [10]. Simply put, a rule ρ2 positively relies on another

rule ρ1, if applying ρ1 might enable a match for ρ2. In such cases we also say that

the ρ1 triggers ρ2.

Definition 2.11. A rule ρ2 = ϕ2 → ψ2 positively relies on a rule ρ1 = ϕ1 → ψ1,

written ρ1 ≺+ ρ2, if there are interpretations Ia ⊆ Ib and a substitution h2 such

that

1. Ib is obtained from Ia by applying ρ1 for the extended match h1,

2. h2 is an unsatisfied match for ρ2 on Ib and

3. h2 is not a match for ρ2 over Ia.

For every rule ρ in a given rule set, we can use positive and restraint reliances to

obtain the set of all rules that need to be applied before ρ itself in order to avoid

violating a restraint reliance during a chase run.

Definition 2.12. LetR be a set of rules and ρ ∈ R. Then the downward closure of ρ,
written ρ ↓�, is a set containing all rules ρ′ ∈ R such that ρ′ ((≺+)∗ ◦ ≺�)+ ρ where

◦ is the composition of relations, + the transitive and ∗ the reflexive-transitive
closure.
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Definition 2.13. A set of rules R is core-stratified if ρ /∈ ρ ↓� for every ρ ∈ R.

Example 2.7. The rule set given in Example 1.1 is core-stratified. We obtain the

downward closures ρ1 ↓� = ρ2 ↓� = ∅ and ρ3 ↓� = {ρ1}. 4

Core-stratified rule sets allow for a rule application strategy where restraining

rules are exhaustively applied before the rules they restrain. The resulting se-

quence of chase steps therefore cannot contain any alternative matches, which

implies that the result is a core. However, a sequence of chase steps produced in

this way might not be fair. In order to show that core-stratified rule sets always

admit a (fair) restricted chase sequence without alternative matches, Gerlach in-

troduced the concept of a transfinite chase [13].

Definition 2.14. Let R̄ = R1, . . . , Rn be a list of rule sets and D any arbitrary
database. A transfinite chase sequence forK and R̄ is a sequence of interpretations
I0, I1

∞, . . . , In∞ such that

• I0 = D and

• Ij∞ is the result of the restricted chase on 〈R≤j, Ij−1
∞ 〉 for all j ∈ [n]

where R≤j :=
⋃

1≤i≤j Ri. The result of a transfinite chase sequence is the inter-

pretation In∞. Furthermore, a transfinite chase sequence is infinite when its result
contains an infinite amount of facts.

The transfinite chase is a variant of the chase which essentially strings together

multiple runs of the restricted chase. Each run takes as input the result of the

previous one and extends the sets of rules by set which comes up next in the

provided list of rule sets.

Definition 2.15 (Partitionings). LetR be a set of rules. We call a series of pairwise

disjoint sets R1, . . . , Rn with R =
⋃
i∈[n] Ri an ordered partitioning of R. Further-

more, an ordered partitioning is a

• restrained partitioning if R≥i ∩ ρ ↓� = ∅ for every i ∈ [n] and ρ ∈ Ri.

• relaxed restrained partitioning ifR≥i∩ρ ↓� = ∅ for every i ∈ [n−1] and ρ ∈ Ri.

Restrained partitionings can only be obtained from core-stratified rule sets while

the relaxed version can be constructed for arbitrary rule sets. Using the transfi-

nite chase on a restrained partitioning enforces the rule application order implied

by the downward closures of the rules. This leads to a transfinite chase sequence

without alternative matches.
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Lemma 2.4 ([13, Lemma 4.8]). Let K = 〈R,D〉 be a knowledge base and R̄ a re-
strained partitioning of R. Any transfinite chase sequence for K and R̄ does not con-
tain any alternative matches.

It should be noted that the transfinite chase does not directly correspond to con-

secutively executing multiple restricted chases one after another, because it ad-

mits its sub-sequences to be infinite. However, for core-stratified rule sets an

equivalent restricted chase sequence always exists.

Lemma 2.5 ([13, Lemma 4.10]). Let K = 〈R,D〉 be a knowledge base with a core-
stratified rule set, R̄ a restrained partitioning ofR and In∞ be the result of a transfinite
chase sequence for K and R̄. There exists a restricted chase sequence for K with the
same result and using the same unsatisfied matches in its construction.

Lemma 2.4 and Lemma 2.5 together imply that for any knowledge base K con-
taining a core-stratified rule set there exists a restricted chase run for K without
alternative matches as well. For rule sets that are not core-stratified Gerlach pro-

posed the hybrid chase. This variant works similarly to the transfinite chase when

performed on a relaxed partitioning of the rule sets but uses a core or eam chase

in the last partition [13].

2.4 The Rule Engine VLog

VLog is a rule engine capable of reasoning with existential rules [23, 24, 9]. It is

able to perform a full materialization of the implicit facts contained in a knowl-

edge base by implementing a version of the restricted chase. VLog differs from

other reasoners in its vertical or columnar approach for storing derived facts. This

enables optimizations which reduce memory consumption and lead to competi-

tive run times.

VLog uses different data structures for storing facts that are present in the initial

database than for storing facts that are inferred during the chase. At the user-

level, this is represented by a separation of the predicate names into EDB and

IDB predicates. All tables corresponding to EDB-predicates together form the

EDB-layer, which is loaded from disk into memory at the start and remains un-

changed during the materialization. EDB-predicates may therefore not be used

in the head of a rule. Information from the EDB-layer is extracted by asking con-

junctive queries using established approaches [21].



2. Preliminaries: The Rule Engine VLog 26

Facts are stored in tables that use a columnar layout, meaning that each column

occupies a continuous chunk of memory [23]. Additionally, entries in a table are

sorted using the lexicographical order of the numerical values each constant or

null is assigned to. Sorting allows the table to be used in merge joins, which is a

very efficient type of join especially for large tables.

The materialization is performed based on the 1-parallel chase using a Datalog-

First selection strategy. The computation on every derivation step can be divided

into two parts. First, finding all matches over the current interpretation and sec-

ond, checking which of them are unsatisfied. We can calculate the set of all

matches for a rule by joining together every table corresponding to atoms con-

tained in the rule’s body. However, such an approach would lead to the derivation

of many duplicate facts since every repeated application of a rule would recom-

pute all of the matches used in previous steps. Instead, VLog uses the semi-naive

evaluation strategy which avoids doing the same computation twice by keeping

track of the step number during which a fact was derived [1]. We write ∆i
p for

the set of facts derived at step i for the predicate p. Furthermore, we define

∆
[i,j]
p :=

⋃
i≤k≤j ∆k

p as the set of facts that were derived between step i and j for

i < j. Assume that the rule ρ = ϕ→ ψ with

ϕ = e1(s̄1) ∧ · · · ∧ em(s̄m) ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)

is selected in the current step i + 1 and has been applied the last time in step

j < i + 1 where ek and pk′ are EDB and IDB predicates respectively. Then the set

of all matches is computed by performing the following joins.

tmp =
⋃
`∈[n]

(e1 ./ · · · ./ em) ./ ∆[0,i]
p1

./ · · · ./ ∆[0,i]
p`−1

./ ∆[j,i]
p`

./ ∆[0,j−1]
p`+1

./ · · · ./ ∆[0,j−1]
pn

To filter satisfied matches, VLog partially instantiates all of the head atoms and

joins them with the tables of the already existing facts.

Although the columnar storage used is well suited for the operations describes

above, updating the tables can be expensive when compared to traditional row-

based layouts. VLog avoids this problem by storing each of the facts from ∆i
p

in a separate table. We will refer to these tables as predicate-blocks. However,

splitting the facts into multiple blocks limits the effectiveness of the merge join,
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since nowmultiple smaller join operations are required for every block instead of

just one large join thatwould cover the whole table. For computing matches, this

problem is alleviated by concatenatingmultiple predicate-blocks into a temporary

table if needed, on which the joins are then performed. These are deleted after

each step. If the number of predicate-blocks passes a certain threshold, all blocks

are collapsed into one. Although these techniques improve the time needed for

joining the tables, concatenating the blocks may still take a considerable amount

of time itself. VLog therefore provides many optimizations that aim to exclude

predicate-blocks from being considered, leaving only one per predicate in the

ideal case.

We observe that the order in which rules are applied in may influence the amount

of predicate-blocks that are introduced during the materialization.

Example 2.8. Consider again the restricted chase run that was used in Exam-

ple 2.1. Using the same order but with the semi-naive evaluation described above,

we obtain the following predicate-blocks for the relation costar from applying ρ2

two times: ∆2
costar

= {costar(n, n, “Electric Sheep”))} and

∆4
costar

= {costar(“Alice”, “Alice”, “Electric Sheep”),

costar(“Alice”, n, “Electric Sheep”)

costar(n, “Alice”, “Electric Sheep”)}.

Every subsequent rule application that uses the predicate costar in its body, would

therefore need to form the union of both blocks. In contrast, consider a situa-

tion where ρ1 was exhaustively applied before ρ2. Here, only one predicate-block,

which contains all of the facts in ∆2
costar

and ∆4
costar

, would have been derived. 4

As shown in the example above, delaying the application of a rule may prevent

VLog from performing redundant computations. As we will see in Chapter 4, we

can use the positive reliance relation to determine an order that minimizes the

amount of times a rule is applied and therefore the amount of predicate-blocks

that are introduced. Note that in the introductory example, ρ2 positively relies

on ρ1. The same technique can be used to reduce the total number of times the

EDB-tables of the body of a rule have to joined, which is an operation performed

upon every rule application.



Chapter 3

Computation of the Reliance

Relationship

In this chapter, we provide algorithms for checking the existence of a positive or

a restraint reliance between two given rules ρ1 and ρ2. The algorithms are based

on unpublished work from Larry González. Although each type of reliance serves

a very different purpose, they are both defined in a similar way. This allows us to

abstract major parts of the required functionality into subroutines used by both

algorithms. Sections 3.1 and 3.2 of this chapter therefore outline the general

strategy used in both cases as well as some common notions and algorithms.

We then provide the parts unique for each relationship separately in sections 3.3

and 3.4. In the last section, we prove the correctness of the described proce-

dures.

3.1 General Strategy

Looking at the definitions of positive and restraint reliances, we notice an im-

portant similarity, which will allow us to use a common method for computing

both. In each case, the reliance relationship is predicated upon the existence of

two interpretations Ia ⊆ Ib such that the application of the first rule obtaining
Ib introduces some new facts that “complete” a homomorphism. For positive re-
liances, the completed homomorphism represents an unsatisfied match that is

made possible by applying the first rule. In the case of restraint reliances the

homomorphism is an alternative match introduced by the application of the first

rule.
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To decide whether such a situation can possibly occur, we search for a subset

of the body or head of ρ2, for positive and restraint reliances respectively, which

unifies with a subset of the head of ρ1. The existence of the corresponding unifier

shows that there is a variable assignment that maps the respective part of ρ2

to some possible product of applying ρ1. For every unifiable subset, we use a

certain unifier as a variable assignment for the atoms in ρ1 and ρ2 to construct

two representative interpretations Ia and Ib. These interpretations are then used
to test each requirement of the respective defintion. If the created interpretations

satisfy each condition, then we can conclude that the tested relationship indeed

holds between the two rules. Conversely, we need to make sure that a failure to

satisfy the definition for the representative interpretations truly implies that this is

impossible in general, that is, for every possible pair of interpretations. As we will

see later, this follows from the fact that the representative interpretations were

constructed by using a unifier that can be transformed into any other unifier.

We refer to such unifiers as the most flexible. In summary, we use the following

general strategy for both reliances:

• Iterate over all unifiable subsets of the head/body of ρ2 and head of ρ1 com-

puting the most flexible unifier η; for every such unifier:

– Construct Ia and Ib from the atoms of both rules and η

– Check if the definition of the respective reliance is satisfied

The exact construction of the interpretations and the checks that need to be per-

formed of course depend on the reliance that is being tested. But in each case

the tests mostly consists of performing model checking as a way to verify that

both of the rules are applicable. With this in mind, iterating over each of the

possible subsets and performing multiple expensive operations each time seems

costly. Although we cannot alleviate this concern in every case since the underly-

ing problem is ΣP
2 -complete, we do not always need to consider all of the possi-

bilities. Some of the time, the constructed interpretations from one unifer violate

the definition in such a way that cannot be “repaired” by considering a more spe-

cific unifier one would obtain by unifying a larger subset. We take advantage of

that by iterating through the subsets from smallest to largest in an attempt to

terminate certain computation paths early. This procedure is described in Algo-

rithm 3.1.

But before explaining the algorithm, we need to establish some common notions.

In the following, we will assume that the body and head atoms ϕi and ψi from



3. Computation of the Reliance Relationship: General Strategy 30

both rules ρ1 = ϕ1 → ψ1 and ρ2 = ϕ2 → ψ2 are globally available in each algo-

rithm. In addition, the atoms in the head and body of the rules are assumed to be

in some (arbitrary) order such that we can index into them. So for example, ψ1[2]

refers to the second atom in the head of the first rule. Furthermore, we assume

there to be a variable substitution ω∃ : V∃ → T that assigns a unique null to each

existential variable. We will interpret ω∃ as a function that assigns the existential

variables to the nulls introduced by applying ρi over a given interpretation. In this

context, we only consider one single application of each rule. LetA and B be sets
of atoms. An atom mapping from A to B is a surjective functionm : A → B.

Definition 3.1. Let A and B be sets of atoms and m a atom mapping from A to
B. A variable substitution η : V→ T is

• a unifier ofm, if p(s̄)η = q(t̄)η for every p(s̄) 7→ q(t̄) ∈ graph(m).

• the most flexible unifier, if it is a unifier such that for every unifier σ of m

there exists a total substitution τ with σ = τ ◦ η.

Atom mappings are used as input for the unification algorithm, specifying which

atom from A should unify with which atom of B. The final reliance algorithms
will start with m = ∅ and systematically extend it until every possible mapping is
covered, finishing computation early when appropriate.

Algorithm 3.1: extend

Input: AtomSet D, AtomMappingm, int index
Output: true iff the atom mapping can be extended successfully

1 for i ∈ {index, . . . , |D|} do
2 for j ∈ {1, . . . , |ψ1|)} do
3 m′ := m ∪ {D[i] 7→ ψ1ω∃[j]};
4 if η := unify(m′) then
5 if check(m′, η, index + 1) then
6 return true;

7 end

8 end

9 end

10 end

11 return false;

Algorithm 3.1 serves as the backbone in the computation for both reliance rela-

tionships. Its main task is to facilitate a depth-first search through all of the possi-

ble atom mappings. Given an atom mapping m, a set D and and index, the algo-
rithm iterates over each possible extension m, assigning one additional element

from the domain D to one element of ψ1ω∃. For positive reliances the domain is
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m = ∅

p(x2,
x2)
7→ p(x1,

v)

p(x2, y) 7→ p(x1, v)

q(y
2 , x

2 ) 7→
q(v, y

1 )

p(
x2
, y2

) 7→
p(
x1
, v
) q(y

2 , x
2 ) 7→

q(v, y
1 )

q(y2, x2) 7→ q(v, y1)

q(y2, x2) 7→ q(v, y1)

Figure 3.1: Example of a computation tree for testing positive reliances

the body while for restraint reliances the domain is the head of the second rule.

We avoid examining the same atom mapping twice by extending a mapping only

by domain elements whose index is greater or equal than the provided index as

seen in Line 1. Each call to extend on each subsequent layer increases the index

by one. Line 4 calls the function unify on the new atom mapping m′ computed

in the previous line. If successful, the most flexible unifier of m will be assigned

to the variable η, which is passed to the function check. There, we construct the

interpretations from η and verify each condition of the definition of the computed

reliance. If it is satisfied then we can terminate early and return true. If not then

extend is called from within check but only if it is possible that an extended atom

mapping proves the relationship to hold. The implementation of check depends

on which reliance is being computed. Each version is provided in sections 3.3 and

3.4. If no computation path is successful then we return false.

As an example consider the following two rules.

a(x1, y1)→ ∃v. p(x1, v) ∧ q(v, y1) (ρ1)

p(x2, x2) ∧ p(x2, y2) ∧ q(y2, x2)→ ∃w. b(w,w) (ρ2)

Figure 3.1 shows the computation tree for testing ρ1 ≺+ ρ2. Each node represents

the atommapping obtained by combining each pair of atoms along its path. Since

we are testing for a positive reliance, the atom mappings assign atoms from the

body of the second rule to the head of the first rule. First note how every path

corresponds to a unique atommapping. Furthermore, we are able to exclude cer-

tain calculation paths from consideration. These are greyed out in the illustration.
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In this case we know that no fact produced from the atom p(x1, v) in ρ1 can ever

match with p(x2, x2) from ρ2. This is because v is an existential variable and there-

fore introduces a fresh null into the database. For this reason, it cannot be equal

to the term supplied for x2 while applying ρ2. This holds true in every atom map-

ping which contains p(x2, x2) 7→ p(x1, v). This allows us to exclude all computation

paths that would otherwise include this pair in their atom mapping.

3.2 Unification

Unification is a well-studied problem ever since it was first introduced in the con-

text of resolution by Robinson [22]. Many improvements to the original algorithm

have been presented [17]. However, most of the difficulty of the problem stems

from the fact that termsmay include function symbols. Since the fragment of first

order logic used here does not contain any function symbols, unifying an atom

mapping becomes much more straightforward. In this section, we present a sim-

ple linear-time unification algorithm. Given an atom mappingm, it will return the

most flexible unifier of m. This property is crucial for showing the correctness of

the reliance algorithms.

The complete procedure is shown in Algorithm 3.2. It maintains a graph G and

a partial function ν : V → T, which we will call a variable assignment. Both start

out empty. The basic idea is that variables connected inG are supposed to be as-

signed to the same term by every unifier. And likewise, any unifier should assign

a variable x in dom(ν) to ν(x). After the initialization step, the algorithm iterates

over each pair of atoms contained in m. Line 16 verifies that the atoms are com-

patible, in the sense that they share the same predicate and have the same arity.

Passing this check, we iterate over each possible term position in each pair. In

Line 18 we define cs to be the constant/null assigned to si by ν, or alternatively, cs

is assigned to si if si is a constant or null itself. We define ct analogously in the next

line. We leave cs and ct undefined if both terms are variables that have not been

assigned to a value yet. In the case where they are constants/nulls or assigned to

such, we check if they are equal in Line 20. If not then we know thatm is not unifi-

able and immediately abort. If at least one of the terms is a variable we continue

in Line 24. Here, we test whether one of the terms is a constant/null or assigned

to such. If so then we need to update ν by assigning each connected variable to cs

or ct. This is accomplished by the function assign which performs a depth-first-

search in G, assigning each connected variable to the given constant/null.
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Algorithm 3.2: unify

Input: AtomMappingm
Output: Most flexible unifier η or ‘not unifiable’

1 Function get(VariableAssignment ν, Term t):
2 if t ∈ C ∪N then return t ;
3 else

4 if t ∈ dom(ν) then return ν(t);
5 else return undefined;

6 end

7 Function assign(Graph G, VariableAssignment ν, Variable x, Term c):
8 if x ∈ dom(ν) then return;
9 ν(x) := c;
10 foreach y ∈ succG(x) do
11 ν := assign(G, ν, y, c);
12 end

13 G := ∅;
14 ν := ∅;

15 foreach p(s1, . . . , sn) 7→ q(t1, . . . , tm) ∈ graph(m) do
16 if p 6= q or n 6= m then return not unifiable;

17 for i ∈ [n] do
18 cs := get(ν, si);
19 ct := get(ν, ti);

20 if cs and ct are defined then
21 if cs = ct then skip;
22 else return not unifiable;

23 end

24 if cs or ct is defined then
25 if si ∈ V and si /∈ dom(ν) then ν := assign(G, ν, si, ct);
26 else if ti ∈ V and ti /∈ dom(ν) then ν := assign(G, ν, ti, cs);

27 end

28 if si ∈ V and ti ∈ V then
29 G := G ∪ {(si, ti), (ti, si)};
30 end

31 end

32 end

33 η := νωGω∀ω∃;
34 return η;
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Line 28 checks if both terms are variables. In this case they must be assigned to

the same value in every unifier. We therefore add two edges between the two

variables in G. Lastly, we compute η in Line 33, which is the unifier we return.

Besides ω∃, we also assume there to be two additional substitutions ωG and ω∀.

The former assigns a unique constant to each strongly connected component in

G. The latter assigns each universal variable to a unique constant different from

the ones in ωG. For reasons which will become apparent later, we require that ω∀

and ωG do not assign any variable to a constant used in ρ1 or ρ2.

From this description it should be clear that any returned substitution is a unifier.

We will now show that if m is unifiable, then Algorithm 3.2 returns the most flex-

ible unifier. For that, we need some auxiliary results, which show that G and ν

have the correct semantics.

Lemma 3.1. Let m be an atom mapping from A to B and σ be a unifier of m. Fur-
thermore, let G be the graph computed in Algorithm 3.2 when called on m. Then

reachG(x, y) implies σ(x) = σ(y) for every x, y ∈ V.

Proof. If reachG(x, y) then either x = y, in which case the statement holds trivially,

or there exists a path v1, . . . , vn in G with v1 = x and vn = y. It follows from the

way that G is constructed that if two variables v′, v′′ ∈ V are connected in G then

there exists an assignment p(s1, . . . , sn) 7→ p(t1, . . . , tn) ∈ graph(m) and i ∈ [n]

such that v′ = si and v
′′ = ti or vice versa. The fact that σ is a unifier ofm implies

that σ(v′) = σ(v′′). Consequently, we have σ(v1) = · · · = σ(vn) and therefore

σ(x) = σ(y).

Lemma 3.2. Let m be an atom mapping from A to B and σ be a unifier of m. Fur-
thermore, let ν be the variable assignment computed in Algorithm 3.2 when called on

m. Then ν(x) = σ(x) for every x ∈ dom(ν).

Proof. Let G be the graph computed in Algorithm 3.2 when called onm. Further-

more, let x ∈ dom(ν). Then there exists a variable y ∈ V with the following

properties:

• x is reachable from y in G and

• there is an assignment p(s1, . . . , sn) 7→ p(t1, . . . , tn) ∈ graph(m) and i ∈ [n]

such that si = y and ti = ν(x) or vice versa.
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Since σ is a unifier of m, we obtain σ(y) = ν(x). From Lemma 3.1 we get σ(x) =

σ(y) and therefore ν(x) = σ(x).

With these results in place we will prove that Algorithm 3.2 returns the most flex-

ible unifier η meaning that it can be morphed into every other unifier σ with a

total substition τ by concatinating τ and η. Here, we show an additional property

that will become useful in later proofs, namely that τ can be selected such that

τ(t) = t for every t ∈ terms(ρ1) ∪ terms(ρ2).

Proposition 3.3. Let A and B be sets of atoms. If A and B are unifiable then there
exists a set of atoms B′ ⊆ B and an atom mapping m from A to B′ such that Al-
gorithm 3.2 when called on m returns the most flexible unifier η between A and B′.
Furthermore, for every unifier σ of m there exists a total substitution τ with σ = τ ◦ η
and τ(t) = t for all t ∈ terms(ρ1) ∪ terms(ρ2).

Proof. Assume that there is a unifier σ of A and B. For each atom p(s̄) ∈ A
there must be an atom q(t̄) ∈ B with p(s̄)σ = q(t̄)σ. Hence, we can pick an atom

mappingm wherem(p(s̄)) = q(t̄) and the set B′ to im(m).

First, we will show that calling Algorithm 3.2 on m does not return ‘not unifiable’.

Failing the check in Line 16 would imply that m assigns an atom p(s̄) to q(t̄) with

either p 6= q or |s̄| 6= |t̄|. In either case, σ cannot be a unifier form. Therefore, the
only way to return ‘not unifiable’ left is if cs 6= ct in Line 20. We know that either si

or ti has to be a variable. Because if not, then siσ = si = cs 6= ct = ti = tiσ would

violate the assumption that σ is a unifier. Suppose then, that si is a variable and

ti is not. Since σ is a unifier, we find that σ(si) = ti = ct. We assumed that cs =

ν(si) 6= ct = ti. But Lemma 3.2 implies that ν(si) = σ(si), which is a contradiction.

A similar argument can be made in the case when ti is a variable and si is not.

So let si, ti ∈ V. We have that σ(si) = σ(ti) but ν(si) = cs 6= ct = ν(ti). Using

Lemma 3.2 again, we get that σ(si) = ν(si) and σ(ti) = ν(ti), which contradicts

the earlier statement. Thus, the returned substitution by Algorithm 3.2 η is a

unifier ofm.

We will now show that η is the most flexible unifer by proving the existence of a

total substitution τ with σ = τ ◦ η. For that, we define τ(η(x)) := σ(x) for every

x ∈ V and τ(t) = t for every t ∈ T \ im(η). It is clear that σ = τ ◦ η. But
we need to show that τ is well-defined. For that, assume η(x) = η(y) for some

x, y ∈ V. This is only possible if x, y ∈ dom(ν) and ν(x) = ν(y), or if reachG(x, y),

since ωG, ω∀ and ω∃ assign a unique terms to every variable. In the first case we
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can use Lemma 3.2 and in the second case we can use Lemma 3.1 to show that

σ(x) = σ(y). This means that τ is well defined.

For the total substition τ defined above we now prove that τ(t) = t for every

t ∈ terms(ρ1) ∪ terms(ρ2). Assume that t ∈ terms(ρ1) ∪ terms(ρ2) and t ∈ im(η).

This implies that there is a x ∈ V such that t = η(x). But since ωG, ω∀ and ω∃ do

not assign any variable to a term in ρ1 or ρ2 we can infer that x ∈ dom(ν) with

ν(x) = t. From Lemma 3.2 it follows that σ(x) = t and therefore that τ(t) = t. If

t /∈ im(η) then τ(t) = t by definition.

The complexity of the unifiation algorithm is linear in the size ofm. Both for-loops

iterate over each term in m. In the for-loop each operation takes up constant

time except for assign. But since every variable can only be assigned at most

one time, the depth-first search performed by assign can only ever be executed

once on each strongly connected component in G. Both the number of vertices

and the number of edges is bounded linearly by the size ofm. Hence, the overall

algorithm only takes a linear amount of time.

3.3 Positive Reliances

We now combine the procedures from the previous sections into an algorithm

that detects positive reliances. Algorithm 3.3 serves as the entry point. It receives

two rules ρ1 and ρ2 and returns true if ρ1 ≺+ ρ2 and false otherwise. First, we

uniformly replace each of the variables in ρ1 and ρ2 in Line 1 such that no variable

in ρ1 is contained in ρ2. This allows us to use a single substitution as a match for

both rules without the worry of conflicting assignments. Line 2 returns the result

of calling Algorithm 3.1 on the body atoms of the second rule ϕ2, the empty atom

mapping ∅ and the index 1.

Algorithm 3.3: positive reliance

Input: Rules ρ1 = ϕ1 → ψ1, ρ2 = ϕ2 → ψ2

Result: true iff ρ1 ≺+ ρ2

1 Uniformly replace all variables in ρ1, ρ2 such that both rules don’t share a

variable;

2 return extend(ϕ2, ∅, 1) ;

It is worth pointing out the special case where ρ1 = ρ2 = ρ. For positive reliances,

we can treat it the same way as computing the existence of a positive reliance
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between two distinct rules ρ and ρ′, where ρ′ is the same as ρ except for renamed

variables.

Lemma 3.4. Let ρ = ϕ → ψ be a rule. If ρ ≺+ ρ then ρ ≺+ ρ′ where ρ′ = ϕ′ → ψ′ is

obtained from ρ by uniformly renaming every variable in ρ.

Proof. Let ν : vars(ρ) → vars(ρ′) be a bijection such that ϕν = ϕ′ and ψν = ψ′.

Furthermore, let I be any interpretation andA ∈ {ϕ, ψ}. If h is a homomorphism
from A to I then any variable substitution h′ with h′(x) = h(ν(x)) for x ∈ vars(ρ)

is a homomorphism from ϕ′ to I. Also, if ĥ existentially extends h, then ĥ′ with
ĥ′(x) = ĥ(ν(x)) existentially extends h′. The reverse of the above statements also

holds when considering A = {ϕ′, ψ′} and ν−1
. Hence, a match for ρ over I exists

iff a match for ρ′ over I exists and the former is satisfied over I iff the latter is.

If ρ ≺+ ρ there exist interpretations Ia ⊆ Ib and a variable substitution h2 such

that Ib was obtained by applying ρ, h2 is an unsatisfied match for ρ over Ib and
h2 is not a match for ρ over Ia. But then Ia, Ib with h′2(x) = h2(ν(x)) satisfies the

definition as well and we obtain ρ ≺+ ρ′.

The only part missing now is to define the algorithm which constructs the in-

terpretations from a given unifier and checks if they satisfy the requirements of

Definition 2.11. This task is performed by Algorithm 3.4. It receives an atommap-

ping m, a unifier η and an index. The interpretations will be constructed in such

a way that, if possible, η will be the unsatisfied match in the application of both

rules. The algorithm starts by splitting the body of ρ2 into two parts ϕ21 and ϕ22

in lines 1 and 2. The former is the part of the body of ρ2 that will match with the

new atoms produced by applying ρ1. The atoms in ϕ22η together with the atoms

in ϕ1η form the interpretation Ia in Line 9. In order for this to be a valid interpre-
tation, it must not contain any new nulls introduced by the application of ρ1. The

relevant checks are performed in lines 3 and 6. Note that if Algorithm 3.2 assigns

a null to any variable in ϕ1, that it will do so in every extension of the current

atom mapping. Atoms in ϕ22 on the other hand may move into ϕ21 on subse-

quent calls. Hence, we call into extend on Line 7 but simply return false on Line 4.

The purpose of Line 10 is to check whether η can be existentially extended to a

homomorphism from ψ1 to Ia. We justify the notation used here in Section 3.5.
If η cannot be extended then it is an unsatisfied match for the first rule and we

continue in Line 13. Here, we make sure that η is not an unsatisfied match for

ρ2. If this is not the case, we construct the interpretation Ib in Line 16. Lastly, we
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Algorithm 3.4: check (positive)

Input: AtomMappingm, Unifier η, int index
Output: Returns true iff the given mapping is valid

1 ϕ21 ← dom(m);
2 ϕ22 ← ϕ2 \ ϕ21;

3 if {v 7→ t ∈ graph(η) | v ∈ vars(ϕ1), t ∈ N} 6= ∅ then
4 return false;

5 end

6 if {v 7→ t ∈ graph(η) | v ∈ vars(ϕ22), t ∈ N} 6= ∅ then
7 return extend(ϕ2,m, index);

8 end

9 Ia ← ϕ1η ∪ ϕ22η;
10 if Ia |= ψ1η∀ then
11 return extend(ϕ2,m, index);

12 end

13 if ϕ2η ⊆ Ia then
14 return extend(ϕ2,m, index);

15 end

16 Ib ← Ia ∪ ψ1ω∃η;
17 if Ib |= ψ2η∀ then
18 return false;

19 end

20 return true;

check if η is an unsatisfied match for ρ2 over Ib in Line 17. Failing all of the above
if-conditions implies that the constructed interpretationsmeets the requirements

of Definition 2.11, in which case we return true.

3.4 Restraint Reliances

The algorithm for detecting a restraint reliance is constructed in a similar fashion.

Algorithm 3.5 shows the main procedure. As with positive reliances, we uniformly

replace all variables in both rules such that they do not share any variables. We

then return the result of calling extend on the head of the second rule, the empty

atom mapping and the index 1.

However, unlike with positive reliances, we cannot reduce the problem of verify-

ing ρ ≺� ρ to checking ρ′ ≺� ρ where ρ′ is obtained by renaming variables from ρ.

This is because alternative matches can be introduced by a single application of

a rule and do not require ρ to be applicable a second time. To illustrate, consider

the next example.
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Algorithm 3.5: restraint

Input: Rules ρ1, ρ2

Result: ρ1 ≺� ρ2

1 Uniformly replace all variables in ρ1, ρ2 such that both rules don’t share a

variable;

2 return extend(ψ2, ∅, 1);

Example 3.1. Recall the rule from Example 2.6.

a(x)→ ∃v. b(x, v) ∧ t(x) (ρ)

a(y)→ ∃v. b(y, v) ∧ t(y) (ρ′)

Let Ĩa = {a(1), b(1, 2)}. Applying ρ results in Ia = Ĩa ∪ {b(1, nv)} and introduces
an alternative match {x 7→ 1, v 7→ 1}. Setting Ia = Ib satisfies Definition 2.10 and
hence ρ ≺� ρ. However, we have that ρ′ 6≺� ρ because ρ′ is satisfied over Ia and
therefore cannot be applied to obtain a second interpretation Ib ⊃ Ia. 4

For the sake of simplicity, we will disregard this case and provide a function check

that assumes that both rules are applied. The corresponding procedure is shown

in Algorithm 3.6. This time, the unifier η represents the alternative match intro-

duced by applying the second after the first. The procedure starts by dividing

the head of the second rule into two parts ψ21 and ψ22 in lines 1 and 2. The first

part is the portion of the head of ρ2 for which the application of ρ1 will produce

the alternative match. Existential variables in ψ22 that are not present in ψ11 are

simply assigned to their corresponding nulls created during the application of

ρ2. In Line 9 we check whether ψ11 contains an existential variable. This ensures

that at least one existential variable in ψ2 is assigned to a term not present in

ω∃(vars∃(ψ2)), which is necessary for η to be an alternative match. Algorithm 3.6

constructs three interpretations: Ĩa, which represents the interpretation right be-
fore the application of ρ2; Ia, which results from applying ρ2 over Ĩa; and Ĩb, which
represents the interpretation immediately before applying ρ1. The checks in lines

3 and 6 ensure that the constructed interpretations do not contain any nulls that

are introduced by a later application of ρ1 or ρ2. The condition on Line 13 and the

second condition on Line 18 verify that η is indeed an unsatisfiedmatch for ρ1 and

ρ2 over the corresponding interpretations. The first condition on Line 18 checks

that the alternative match η is not already present in Ĩb before the application of
ρ1. If all checks are passed then we return true.
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Algorithm 3.6: check (restraint)

Input: AtomMappingm, Unifier η, int index
Output: Returns true iff the given mapping is valid

1 ψ21 ← dom(m);
2 ψ22 ← ψ2 \ ψ21;

3 if {v 7→ t ∈ graph(η) | v ∈ V∀, t ∈ N} 6= ∅ then
4 return false;

5 end

6 if {v 7→ t ∈ graph(η) | v ∈ vars∃(ψ22), t ∈ N} 6= ∅ then
7 return extend(ψ2,m, index);

8 end

9 if vars∃(ψ21) = ∅ then
10 return extend(ψ2,m, index);

11 end

12 Ĩa ← ϕ2η;

13 if Ĩa |= ψ2η∀ then
14 return false;

15 end

16 Ia ← Ĩa ∪ ψ2ω∃η;

17 Ĩb ← Ia ∪ ϕ1η ∪ ψ22η

18 if ψ2η ⊆ Ĩb or Ĩb |= ψ1η∀ then
19 return extend(ψ2,m, index);

20 end

21 return true;

We are now able to offer a more detailed explanation as to why computing the

original restraint relation provided by Krötzsch is more difficult. Recall that in

Definition 2.10, the condition

• there is no alternative match for h2 and ρ2 over Ib \ ψ1h
′
1

was relaxed to

• hA is not an alternative match for h2 and ρ2 over Ib \ ψ1h
′
1.

We could imagine an alternative description of Algorithm 3.6 that is based on the

stricter defintion. It would replace the first condition on Line 18 with a condition

that checks that no alternativematches over Ĩb exist. But such an approach would
reject too often as seen in the next example.
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Example 3.2. Consider the following two rules:

b(x)→ ∃v.h(x, v) (ρ2)

h(y, z1) ∧ d(z1) ∧ h(y, z2) ∧ e(z2)→ ∃w1, w2. h(y, w1) ∧ f(w2) (ρ1)

Assume that we want to check whether ρ1 ≺� ρ2. Since there is only one possbile

way to unify the two heads, Algorithm 3.6 would be called once producing the

following interpretation

Ĩb = {b(cxy), h(cxy, nv), h(cxy, cz1), d(cz1), h(cxy, cz2), e(cz2)}

where c∗ is the constant assigned in place of the variables in ∗ and nv is a null. It
is clear that there already is an alternative match over Ĩb, for example {x 7→ cxy,

v 7→ cz1}, and hence the alternative version of Algorithm 3.6 would return false.
But this is incorrect. Consider the interpretations Ia = {b(1), h(1, n)}, which re-
sults from applying ρ2 over {b(1)} and Ĩb = Ia ∪ {d(n), e(n)}. At this point, no
alternative match for the application of ρ2 exists, but ρ1 is still applicable over Ĩb
while also introducing an alternative match. Hence, ρ1 ≺� ρ2 does hold in the

stricter defintion. 4

The problem shown in Example 3.2 arises because Algorithm 3.6. does not take

into account that ρ1 might match with a product of applying ρ2, which might

avoid unwanted alternative matches. One possible way to fix this would be to

unify the body of ρ1 with the head of ρ2 in similar way that was described for

positive reliances. But this search would have to be done for every call of Algo-

rithm 3.6.

3.5 Proving Correctness

After presenting the algorithms, we will now show that they are sound and com-

plete. Proving soundness will come down to showing that the computed inter-

pretations in each version of the function check do indeed satisfy the respective

definitions of the tested reliance. The key property which we use to show com-

pleteness is the fact that the unifier computed Algorithm 3.2 is the most flexible

one. This ensures that the constructed interpretations are the most general, in

the sense that if they fail to meet the definition then no other pair of interpreta-

tions will.
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We start by showing some auxiliary results. The first one justifies our use of the

statement I 6|= Ah∀ throughout the algorithms to mean that h cannot be existen-
tially extended to a homomorphism from A to I.

Lemma 3.5. Let A and B be sets of atoms, I an interpretation and h : V → T a

homomorphism from A to I . Then I |= Bh∀ if and only if h can be existentially
extended to a homomorphism from B to I .

Proof. If I |= Bh∀ then there is some variable substitution h′ such that Bh∀h′ ⊆ I.
Since h∀ is applied first h∀h

′
has to agree with h on all universal variables. Hence,

h∀h
′
existentially extends h and is a homomorphism from B to I.

Assume on the other hand that there is a variable substitution h′ = h∀h
′
∃, which

extends h to a homomorphism from B to I. Then h′∃ is a homomorphism from
Bh∀ to I.

Lemma 3.6. Let A and B be two sets of atoms. Moreover, let σ and η be some
substitutions such that Aσ ⊆ Bη and τ be a total substitution such that τ(t) = t for

every t ∈ terms(A) ∪ terms(B). It follows that A(τ ◦ σ) ⊆ B(τ ◦ η).

Proof. Let p(s̄) ∈ A. Since Aσ ⊆ Bη there exists some p(t) ∈ B where |s̄| = |t̄|
such that p(s̄)σ = p(t̄)η. Let si ∈ s̄ and ti ∈ t̄. If si ∈ dom(σ) and ti ∈ dom(η) then

σ(si) = η(ti). But then (τ ◦ σ)(si) = (τ ◦ η)(ti). If si ∈ dom(σ) and ti 6∈ dom(η)

then σ(si) = ti. Because ti is a term in A we have that τ(ti) = ti and therefore

(τ ◦ σ)(si) = ti. Also note that ti 6∈ dom(τ ◦ η) and thus ti(τ ◦ η) = ti. The

argument works analogously in the case where si 6∈ dom(σ) and ti ∈ dom(η).

Lastly, if si 6∈ dom(σ) and ti 6∈ dom(η) then si = ti as well as si 6∈ dom(τ ◦ σ) and

ti 6∈ dom(τ ◦ η). Hence, p(s)(τ ◦ σ) = p(t)(τ ◦ η).

The next lemma is crucial for showing that the constructed interpretations during

Algorithm 3.4 and 3.6 are indeed representative of all possible pairs of interpre-

tations.

Lemma 3.7. Let A and B be sets of atoms, I an interpretation and h : V → T an

homomorphism fromA to I . Let η be a variable substitution such that there is a total
substitution τ with h = τ ◦ σ where τ(t) = t for every t ∈ terms(A) ∪ terms(B). If h

cannot be existentially extended to a homomorphism from B to I then Aη 6|= Bη∀.

Proof. Assume for a contradiction that Aη |= Bη∀. By Lemma 3.5 there is a sub-
stitution η′ = η′∃η∀ = η∀η

′
∃ which existentially extends η such that Bη′ ⊆ Aη. Note
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that h∀ = τ ◦η∀. We define h′ = (τ ◦η′∃)h∀. It is obvious that h′ existentially extends
h. By Lemma 3.6, Bη′ = Bη′∃η∀ ⊆ Aη implies that B(τ ◦ η′∃η∀) = B(τ ◦ η′∃)(τ ◦ η∀) ⊆
A(τ ◦ η). Therefore, B(τ ◦ η′∃)h∀ = Bh′ ⊆ Ah ⊆ I. Hence, h′ is a homomorphism
from B to I which existentially extends h.

We can now prove that Algorithm 3.3 is sound and complete.

Theorem 3.8. Let ρ1 = ϕ1 → ψ1 and ρ2 = ϕ2 → ψ2 be rules. Then Algorithm 3.3

returns true if and only if ρ1 ≺+ ρ2.

Proof. =⇒ Assume that Algorithm 3.3 returns true. This means that there is an

atom mapping m : ϕ2 → ψ1ω∃ such that η = unify(m) and Algorithm 3.4 called

on m and η returns true. We define ϕ21 := dom(m) and ϕ22 := ϕ2 \ ϕ22 like in

Algorithm 3.4 and in addition set ψ11 := im(m) ⊆ ψ1ω∃. Because η is a unifier

we have that ϕ21η = ψ11ω∃η. Algorithm 3.4 constructs the two interpretations

Ia = ϕ1η ∪ ϕ22η and Ib = Ia ∪ ψ1ω∃η. It follows that Ia ⊆ Ib. We now show that
each condition in Definition 2.11 holds.

We start with the statement that Ib can be obtained by applying ρ1 over Ia. The
unifier η is also amatch for ρ1 over Ia because ϕ1η ⊆ Ia by construction. We know
that the if-condition on Line 10 was not satisfied, hence Ia 6|= ψ1η∀. It follows from

Lemma 3.5 that η cannot be existentially extended to a homomorphism from ψ1

to Ia and therefore that η is an unsatisfied match. We existentially extend η to
η̄ := ω∃η∀. Because the conditions in lines 3 and 6 were not satisfied, we know

that η∀ does not assign any variable to an element of im(ω∃). Hence, η̄ assigns

a null that was not used in Ia to each existential variable in ψ1. Therefore, Ib is
obtained by applying ρ1 over Ia.

Next, we show that η is an unsatisfied match for ρ2 over Ib. Since ϕ21η = ψ11ω∃η =

ψ11η̄ ⊆ Ib and ϕ22η ⊆ Ia ⊆ Ib we have that ϕ2η ⊆ Ib, which means that η is a
match for ρ2 over Ib. Because the if-condition on Line 17 was not satisfied and
therefore Ib 6|= ψ2η∀ we can use Lemma 3.5 again to show that η is an unsatisfied

match for ρ2 over Ib.

The only condition left is that η is not a match for ρ2 over Ia. But this directly
follows from ϕ2η 6⊆ Ia, which is the case since the check on Line 13 failed.

Therefore, all of the conditions in Definition 2.11 have been satisfied and we can

conclude that ρ1 ≺+ ρ2.
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⇐= To prove completeness, we assume that ρ1 ≺+ ρ2 and show that Algo-

rithm 3.3 returns true. We may assume w.l.o.g. that ρ2 does not share any vari-

ables with ρ1. In the case where ρ1 = ρ2 we proceed as if ρ2 was a distinct rule,

which is obtained from ρ1 by uniformly renaming all of its variables. This step

is justified by Lemma 3.4. Therefore there exist interpretations Ia ⊆ Ib and a
variable substitution h : V→ T such that

(1) h is a homomorphism from ϕ1 to Ia, that is, ϕ1h ⊆ Ia,

(2) h cannot be existentially extended to a homomorphism from ψ1 to Ia,

(3) Ib is obtained by applying ρ1 over Ia with match h extended to (w.l.o.g.)
h′ = ω∃h, hence Ib = Ia ∪ ψ1ω∃h,

(4) h is a homomorphism from ϕ2 to Ib, that is, ϕ2h ⊆ Ib,

(5) h cannot be existentially extended to a homomorphism from ψ2 to Ib, and

(6) h is not a homomorphism from ϕ2 to Ia or ϕ2h 6⊆ Ia.

Since ϕ2h ⊆ Ib but ϕ2h 6⊆ Ia by (4) and (6) respectively, there must be a partition
ψ1 = ψ11 ∪̇ψ12 and a partition ϕ2 = ϕ21 ∪̇ϕ22 where ϕ21 6= ∅ such that ϕ21h =

ψ11ω∃h (†) and ϕ22h ⊆ Ia (‡). This means that ϕ21 and ψ11ω∃ are unifiable and by

Proposition 3.3 that there exists an atom mapping m with ϕm21 := dom(m) = ϕ21

such that Algorithm 3.2 will produce a most flexible unifier η when called on m.

As mentioned in Proposition 3.3 wemay also assume that there exists a total sub-

stitution τ with h = τ ◦ η such that τ(t) = t for every t ∈ terms(ρ1) ∪ terms(ρ2).

We define ϕm22 := ϕ2 \ ϕm21 = ϕ22 as well as the interpretations Ima = ϕ1η ∪ ϕm22η

and Imb = Ima ∪ψ1ω∃η as in Algorithm 3.4. We will first establish that Algorithm 3.4

returns true when called on η by showing that each of the if-conditions in Algo-

rithm 3.4 evaluate to false.

We start with the conditions on lines 3 and 6. Assume that η assigns a null to some

variable x ∈ vars(ϕ1∪ϕm22). Since x has to be a universal variable it mustmean that

ν(x) = ω∃(v) for some v ∈ vars∃(ψ1)where ν is the variable assignment computed

during the execution of Algorithm 3.2. By Lemma 3.2 we get that h(x) = ω∃(v) as

well. But since h is a homomorphism from ϕ1 and ϕ22 to Ia by (1) and (‡) this
would imply that Ia contains a null introduced by the application of ρ1, which is a

contradiction to (3).

The rest of the checks can all be handled by using Lemma 3.7. Let A := ϕ1 ∪ ϕ22

and B := ψ1. Then h is a homomorphism from A to Ia which by (2) cannot be
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extended to a homomorphism from B to Ia and Ima = Aη. By Lemma 3.7 we
have that Ima 6|= ψ1η∀ and therefore that the check in Line 10 fails. To see that

the check in Line 13 also fails first note that ϕ2η ⊆ Ia is equivalent to Ia |= ϕ2η∀

since ϕ2 does not contain any existential variables. Also note that if h is not a

homomorphism from ϕ2 to Ia that it also cannot be existentially extended to one.
Hence, with B := ϕ2 and A as before we can again apply Lemma 3.7. Lastly, with
A := ϕ1 ∪ ϕ22 ∪ ψ1ω∃ and B := ψ2 we have that h is a homomorphism from A to
Ib which by (5) cannot be extended to a homomorphism from B to Ib. Lemma 3.7
therefore proves that the check in Line 17 fails as well.

The last step is to show that ∅ is extended tom at some point during the execution
of Algorithm 3.3 or alternatively that the algorithm returns true earlier. Letm′ 6= ∅
be any atommapping which can be extended tom. It is clear that ifm is unifiable

thenm′ is also giving us the unifier ηm
′
:= unify(m′). We define ϕm

′
21 := dom(m′) ⊆

dom(m), ϕm
′

22 := ϕ2 \ ϕm
′

21 ⊇ ϕ22 as well as Im
′

a := ϕ1η
m′ ∪ ϕm′22 η

m′
and Im′b := Im′a ∪

ψ1ω∃η
m′
. Since ηm

′
is the most flexible unifier we also obtain a total substitution

τ such that η = τ ◦ ηm′ with τ(t) = t for every t ∈ terms(ρ1) ∪ terms(ρ2) by

Proposition 3.3.

We show that Algorithm 3.4 when called on m′ does not reach Line 4 or 18. As-

sume that ηm
′
(x) = ω∃(v) for some x ∈ V∀ and v ∈ vars∃(ψ1). Then νm

′
(x) = ω∃(v)

where νm
′
is the variable assignment computed in Algorithm 3.2 when called on

m′. But since η is also a unifer of m′ we obtain by Lemma 3.2 that η(x) = ω∃(v),

which is impossible because Algorithm 3.4 called on m failed the if-condition on

Line 3 as established earlier. Thus, Line 4 cannot have been reached for m′. It

remains to be shown that this is also the case for Line 18. LetA := ϕ1∪ϕm
′

22 ∪ψ1ω∃

and B := ψ2. We further define ϕ
∆
2 := ϕm

′
22 ∩ ϕm21. Then, ϕ

m′
22 = ϕm22 ∪ ϕ∆

2 . It is

clear that Im′b = Aηm′ . We now show that also Imb = Aη. From the definition
of Imb it is apparent that Imb ⊆ Aη. We also know that ϕ1η ⊆ Imb , ψ1ω∃η ⊆ Imb
and ϕm22η ⊆ Imb . From (†) it follows that ϕ∆

2 η ⊆ ϕm21η = ψ11ω∃η and we get

ϕ∆
2 η ⊆ ϕm21η ⊆ ψ1ω∃η ⊆ Imb . Thus, Aη ⊆ Imb and therefore Imb = Aη. Hence,

η is a homomorphism from A to Imb which cannot be existentially extended to
a homomorphism from B to Imb . Lemma 3.7 now gives us that Im

′
a 6|= ψ2η

m′

∀ . In

summary, calling Algorithm 3.4 onm′ cannot return false.

This means that Algorithm 3.4 when called on an atom mapping that can be ex-

tended tom either returns true or calls extend and eventually reachesm. In either

case, Algorithm 3.3 returns that ρ1 ≺+ ρ2.
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We now show the analogous result for restraint reliances. Note that the provided

algorithm is not complete for self-reliances as was established in Section 3.4. We

therefore exclude this case in the proof.

Theorem 3.9. Let ρ1 = ϕ1 → ψ1 and ρ2 = ϕ2 → ψ2 be rules. If Algorithm 3.5 returns

true, then ρ1 ≺� ρ2. If ρ1 ≺� ρ2 and ρ1 6= ρ2 then Algorithm 3.5 returns true.

Proof. =⇒ Assume that Algorithm 3.5 returns true. This means that there is an

atom mappingm : ψ2 → ψ1ω∃ such that η = unify(m) and Algorithm 3.6 called on

m and η returns true. We define ψ21 := dom(m) 6= ∅ and ψ22 := ψ2 \ ψ21 like in

Algorithm 3.6 and in addition ψ11 := im(m) ⊆ ψ1ω∃. Because η is an unifier we

have that ψ21η = ψ11ω∃η. Algorithm 3.6 constructs the interpretations Ĩa = ϕ2η,

Ia = Ĩa ∪ ψ2ω∃η and Ĩb = Ia ∪ ϕ1η ∪ ψ22η. So Ĩa ⊆ Ia ⊆ Ĩb.

We start by showing that the first two conditions of Definition 2.10 hold, namely

that Ia is obtained by applying ρ1 and there is a interpretation Ib which is ob-
tained by applying ρ2. Since ϕ1η ⊆ Ĩb and ϕ2η ⊆ Ĩa the unifier η is also a match
for ρ1 over Ĩb and for ρ2 over Ĩa. The match η is unsatisfied for both rules be-
cause Ĩb 6|= ψ1η∀ and Ĩa 6|= ψ2η∀, which follows because the checks in Line 13 and

the second part in Line 18 both failed. The unifier η does not assign any variable

to a null in ω∃(vars∃(ψ2)) since the only nulls in m can come from ω∃(vars∃(ψ1)).

That the checks in Line 3 and Line 6 failed implies that there is also no null from

ω∃(vars∃(ψ1)) in Ĩb. Therefore, the interpretation Ia was constructed from Ĩa in
Line 16 by applying the rule ρ2 with match η that was extended to η̄ := ω∃η. We

also define Ib := Ĩb ∪ ψ1ω∃η, which is obtained by applying ρ1 with match η ex-

tended to η̄ from Ib. Clearly, Ia ⊆ Ib.

To show that the third condition also holds we need to prove that η is an alter-

native match w.r.t. η̄ and ρ1. Since η is a unifier of ψ21 and ψ11ω∃ we know that

ψ21η = ψ11ω∃η ⊆ ψ1η̄ ⊆ Ib. By construction of Ĩb we also have that ψ22η ⊆ Ib.
Therefore, η is a homomorphism from ψ2 to Ib. The defintion of η̄ gives us that η
agrees with η̄ on all universal variables. And finally, η is an alternative match for

ρ1 and η̄. This follows from the check in Line 9, which assures that η assigns an

existential variable to either a constant or a null introduced by applying ρ1.

Lastly, η is not an alternative match for η̄ and ρ2 over Ĩb because of the check in
the first half of Line 18, which states that η is not a homomorphism from ψ2 to Ĩb.
Since all of the conditions in Definition 2.10 have been satisfied we conclude that

that ρ1 ≺� ρ2.
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⇐= To prove completeness, we assume that ρ1 ≺� ρ2 and show that Algo-

rithm 3.5 returns true. Since we only consider the case where ρ1 6= ρ2 we may

assume that ρ1 and ρ2 do not share any variables. Therefore there exist interpre-

tations Ĩa ⊆ Ia ⊆ Ĩb ⊆ Ib and a variable substitution h : V→ T such that

(1) h is a homomorphism from ϕ2 to Ĩa, that is, ϕ2h ⊆ Ĩa,

(2) h cannot be extended to a homomorphism from ψ2 to Ĩa

(3) Ia was obtained by applying ρ2 with match h extended to (w.l.o.g.) h
′ = ω∃h,

hence Ia = Ĩa ∪ ψ2ω∃h,

(4) h is a homomorphism from ϕ1 to Ĩb, that is, ϕ1h ⊆ Ĩb,

(5) h cannot be extended to a homomorphism from ψ1 to Ĩb

(6) Ib was obtained by applying ρ1 with match h extended to (w.l.o.g.) h
′
, hence

Ib = Ĩb ∪ ψ1ω∃h,

(7) there is a homomorphism hA which extends h such that ψ2h
A ⊆ Ib and

hA(vars∃(ψ2)) 6= h(vars∃(ψ2)), and

(8) hA is not a homomorphism from ψ2 to Ĩb.

Since ψ2h
A ⊆ Ib but ψ2h

A 6⊆ Ĩb by (7) and (8) respectively, theremust be a partition
ψ1 = ψ11 ∪̇ψ12 and a partition ψ2 = ψ21 ∪̇ψ22 where ψ21 6= ∅ such that ψ21h

A =

ψ11ω∃h
A
(†) and ψ22h

A ⊆ Ĩb (‡). This means that ψ21 and ψ11ω∃ are unifiable and by

Proposition 3.3 that there exists an atom mapping m with ψm21 := dom(m) = ψ21

such that Algorithm 3.2 when called on m will produce a most flexible unifier η.

We may also assume that there exists a total substitution τ with hA = τ ◦ η such
that τ(t) = t for every t ∈ terms(ρ1) ∪ terms(ρ2). We define ψm22 := ψ2 \ ψm21 = ψ22

as well as Ĩma := ϕ2η, Ima := Ĩma ∪ ψ2ω∃η and Ĩmb := Ima ∪ ϕ1η ∪ ψm22η. First, we

establish that Algorithm 3.4 returns true when called on η by showing that each

of the if-conditions in Algorithm 3.6 evaluate to false.

We start with the condition on Line 3. Assume that η assigns a null to some vari-

able x ∈ V. Hence, ν(x) = ω∃(v) for some v ∈ vars∃(ψ1) where ν is the variable

assignment computed during the execution of Algorithm 3.2. By Lemma 3.2 we

get that hA(x) = h(x) = ω∃(v) as well. But since h is a homomorphism from ϕ1 to

Ĩb and ϕ2 to Ĩa by (4) and (1) respectively, this would imply that Ĩa or Ĩb contain
nulls introduced by the application ρ1 over Ĩb, which is a contradiction to (6).



3. Computation of the Reliance Relationship: Proving Correctness 48

We continue with the condition on Line 6. Let us assume that η assigns a null

to some existential variable x in ψ22. Again, we have that ν(x) = ω∃(v) for some

v ∈ vars∃(ψ1). Lemma 3.2 gives us hA(x) = ω∃(v) as well. But by (‡) we have
ψ22h

A ⊆ Ĩb which means that Ĩb contain nulls introduced by the application ρ1

over Ĩb, which once again is a contradiction to (6).

To show that the if-condition on Line 9 fails we assume for a contradiction that

ψ21 does not contain any existential variables. Together with (3), this implies that

ψ21h
A = ψ21ω∃h ⊆ Ia ⊆ Ĩb. From (‡) we further obtain that ψ22h

A ⊆ Ĩb. Overall
this means that ψ21h

A ⊆ Ĩb, which contradicts (8).

We continue with the if-statements in Line 13 and the second part of the if-

statement in Line 18. Both can be handled with Lemma 3.7. First, we setA1 := ϕ2,

B1 := ψ2 and I1 := Ĩa. Since hA and h agree on all universal variables and (1) we
have that hA is a homomorphism fromA1 to I1. It cannot be extended to a homo-

morphism from B1 to I1 by (2). Lemma 3.7 then implies that Ĩma = A1η 6|= B1η∀ =

ψ2η∀. We now set A2 := ϕ2 ∪ ψ2ω∃ ∪ ϕ1 ∪ ψ22, B2 := ψ1 and I2 := Ĩb. We already
know that hA is a homomorphism from ϕ1 to Ĩa ⊆ Ĩb. It is also a homomorphism
from ϕ2 to Ĩb by the same reasoning and using the condition (1). In addition, we
have that ψ2ω∃h

A = ψ2ω∃h ⊆ Ia ⊆ Ĩb using (3) and ψ22h
A ⊆ Ĩb by (‡). Hence, hA is

a homomorphism from A2 to I2 which cannot be extended to a homomorphism

from B2 to I by (5) and Ĩmb = A2η. By Lemma 3.7 we obtain that Ĩmb 6|= ψ1η∀.

Therefore, both conditions evaluate to false.

For the first part of the if-condition in Line 18 assume that ψ2η ⊆ Ĩmb = A2η.

Lemma 3.6 implies ψ2h
A = ψ2(τ ◦ η) ⊆ A2(τ ◦ η) = A2h

A ⊆ Ĩb, which would
contradict (8). The whole if-condition on Line 18 therefore fails.

We have now proven that Algorithm 3.6 returns true when called on η andm. The

only part left is to show thatm is reached by Algorithm 3.5 or alternatively that it

returns true at an earlier point. Let m′ 6= ∅ be any atom mapping which can be
extended tom. It is clear that ifm is unifiable so ism′, giving us the unifier ηm

′
:=

unify(m′). We define ψm
′

21 := dom(m′) ⊆ dom(m), ψm
′

22 := ψ2 \ ψm
′

21 ⊇ ψ22 as well as

Ĩm′a := ϕ1η
m′ ∪ ϕm′22 η

m′
. Since ηm

′
is the most flexible unifier we also obtain a total

substitution τ such that η = τ ◦ηm′ with τ(t) = t for every t ∈ terms(ρ1)∪terms(ρ2)

by Proposition 3.3.

We now show that Algorithm 3.6 called onm′ will not reach Line 4 or 14. Assume

that ηm
′
(x) = ω∃(v) for some x ∈ V∀ and v ∈ vars∃(ψ1). Then νm

′
(x) = ω∃(v)

where νm
′
is the variable assignment computed in Algorithm 3.2 when called on
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m′. Since η is also a unifier of m′ we obtain by Lemma 3.2 that η(x) = ω∃(v)

which is impossible because Algorithm 3.6 when called on m did not pass the if-

condition on Line 3 as shown earlier. Thus, Line 4 cannot have been reached for

m′. The only thing left is to show that this is also the case for Line 14. LetA := ϕ2,

B := ψ2 and I := Ĩma . Then η is a homomorphism from A to I which cannot
be extended to a homomorphism from B to I. Using Lemma 3.7 we obtain that
Ĩm′a = Aηm′ 6|= Bηm′ = ψ2η

m′
and hence that the check in Line 13 fails when

Algorithm 3.6 is called onm′.

Thus, Algorithm 3.5 returns that ρ1 ≺� ρ2 which concludes the proof.



Chapter 4

Optimizing the Chase

The algorithms presented in the previous chapter allow us to compute the exis-

tence of positive and restraint reliances between every possible pair of rules from

a given rule set. Based on this information, we devise a strategy for applying rules

that optimizes the chase procedure. Our main objectives are:

1. Minimizing the number of redundant derivations, producing core-models if

possible.

2. Minimizing the number of produced predicate-blocks by applying rules as

rarely as possible.

Krötzsch already gave a brief description of a suitable strategy that guarantees

to produce core models [18]. However, it is limited to core-stratified rule sets.

Gerlach relaxed this requirement by introducing the hybrid chase [13]. This vari-

ant switches from the restricted to the core or the eam chase in the last layer of

a relaxed restrained partitioning. The strategy presented here uses the cheaper

restricted chase for its entire run, but unlike the approach outlined by Krötzsch

is also defined for rule sets that are not core-stratified. Although the procedure

shown here does not ensure to generate a core model for every input, we hope to

minimize the amount of redundant facts by avoiding alternative matches as best

as possible. Unlike the strategies mentioned thus far, our approach also takes

practical concerns in regard to the semi-naive evaluation performed by VLog into

account.

This chapter is divided into two parts. In Section 4.1, we concentrate on core-

stratified rule sets. Section 4.2 then generalizes the strategy derived previously to

arbitrary knowledge bases.
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4.1 Core-Stratified Rule Sets

We begin by restricting our focus to knowledge bases where the rule set is core-

stratified. In such cases it is always possible to avoid violating a restraint reliance,

i.e. applying a restrained rule before the one restraining it. This results in a chase

sequence that does not contain any alternativematches thereby producing a core

model. We first give an overview over existing approaches. Since our end goal

is to provide an effective strategy even for rule sets that are not core-stratified,

we assess how well the existing strategies can be generalized. We then discuss

modifications to suitable existing strategies that avoid unnecessary rule applica-

tions.

4.1.1 Existing Approaches for Computing Cores

As mentioned, Krötzsch provided a suitable strategy for applying rules that guar-

antees to produce core models for core-stratified rule sets [18]. The basic idea

is to exhaustively apply rules in the downward closure ρ ↓� of a rule ρ before ap-
plying the rule itself. We obtain a possible implementation of such a strategy by

replacing the main loop in Algorithm 2.1 as follows.

1 while R contains rule which is applicable over I do
2 ρ := select(R);
3 if ρ ↓� contains a rule which is applicable over I then Skip ;
4 I := applyRule(ρ, I);

5 end

In every step, a rule ρ is fairly selected from the rule set R. But it is only applied if

no rule from ρ ↓� is applicable over the current interpretation I. Note that this is
equivalent to stating that every rule in ρ ↓� is inactive, because every rule which
could possibly trigger a rule in ρ ↓� is itself contained in the downward closure of
ρ. Ordering the application of rules in such a way ensures that no restrained rule

is ever applied before the rules restraining it, which leads to a core model. But

this approach cannot be generalized to arbitrary knowledge bases. To see why

consider the following example.
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Example 4.1.

a(x, y)→ ∃v, w. h(x, v, w) ∧ b(y, v, w) (ρ1)

b(x, y, z)→ h(x, z, y) ∧ b(x, z, y) (ρ2)

In the above rule set ρ2 positively relies on ρ1 but also restrains it. The down-

ward closure of both rules is therefore ρ1 ↓� = ρ2 ↓� = {ρ1, ρ2}. The algorithm
described above would therefore be incapable of applying either rule, leading to

an infinite loop where no rule is applied. 4

Hence, no algorithm of this sort is suitable as a general method for every rule set.

With the transfinite chase, Gerlach offers a more flexible template for ordering

rules during a restricted chase run [13]. In the core-stratified case, rules are di-

vided into a restrained partitioning, which defines a transfinite chase sequence

without alternative matches. From this, it is possible to construct an equivalent

restricted chase sequence that does not contain any alternative matches as well.

However, it is also possible to define a chase algorithm based on the transfinite

chase itself by chaining together multiple runs of the restricted chase. The ith

run starts on the (possibly infinite) result of the previous one and continuously

applies rules from the rule set R≤i. Note that we require the union of all parti-

tions up to Ri, because newly introduced rules from Ri might trigger rules from

previous partitions. Algorithm 4.1 shows the whole procedure.

Algorithm 4.1: transfinite chase

Input: KnowledgeBase K = 〈R,D〉, RestrainedPartitioning R1, . . . , Rn

Output: Interpretation I
1 I := D;
2 i := 1;
3 Q := ∅;
4 while i ≤ n do
5 Q := Q ∪Ri;

6 while Q contains a rule which is applicable over I do
7 ρ := select(Q);
8 I := applyRule(ρ);

9 end

10 i := i+ 1;

11 end

12 return I;
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It is worth mentioning that even though Algorithm 4.1 consists of chaining to-

gether multiple restricted chase runs, the resulting series of chase steps may not

be fair. This situation occurs whenever a rule from some partition Rj is applica-

ble, but never actually satisfied because an earlier chase run is non-terminating.

However, Algorithm 4.1 is still semi-fair, which means that at least every termi-

nating run results in a restricted chase sequence. This follows from the fact

that during the run of the last chase rules are selected from the whole rule set

R≤n = R. Algorithm 4.1 therefore only terminates once every rule from the given

rule set is no longer applicable, which implies that the resulting finite sequence is

fair. Gerlach also obtained an interesting result regarding the termination of the

transfinite chase. Given a knowledge base K containing a core-stratified rule set,
Algorithm 4.1 terminates if any finite restricted chase sequence for K exists [13].
We give a brief argument for why this is the case in the next proposition.

Proposition 4.1. Let K = 〈R,D〉 be a knowledge base with a core-stratified rule set
R and R̄ = R1, . . . , Rn restrained partition of R. If there exists a finite chase sequence

over K then Algorithm 4.1 will also terminate.

Proof. Assume that Algorithm 4.1 does not terminate and let (I1
k), . . . , (Ijk) be the

chase sequences produced during each chase run. Then, (Ijk) is an infinite se-
quence. We can extend this series of chase sequences to obtain an infinite transfi-

nite chase sequence (I1
k), . . . , (Ink ) forK and R̄. By Lemma 2.4 it does not contain

any alternative matches. Lemma 2.5 then implies the existence of an equivalent

infinite restricted chase sequence without alternative matches as well. But then

there would exist an infinite core model in addition to a finite universal model for

K, which contradicts Lemma 2.2.

In order to guarantee that the resulting interpretation is a core, the transfinite

chase requires the provided list of rule sets to be a restrained partitioning, which

presumes a core-stratified rule set. However, the transfinite chase is a well-defined

algorithm for any arbitrary covering of the rule set. By restricting or relaxing the

conditions imposed on the list of rule sets we can enforce additional properties

or allow for arbitrary knowledge bases respectively.
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4.1.2 Minimizing the Number of Parallel Chase Steps

As outlined in Section 2.4, the performance of the semi-naive evaluation algo-

rithm may to a significant amount depend on the number of times a rule is ap-

plied during a chase run. We therefore try to delay the application of a rule as

long as possible, hoping to increase the amount of matches that are satisfied at

once. Unsatisfied matches for a rule ρ can potentially be produced by applying

any rule that ρ positively relies on. Ideally, we should therefore wait with satisfy-

ing ρ until we are sure that every predecessor of ρ in G+ = G(R,≺+) is inactive,

because after this point ρ can only be applied at most once. However, such a

strategy is not possible if the given rule set R contains cyclic dependencies w.r.t.

positive reliances, i.e. if G+
is not acyclic. We can work around that problem by

switching our focus from individual rules to strongly connected components of

rules inG+
. This allows us to formulate a strategy whereby the application of rule

ρ is only permitted once every rule from the predecessors of [ρ] in Ĝ+
are inactive.

Although determining whether or not a rule is inactive at any givenmoment is un-

decidable, we can use the strongly connected components to provide a sufficient

condition. Once every rule from a given component [ρ] is not applicable over the

current interpretation, its rules can only be triggered by predecessors of [ρ]. If we

determined each of them to be inactive as well then we can safely assume that

no rule from [ρ] will ever become applicable after this point. We can implicitly en-

force this condition by using any topological sorting of Ĝ+
to provide an ordered

partitioning. We then exhaustively apply all rules from each partition in the given

order. This leads to an algorithm quite similar to the transfinite chase, which

chains together multiple restricted chase runs that are executed on the strongly

connected components of G+
.

Algorithm 4.2: Partitioned Chase

Input: KnowledgeBase K = 〈R,D〉, topolSort R1, . . . , Rn of Ĝ(R,≺+)
Output: Interpretation I

1 I := D;
2 i := 1;
3 while i ≤ n do
4 ρ := select(Ri);
5 applyRule(ρ);
6 i := i+ 1;

7 end

8 return I;
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The above algorithm differs from the transfinite chase by using the partition Ri

alone as input for the ith chase run instead of the union R≤i of all previous par-

titions. It still ensures fairness for finite runs because rules from Ri cannot cause

unsatisfied matches for rules in previous partitions. In fact, this reasoning ex-

tends to any arbitrary ordered partitioning which is compatible with ≺+
is the

following sense.

Definition 4.1. Let R be a set of rules, ≺ ⊆ R × R a binary relation on R and

R1, . . . , Rn an ordered partitioning of R. The partitioning is compatible with ≺ if
ρi ≺ ρj for ρi ∈ Ri and ρj ∈ Rj implies i ≤ j for every i, j ∈ [n].

Proposition 4.2. Let K = 〈R,D〉 be a knowledge base and R1, . . . , Rn be an ordered

partitioning of R. If R1, . . . , Rn is compatible with ≺+
over R then Algorithm 4.2 is a

semi-fair chase algorithm.

Proof. Let I0, I1, . . . , In be a finite series of chase steps produced by Algorithm 4.2
when called onK. Since Algorithm 4.2 uses the restricted chase itself in each par-
tition, the produced sequence is valid. Proving fairness is equivalent to showing

that no rule is applicable over In. Assume for a contradiction that h is an unsat-
isfied match for some rule ρ` ∈ R` over In. Let i` ∈ [n] be such that Ii` is the last
step where any rule from R` is applied during the run. Hence, h is not an unsat-

isfied match for ρ` over Ii` . It cannot be a satisfied match either because in this
case it would also be satisfied over In. Therefore, h is not a match for ρ` over Ii` .
But then there must exist some ir > i` such that h is not a match over Iir−1 but is

an unsatisfied match for ρ over Iir . Let ρr ∈ Rr be the rule applied to obtain Iir .
It follows that ρr ≺+ ρ` and r > `. The provided partitioning would therefore not

be compatible with ≺+
, which is a contradiction.

For core-stratified rule sets, the partitioned chase as presented above is also com-

patible with avoiding alternative matches.

Proposition 4.3. Let R be a core-stratified set of rules and G+ = G(R,≺+). Then

there exists an ordered partitioning R1, . . . , Rn which is a topological sorting of Ĝ
+

that is also compatible with ≺�
.

Proof. Let Ĝ+
� = Ĝ(R/≺+ , ≺̂+ ∪ ≺̂�) be a graph extending Ĝ+

with edges repre-

senting the ≺�
-relationship. We show that Ĝ+

� does not contain any proper cycle

and is therefore topologically sortable. Any such sorting is then a ≺�
-compatible

topological sorting of Ĝ+
. Assume that there is a proper cycle in Ĝ+

� and hence
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a path [ρ1], . . . , [ρn] such that [ρ1] = [ρn]. Since every rule in [ρ] is reachable

through ≺+
-edges from any other rule in [ρ], there must exist a sequence of

rules ρ′1, . . . , ρ
′
m with ρ

′
1 = ρ′m where ρ

′
i (≺+ ∪ ≺�) ρ′i+1 for every i ∈ [m − 1].

This sequence must contain at least one rule ρ′k such that ρ
′
k−1 ≺� ρ′k. If this

were not the case then ρ′i ≺+ ρ′i+1 for every i ∈ [m − 1] which would imply that

[ρ1] = · · · = [ρn]. But then [ρ1], . . . , [ρn] would not be a proper cycle. Hence, we

obtain that ρ′k ((≺+)∗ ◦ ≺�)+ ρ′k, which means that R is not core-stratified.

Thus, we can use any topological sorting of Ĝ+
� as input for the partitioned chase.

In particular, such partitionings are also restrained partitionings.

Proposition 4.4. Let R be a core-stratified rule set and G+ = G(R,≺+). Further-

more, let R1, . . . , Rn be any ordered partitioning which results from a topological sort

of Ĝ+
� = G(R/≺+ , ≺̂+ ∪ ≺̂�). Then R1, . . . , Rn is a restrained partitioning.

Proof. For a contradiction assume that R1, . . . , Rn is not a restrained partitioning.

Then there exist rules ρ` ∈ R` and ρr ∈ Rr with ` ≤ r such that ρr ∈ ρ` ↓�.
Therefore, there is a sequence of rules ρ′1, . . . , ρ

′
m with ρ

′
1 = ρr and ρ

′
m = ρ` where

ρ′i (≺+ ∪ ≺�) ρ′i+1 for every i ∈ [m − 1]. If R` = Rr then there exists a path from

ρ` to ρr in G
+
. But then ρ` ∈ ρ` ↓�. If, on the other hand, ` < r there has to

be a k ∈ [m − 1] such that ρ′k ∈ Rik and ρ
′
k+1 ∈ Rik+1

with ik+1 < ik. Therefore

Rik (≺̂+ ∪ ≺̂�) Rik+1
. But this violates the assumption thatR1, . . . , Rn results from

the topological sort of Ĝ+
�.

The above statement together with the argument from Proposition 4.2 imply that

the transfinite and the partitioned chase behave the same when called on topo-

logical sorts of Ĝ+
�. From this it immediately follows that the chase sequences

produced by Algorithm 4.2 are free of alternative matches. We may also apply

the result from Proposition 4.1 to the partitioned chase as well. In summary, we

obtain an algorithm that

• produces a core-model,

• minimizes the number of parallel chase steps and

• terminates if any terminating sequence of the restricted chase exists

when called on knowledge bases that contain a core-stratified rule set.
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Example 4.2. Recall the rule set R from the introduction

leadingRole(a, r,m)→ stars(a,m) (ρ1)

stars(a,m) ∧ stars(b,m)→ costar(a, b,m) (ρ2)

bigBudget(m)→ ∃a. stars(a,m) ∧ famous(a) (ρ3)

Here we have that ρ2 positively relies on ρ1 and ρ3 while ρ1 restrains ρ3. Setting

R1 := {ρ1}, R2 := {ρ3} and R3 := {ρ2}, we obtain a topological sorting of the
strongly connected components in G+ = G(R,≺+) that is also compatible with

≺�
. The 1-parallel version of the partitioned chase when called on this partition-

ing will therefore produce a core model and, since G+
is acyclic, do so while only

applying each rule at most once. 4

4.2 Dealing with Non-Stratified Rule Sets

Thus far, the provided algorithms only cover the situation where the given set

of rules is core-stratified. Although it may be impossible to produce cores if this

is not the case, we might still be able to avoid certain alternative matches by

recognizing restraint reliances between rules and ordering their application ac-

cordingly. On a similar note, it could at the same time be possible to accumulate

matches, satisfying them with only a few parallel applications of a rule using pos-

itive reliances. The following example illustrates this point.

Example 4.3. Consider the following set of rules, which adds ρ3 and ρ4 to the rule

set from Example 4.1.

a(x, y)→ ∃v, w. h(x, v, w) ∧ b(y, v, w) (ρ1)

b(x, y, z)→ h(x, z, y) ∧ b(x, z, y) (ρ2)

c(x)→ a(x, x) (ρ3)

d(x, y, z)→ h(x, y, z) (ρ4)

As before, we have ρ1 ≺+ ρ2 and ρ2 ≺� ρ1. In addition, ρ1 now positively relies on

ρ3 while ρ4 restrains ρ1. Even though the above rule set is not core-stratified we

notice that is always possible to exhaustively apply ρ3 and ρ4 before ever satisfying

ρ1 or ρ2. Exhaustively applying the former prevents splitting facts resulting from ρ1

intomultiple blocks while exhaustively applying the latter prevents any alternative

match caused by applying ρ4. 4
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The above examplemotivates the need for a procedure that is able to temporarily

exclude certain rules from consideration based on their reliance relation to other

rules. The partitioned chase introduced in the previous section is a chase algo-

rithmwhich accomplishes this task for core-stratified rule sets. In the next section

we show that by relaxing the conditions of the required ordered partitioning we

can generalize the procedure to every possible rule set.

4.2.1 The Generalized Partitioned Chase

Extending Algorithm 4.2 to arbitrary rule sets requires us to lift the condition that

the provided partitioning has to be a restrained partitioning. In order to achieve

an improvement compared to just running the restricted chase itself, a meaning-

ful restriction on the acceptable partitionings has to be made. We first observe,

that any suitable ordered partitioning R1, . . . , Rn of a rule set R must have the

following properties:

1. The ordered partitioning must be compatible with ≺+

2. The ordered partitioning must be compatible with ≺�

3. If R is core-stratified, then R1, . . . , Rn is a restrained partitioning.

Violating the first property makes it possible for a rule to trigger another one from

a previous partition. But since no partition is ever revisited during the run of the

algorithm this would lead to an unfair chase sequence even if the algorithm ter-

minates. Not satisfying the second property may force the chase run to produce

alternative matches. The last property simply ensures that the algorithm pro-

duces a core in the well-behaved case of core-stratified rule sets. It also allows us

to take advantage of the termination result in Proposition 4.1.

Besides these hard constraints on on the allowed partitionings, we also prefer

each of the partitions to be as small as possible. We expect that this leads to

chase runs that exclude more alternative matches and reduce the amount of par-

allel chase steps. Based on these restrictions, we obtain a suitable ordered parti-

tioning by dividing the rule set R into strongly connected components in the rule

graph containing positive and restraint reliances. Formally, this corresponds to

any topological sorting of the graph Ĝ? = Ĝ(R,≺+ ∪ ≺�). By definition, any such

ordering is compatible with ≺+
and ≺�

. In fact, since strongly connected com-

ponents cannot be split into multiple partitions without violating the first or the

second condition they are the smallest possible partitions as well.
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Example 4.4. In the rule set from Example 4.3, the following ordered partitioning

results from a topological sort of Ĝ∗: R1 = {ρ3}, R2 = {ρ4} and R3 = {ρ1, ρ2}. Any
split of R3 results in an ordered partition that is either incompatible with ≺+

or

with ≺�
. 4

As the following proposition shows, topological sortings of the graph Ĝ?
corre-

spond to≺�
-compatible topological sortings of Ĝ+

if the provided rule set is core-

stratified. It follows from Proposition 4.4 that these are restrained partitionings

as well.

Proposition 4.5. Let R be a core-stratified rule set and R1, . . . , Rn a topological sort-

ing of Ĝ? = Ĝ(R,≺+ ∪ ≺�). Then Ri ∈ R/≺+ for all i ∈ [n].

Proof. Assume that there exists a partition Ri and rules ρ1, ρ2 ∈ Ri such that

ρ1 ≺� ρ2. The rule ρ1 must be reachable from ρ2 in G(R,≺+ ∪ ≺�), since ρ1 and

ρ2 are contained within the same partition. But then ρ2 ∈ ρ2 ↓�, which would
imply that R is not core-stratified.

Based on these considerations we give a generalized version of the partitioned

chase, which is shown in Algorithm 4.3, that accepts any knowledge base as input.

Note that this is a semi-fair chase algorithm by Proposition 4.2.

Algorithm 4.3: Generalized Partitioned Chase

Input: KnowledgeBase K = 〈R,D〉, topolSort R1, . . . , Rn of Ĝ(R,≺+ ∪ ≺�)
Output: Interpretation I

1 I := D;
2 i := 1;
3 while i ≤ n do
4 ρ := select(Ri);
5 applyRule(ρ);
6 i := i+ 1;

7 end

8 return I;

However, there are still ways in which we can improve our current approach. One

limitation of the above algorithm is that its partitionings are computed from the

whole rule set at the start of its execution. But this ignores the fact that rules

may become inactive in the middle of a chase run. Each dependency based on

a reliance originating from such an inactive rule can safely be disregarded after

this point. In certain cases this may lead to a situation where strongly connected
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(b) Graph excluding inactive rules

Figure 4.1: Visualization of the rule set from Example 4.5.

components split into smaller groups. In the best case scenario, the set of the

remaining potentially active rules may become core-stratified even if the original

rule set was not. We illustrate this point in the following example.

Example 4.5. Consider a knowledge base K = 〈R,D〉 consisting of the database
D = {e1(1, 2, 3), e3(1, 2, 2)} and the rule set R

ei(x, y, z)→ ai(x, y, z), i ∈ {1, 2, 3} (ρi)

a1(x, y, z)→ a1(x, y, y) (ρ4)

a2(x, y, z)→ ∃v, w. a1(x, v, w) ∧ a3(x, v, w) (ρ5)

a3(x, y, z)→ ∃v. a1(x, v, v) ∧ a3(x, v, v) (ρ6)

The reliance relationships of R are visualized in Figure 4.1. After applying ρ1 and

ρ3 we obtain I = D∪ {a1(1, 2, 3), a3(1, 2, 2)}. This makes ρ4 and ρ6 applicable over

I. But since ρ4, ρ5 and ρ6 form a strongly connected component, Algorithm 4.3

may select ρ6 before ρ4, which leads to an alternative match after satisfying ρ4.

Because ρ2 is not applicable overD but the only rule which can trigger ρ5, we know

that the latter is inactive. Removing ρ5 from consideration splits the component

{ρ4, ρ5, ρ6} into the “potentially active” groups {ρ4} and {ρ6}. This leaves us with
only one remaining restraint relation that has to be taken into account, namely

ρ4 ≺� ρ6. 4

An algorithm that ignores inactive rules during its run can therefore reliably pre-

vent alternative matches in cases like in the above example. The next section

provides such a procedure.
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4.2.2 The Dynamic Partitioned Chase

The goal of this section is to derive an algorithm that reacts appropriately to situa-

tions where certain rules become inactive during the chase run. For this purpose,

we use the partitioned chase as a starting point but now recalculate the ordered

partitioning every time we assess a rule to be inactive. Since every partition might

contain multiple ≺+
-groups, we can no longer use the applicability of [ρ] over the

current interpretation alone to determine whether said group is inactive as we

did in the core-stratified case. Instead, we now need to explicitly keep track of

what ≺+
-groups still contain potentially active rules. Only after every predeces-

sor of a group in Ĝ(R,≺+) has been determined to be inactive is it safe to remove

it from consideration, provided the group does not contain any unsatisfied rules.

The following algorithm implements this approach.

Algorithm 4.4: dynamic partitioned chase

Input: KnowledgeBase K = 〈R,D〉
Output: Interpretation I∞

1 Function updateActive(Group [ρ]):
2 if predĜ+([ρ]) ∩ A = ∅ and no rule in [ρ] is applicable then
3 A := A \ {[ρ]};
4 change := true;
5 foreach [ρ′] ∈ succĜ+([ρ]) do
6 updateActive([ρ′]);
7 end

8 end

9 G+ := G(R,≺+);
10 I := D;
11 A := R/≺+ ;

12 change := true;
13 foreach [ρ] ∈ R/≺+ with predĜ+([ρ]) = ∅ do updateActive([ρ]) ;
14 while A 6= ∅ do
15 if change then

16 RA :=
⋃
A;

17 Q1, . . . , Qn := topological sort of Ĝ(RA,≺+ ∪ ≺�);
18 change := false;

19 end

20 ρ := select(Q1);
21 I := applyRule(ρ);
22 foreach [ρ] ∈ A with predĜ+([ρ]) = ∅ do updateActive([ρ]) ;

23 end

24 return I;
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Algorithm 4.4 receives as input any arbitrary knowledge base K = 〈R,D〉. At the
start, we set G+

to be a graph which records the positive reliance relationship

between the rules. The interpretation I is assigned to the database D. In addi-
tion, we maintain a set A of potentially active ≺+

-groups, which is initialized to

R/≺+ in Line 11. It is updated via the function updateActive. This function de-

termines if a given group of rules [ρ] can safely be considered as inactive. This

is done by checking whether any of its members are applicable over the current

interpretation and whether the given group has any potentially active predeces-

sors. If this is not the case then [ρ] is removed from A. Here, we also indicate that

the partitioning should be recomputed by setting the global variable change to

true. Since removing [ρ] may prove that some of its successors are also inactive,

we call updateActive on each of them as well. Before entering the main loop,

updateActive is called on every ≺+
-group that does not have any predecessors.

This will eliminate rules that are verifiably inactive overD. In every iteration of the
main loop, we first check whether there occurred any changes in the set of poten-

tially active rules. If this is the case, we compute a new topological sorting of the

rule graph that contains positive and restraint relations, but with nodes restricted

only to potentially active rules. We then select the next rule ρ from the minimal

partition and apply it over the current interpretation. After each step, we update

the set A by calling updateActive for every potentially active ≺+
-group with no

predecessors.

As with the other procedures provided thus far, we prove that it is a semi-fair

chase algorithm.

Proposition 4.6. Let K = 〈R,D〉 be a knowledge base and I∞ the result of a finite
run of Algorithm 4.4 on K Then there is no rule in R which is applicable over I∞.

Proof. We will prove this statement by showing that any ≺+
-group which is not

present in the set of potentially active rules A is indeed inactive over the current

interpretation. Since Algorithm 4.4 only stops once A is empty, no rule can be

applicable over the returned result.

Assume for a contradiction that ρ′ ∈ [ρ] is a rule that is active over I and R. Then,
there is a chase sequence (Ik) = I0, I1, . . . with I0 = I such that ρ′ was applied
over Ik with the extended match h. Assume w.l.o.g. that ρ′ is the first rule from [ρ]

applied in (Ik). Since [ρ] was removed during updateActive, no member of [ρ] is

applicable over I. Hence, h is not a match for ρ over I and it follows that there is
some rule ρ′′ applied over Ik′ with k′ < k such that ρ′′ ≺+ ρ′. Because we assumed
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that ρ′ was the first rule applied from [ρ], we have that ρ′′ /∈ [ρ] and therefore that

ρ′′ ∈ R \
⋃
A, since ρ′′ is a predecessor of ρ′ in G(R,≺+). But then ρ′′ could not

have been inactive over I and R.

The dynamic partitioned chase as described in Algorithm 4.4 requires that the

applicability of every rule is known at all times in order to determine whether a

group of rules should be considered inactive. However, such information might

not be available in implementations of the chase procedure, as is the case in

VLog. As a practical alternative, we can use positive reliances to provide a neces-

sary condition for when a rule is applicable, which can be easily computed. The

adjusted version of the algorithm for the 1-parallel chase used by VLog is shown

in Algorithm A.1. The main difference to the original procedure is that it now

maintains a set T of triggered rules. A rule is added to T , if it positively relies on

a rule that was applied in the previous step while deriving new facts. Rules con-

tained in T may therefore be thought of as potentially applicable rules. Since the

1-parallel application of a rule satisfies every one of its matches, we remove a rule

from T immediately after it is applied. We Initialize T with every rule that does

not have any predecessors inG+
. Note every rule that is not contained in T is not

applicable over the current interpretation. We may therefore replace the check

for applicability in the function updateActivewith testing membership in T .

4.2.3 Order Within Strongly Connected Components

With the partitioned chase algorithms presented previously we obtain a high-level

ordering of the given rule set, whereby some rules are exhaustively applied before

others. But this leaves open the question of what strategy should be employed

within groups of rules. We find that within strongly connected components, the

optimization goals given at the start of the chapter cannot be met at the same

time. We demonstrate this on the rule set from Example 4.1.

Example 4.6. Recall the following rule set R consisting of two rules which form a

strongly connected component.

a(x, y)→ ∃v, w. h(x, v, w) ∧ b(y, v, w) (ρ1)

b(x, y, z)→ h(x, z, y) ∧ b(x, z, y) (ρ2)

Say we start with a database D = {a(1, 1), a(2, 3), b(1, 2, 3)}. In this case, both ρ1

and ρ2 are applicable. However, satisfying either violates one of our optimization
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goals. Starting with ρ1, we obtain I = D ∪ {h(1, nv, nw), b(1, nv, nw), h(2,mv,mw),

b(3,mv,mw)}. Here, we are able to satisfy ρ2 with a single parallel application,

which only leads to one additional predicate-block for b and h. But at the same

time we introduce the alternative match {x 7→ 1, y 7→ 1, v 7→ 3, w 7→ 2}. If, on
the other hand, we begin with ρ2, we avoid said alternative match but have to

apply ρ1 one additional time, splitting the facts belonging to b and h across more

predicate-blocks. 4

Hence, no generic strategy can be given. Which order of applying rules leads to

a better performance in practice depends heavily on given knowledge base. Still,

we give two alternatives to merely selecting the rule from the strongly connected

component at random:

1. Positive First, which prioritizes rules from ≺+
-groups that have no active

predecessor

2. Unrestrained First, which prioritizes rules that are not restrained by poten-

tially active rules

The first strategy aims for a minimal amount of parallel rule applications by delay-

ing the application of rules from ≺+
-groups that have a potentially active prede-

cessor within its strongly connected component. This approach would be prefer-

able in situations where the main performance bottleneck consists of frequent

consolidation steps or joining of EDB-predicates. However, this might also indi-

rectly reduce the number of alternative matches in the dynamic version of the

partitioned chase. Once every rule from the prioritized group ceases to be appli-

cable, it can be removed from consideration. This may remove certain dependen-

cies, splitting the strongly connected component into multiple partitions sooner

than would otherwise be the case. We implement this strategy by replacing the

call to select the partitioned chase with a call to the following function.

1 Function selectPositiveFirst(RuleSet Q):
2 M1, . . . ,Mn := topological sort of Ĝ(Q,≺+);
3 return select(M1);

The second strategy discussed here is a generalization of the Datalog-First chase.

Since datalog rules do not contain any existential variables, there cannot be an

alternative match w.r.t. to such a rule. Therefore, datalog rules cannot be re-

strained. But their products might still satisfy other rules, which in turn may pre-
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vent alternative matches that would otherwise be caused by them. However, this

is not unique to datalog rules since we can employ the same reasoning for any

rule which is not restrained by rules that are potentially active. This leads to a

strategy that is useful even in groups that do not contain any datalog rule.

Example 4.7. Here, we analyze the rule set given in Example 2.3 in more detail.

book(x)→ ∃v, i.writtenBy(x, v, i) ∧ author(v) (ρ1)

author(x)→ ∃w, i. authorOf(x,w, i) ∧ book(w) (ρ2)

authorOf(x, y, j)→ ∃i.writtenBy(y, x, i) (ρ3)

writtenBy(x, y, j)→ ∃i. authorOf(y, x, i) (ρ4)

The following reliance relationships hold between the rules of the above rule set:

ρ1 ≺+ ρ2 ≺+ ρ1 and ρ1 ≺+ ρ4 ≺� ρ2 ≺+ ρ3 ≺� ρ1. It follows immediately that the

rule set is not core-stratified and that every rule is contained in a single strongly

connected component. As was the case in Example 2.2, repeatedly applying the

rules ρ1 and ρ2 leads to an infinite cycle, which keeps producing new nulls and

thereby alternative matches. But since ρ3 and ρ4 are not restrained by any rule, an

early application of those rules can never lead to additional alternative matches,

which allows us to prioritize them over ρ1 and ρ2. 4

The strategy is implemented by using the following function to select the next

rule.

1 Function selectUnrestraintFirst(RuleSet Q):
2 QR := {ρ ∈ Q | ∃ρr ∈

⋃
A. ρr ≺� ρ};

3 QU := Q \QR;

4 if QU 6= ∅ then
5 return select(QU);
6 end

7 else

8 return select(QR);
9 end

4.2.4 Termination

Given a knowledge base K that contains a core-stratified rule set, Proposition 4.1
ensures that every version of the partitioned chase terminates if any finite re-

stricted chase sequence for K exists in the first place. This statement does not
hold for arbitrary knowledge bases. Unfortunately, it is even the case that our

strategy might exclude terminating runs entirely.
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Example 4.8. Consider the following set of rules R.

b(x)→ ∃v, w. h(x, v, w) ∧ f(x) ∧ c(w) (ρ1)

c(x)→ f(x) (ρ2)

h(x, y, z)→ p(y, z) (ρ3)

p(y, z)→ ∃v. p(z, v) (ρ4)

Any application of ρ4 leads to an infinite cycle that continuously produces new

p-atoms. Take, for instance, the database D = {b(1), c(2), h(1, 2, 2)}. Satisfying ρ1

introduces the atom h(1, n1, n2), which results in p(n1, n2) after applying ρ3. Af-

ter this point, the chase is forced to produce infinitely many atoms of the form

p(n2, n3), p(n3, n4), . . . by endlessly applying ρ4. However, we could have pre-

vented the application of ρ1 by prioritizing ρ2. This would have lead to a finite

universal model I = D ∪ {f(1), p(2, 2)}. Crucially, ρ2 positively relies on ρ1 but

does not restrain any of the other rules nor do any of them positively rely on

ρ2. Any topological sorting of Ĝ(R,≺+ ∪ ≺�) would therefore prioritize ρ1 over ρ2

thereby forcing a non-terminating chase sequence. 4

The above example also highlights that the generalized versions of the partitioned

chase may exclude chase runs without alternative matches. We propose that a

possible solution for this problem is to take a different type of reliance, which we

call blocking, into consideration when deriving the application order.

Definition 4.2. A rule ρ1 = ϕ1 → ψ1 blocks a rule ρ2 = ϕ2 → ψ2, written ρ1 ≺† ρ2,

if there exist interpretations Ia ⊆ Ib such that

1. Ib was obtained by applying ρ1 over Ia with the extended match h′1,

2. there is an unsatisfied match h2 for ρ2 over Ia,

3. h2 is a satisfied match for ρ2 over Ib,

4. there is no bijective substitution ν : vars∃(ψ2) → h′1(vars∃(ψ1)) where we

have ψ2νh2∀ = ψ1h
′
1.

Intuitively, a rule blocks another if the application of the first rule may satisfy a

match of the second rule, given that they are both applicable at the same time.

The last condition ensures that ρ2 is not blocked by ρ1 simply because ρ1 derives

essentially the same facts ρ2 would have derived if it was applied first instead. In

this case, there would be no reason to prefer the application of the ρ1 over ρ2. It

also gets rid of the trivial case where a rule would block itself because applying it

satisfies the corresponding match.
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The concept of blocking and restraining a rule are closely related because the

presence of an alternative match indicates that the prior application of the rule

causing it would have satisfied the restraining rule. It is therefore not surprising

that both reliances correspond in the majority of instances. But it is still the case

that neither relation subsumes the other.

Example 4.9. Example 4.8 showed a case where ρ2 ≺† ρ1 but ρ2 6≺� ρ1. In the

same set of rules ρ3 and ρ4 are an example of two rules where both relations

correspond. The following pair of rules demonstrates a situation where ρ6 ≺� ρ5

but ρ6 6≺† ρ5.

a(x, y, z)→ ∃v1, v2. a(x, v1, v2) ∧ b(x) (ρ5)

b(x)→ ∃w1, w2, w3. a(x,w1, w2) ∧ c(w3) (ρ6)

4

Computing and integrating blocking reliances into the partitioned chase works

analogously to positive and restraint reliances. To test whether a blocking re-

liance is present between two rules we can use similar algorithms as presented

in Chapter 3. Integrating blocking into the generalized partition chase is then sim-

ply a matter of including the relationship into the topologically sorted rule graph.

We conjecture that such an approach could prevent that terminating runs are

excluded.

Since none of our tested rule sets suffered from non-termination we omit details

regarding the implementation of blocking reliances and leave further theoretical

considerations to future works.



Chapter 5

Evaluation

To evaluate our strategy, we implemented the dynamic partitioned chase de-

scribed in the previous chapter as well as the algorithms that compute the re-

liances from Chapter 3 into the VLog reasoning engine. In all the experiments

that were performed, we also compare the two strategies of selecting rules within

strongly connected components outlined in Section 4.2.3. The implementation is

based on a fork of VLog
1
from June 5, 2021 and is available online

2
. Since we only

alter the order in which rules are applied, integrating our approach only requires

surface-level changes to the existing architecture. We will therefore largely omit

details regarding the implementation, but mention a few of the relevant aspects,

for example additional optimizations not described in Chapter 3 and Chapter 4,

while discussing the results of the experiments.

Section 5.1 describes the hardware on which the experiments have been con-

ducted and introduces all of the knowledge bases used as benchmarks. We di-

vide the actual evaluation of the results into three parts. Section 5.2 compares the

time of materializing the knowledge bases achieved by the presented rule orders

to VLogs original strategy. In Section 5.3 we focus on the ability of every strat-

egy to compute cores and to avoid alternative matches. Lastly, we evaluate the

performance of the algorithms for computing potential reliances between rules

in Section 5.4. In particular, we are intrested in whether or not the amount of

resources invested into the computation of reliances exceeds the improvement

gained by employing a strategy based on them.

1https://github.com/karmaresearch/vlog
2https://github.com/aannleax/vlog

https://github.com/karmaresearch/vlog
https://github.com/aannleax/vlog
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5.1 Experimental Setup

The experiments were conducted on a computer with a 2.7 GHz Intel Core i5 pro-

cessor, 8 GB of RAM and a 2 TB HDD on Windows 10 (Build 19043). All of the

software, this includes VLog and its dependencies, were compiled from source

code using the MSVC compiler version 19.28.29335 for x64.

The knowledge bases we consider heremostly consist of the ones used by Benedikt

et al. for benchmarking chase algorithms [5]. This includes:

• LUBM, which is an established ontology benchmark in the Semantic Web

Community [15]

• STB-128 and ONTOLOGY-256, which are scenarios developed for data inte-

gration [2]

• DEEP, which was created as a stress test for reasoning engines by using rules

able causing it to generate a large amount of facts [5]

• DOCTORS, which is a scenario used by Geerts et al. [12]

Furthermore, we consider REACTOME
3
and UNIPROT

4
, which were used as part of

the evaluation of VLog by Carral et al. [9]. These are real-world ontologies con-

taining information about molecule interactions and protein sequences respec-

tively. They were obtained by using data sampling algorithm based on random

walks [19]. We also include UOMB
5
, which is an extension of LUBM using a more

complex ontology. In addition to the ones mentioned so far, we create our own

knowledge base named CYCLE to highlight a specific inefficiency present in the

original rule order used by VLog. It consists of the following rule set.

edba(x, y)→ a(x, y) (ρ1)

edbb(x, y)→ b(x, y) (ρ2)

a(x, y) ∧ a(y, z)→ a(x, z) (ρ3)

b(x, y) ∧ b(y, z)→ b(x, z) (ρ4)

edbc(x, y, z) ∧ edbd(y, z, x) ∧ a(x, y) ∧ b(y, z)→ r(x, y, z) (ρ5)

edbc(x, y, z) ∧ edbd(y, z, x) ∧ b(x, y) ∧ a(y, z)→ r(x, y, z) (ρ6)

3https://www.reactome.org/
4https://www.uniprot.org/
5https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/

https://www.reactome.org/
https://www.uniprot.org/
https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/
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Dataset Parameters

CYCLE Nc = 500 and Nt = 10M
DEEP Number of target-TGDs: 200

DOCTORS Number of source-facts: 1M

LUBM Number of universities: 100

ONTOLOGY —

REACTOME Sample size: 80%

STB —

UNIPROT Sample size: 10%

UOMB Number of universities: 40

Table 5.1: Parameters used for each dataset (if available)

In the above rule set we have a ≺+
-cycle between the rule ρ3 and ρ4. Also, ρ5

and ρ6 positively rely on ρ3 and ρ4. Note that the last two rules contain bod-

ies that require a relatively expensive join operation to compute. The original

strategy used by VLog selects rules in the order they are given, wrapping around

when reaching the last rule. On the given rule set, this would lead to the last two

rules being executed as often as the cycle produces new facts. In particular, the

join between the tables representing the edb-predicates edbc and edbd has to be

performed each time. The partitioned chase strategy groups ρ3 and ρ4 into one

partition and only moves on once said rules are inactive. This guarantees that

ρ5 and ρ6 are only applied once. The databases are produced as follows. The

facts corresponding to the predicates edba and edbb form a chain of constants

up to a given maximum length. So for example, the database includes the facts

edba(1, 2), edba(2, 3), . . . , edba(Nc− 1, Nc). The tables corresponding to the pred-

icates edbc and edbb are populated at random from the available constants until

they contain a specified number Nt of entries.

All of the knowledge bases used can be obtained online
6
. Some of them are

available in different versions, allowing for a variable amount of input facts or

rules. The parameters were selected in such a way as to not exceed the limitations

of the hardware used, especially in regard to the size of its main memory. They

are shown in Table 5.1.

6https://github.com/karmaresearch/Chasing-VLog

https://github.com/karmaresearch/Chasing-VLog
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Dataset
VLog PosFst UnresFst

Time [s] IDB-Avg. Time [s] IDB-Avg. Time [s] IDB-Avg.

Cycle 70.94 8.00 17.26 4.50 17.11 4.5

DEEP 8.52 14.92 3.20 1.00 4.59 5.43

DOCTORS 3.33 — 3.27 — 3.29 —

LUBM 2.85 0.79 2.80 0.60 2.77 0.61

ONTOLOGY 2.95 1.80 2.92 0.50 2.95 0.50

REACTOME 2.83 0.78 2.83 0.51 2.80 0.61

STB 0.77 1.03 0.77 0.28 0.77 0.28

UNIPROT 2.18 0.76 2.02 0.65 2.02 0.64

UOMB 6.34 1.67 5.92 0.91 5.81 0.93

Table 5.2: Time of a full materialization of the given dataset in seconds and the

average amount of applied IDB-rules

5.2 Time Measurements

Table 5.2 summarizes the results of measuring the run times of a full materializa-

tion of each of the chosen knowledge bases using the original rule order by VLog

as well as the dynamic partitioned chase in both of its variants, namely Positive

First (PosFst) and Unrestrained First (UnresFst). Each experiment represents the

best value of three consecutive runs. The measurements only include the time

for the materialization of the knowledge base and leave out the time needed to

load the input facts into main memory. Here, we also exclude the time used for

computing the reliance relations between the rules. We consider them separately

in Section 5.4. Since we hypothesize that the number of parallel rule applications

may affect run times, we also provide the average number of times an IDB-rule,

i.e. a rule that contains at least one IDB-predicate in the body, has been applied

during the chase. We excluded EDB-rules from this consideration because ev-

ery one of them has to applied exactly once independently of the chosen rule

order.

Overall, we can state that our approach in both of its variants offers a strict im-

provement over the original rule application strategy employed by VLog. In every

instance, we were able to reduce or at least maintain the run times achieved by

VLog. Also, we observe that we successfully lowered the number of rule applica-

tions in every experiment.

This effect is most pronounced in the knowledge base DEEP, where every IDB-rule

was applied almost 15 times on average by VLog. With the strategy that priori-

tizes positive groups, we manage to apply every rule only once, which is possible
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Figure 5.1: Number of strongly connected components in potentially active rules

at each step of running the chase on DEEP

because the rule graph does not contain any ≺+
-cycles. This avoids unnecessary

splitting of the facts into multiple predicate-blocks, which prevents costly consol-

idation operations. We therefore see a significant improvement in the run time

of 63% compared to the original approach. Prioritizing unrestrained rules still re-

duces the amount of applications by a factor of 2.7. This leads to a time reduction

of 49% over the original strategy.

The difference in behavior of the Positive First and Unrestrained First approach

in the DEEP dataset is visualized in Figure 5.1. Here we show the number of the

strongly connected components in the potentially active rule set, which are avail-

able at every step in the chase run. As we can see, we start out with all of the rules

being contained within a small number of groups. Prioritizing ≺+
-groups without

active predecessors splits them into several smaller components after each rule

application. The number of strongly connected components therefore steadily

increases until step 1163, where every rule is in its own group. At this point all

of them immediately prove to be inactive and number of components collapses.

In contrast, the Unrestrained First strategy spends a majority of its run time ap-

plying rules in a small number of large strongly connected components. Within

those, we cycle through the available rules similar to VLog, which allows for a rule

to be applied multiple times even in an acyclic ≺+
-graph. Only at step 1337 does

the large group break into several smaller components. This happens five more

times before each of the remaining rules is proven to be inactive and the number

of groups collapses.

Another major performance improvement was achieved in the knowledge base

CYCLE. In this case we successfully reduced the number of expensive joins per-

formed by the reasoner. This resulted in time savings of 76% compared to VLog
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Dataset Strat. Facts
PosFst UnresFst

Sel. New Delta Sel. New Delta

CYCLE 3 0.4M 0 0 0 0 0 0

DEEP 7 0.9M 1148 1015 +19K 2060 2032 -0.5K

DOCTORS 3 0.8M 0 0 0 0 0 0

LUBM 7 18.7M 3 0 0 1 0 0

ONTOLOGY 7 5.7M 123 64 0 64 64 0

REACTOME 3 11.4M 0 0 0 0 0 0

STB 3 1.9M 0 0 0 0 0 0

UNIPROT 3 24.2M 0 0 0 0 0 0

UOMB 7 18.6M 21 7 +35K 8 6 -12K

Table 5.3: Comparison of the selection strategies regarding the number of de-

rived facts and selection of restrained rules

for both strategies. Positive First and Unrestrained First coinside since the rule

set does not contain any non-datalog rules.

In all other knowledge bases either no change in thematerialization times was ob-

served, or in the case of UOBM and UNIPROT only a minor improvement of 7%-8%

was achieved. This is despite the fact that the number of rule applications was

reduced by a factor of 3.6 and 3.7 for the knowledge bases ONTOLOGY and STB

respectively. In every experiment except for CYCLE and DEEP the average num-

ber of IDB-rule applications using the original strategy did not exceed 1.8. In the

case of LUBM, REACTOME and UNIPROT the average was even below 1.0. Based on

this, we conjecture that the facts were not sufficiently fragmented accross multi-

ple predicate-blocks as to trigger expensive consolidation steps or to otherwise

significantly affect the time needed for joining or duplicate-elimination.

5.3 Cores and Alternative Matches

In this section, we evaluate the partitioned chase strategy based on its ability

to avoid alternative matches and to reduce the amount of redundant facts. In

Table 5.3 we show which of the chosen knowledge bases contain core-stratified

rule sets as well as the number of IDB-facts produced by a full materialization

using VLogs original implementation. For each variant of the partitioned chase,

Table 5.3 also records the number of rules that were selected during the run but

were restrained by another potentially active rule. We further track how many of

those restrained rules actually lead to new derivations and the difference of the

number of derived facts compared to the original strategy used by VLog.
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As we can see, five of the nine knowledge bases considered in our experiments

are core-stratified. In all of those cases, no rule that is restrained by a potentially

active rules has been applied in both variants, hence guaranteeing that the pro-

duced model is a core. However, this did not lead to any change in the size of the

produced model compared with VLog.

In the case of LUBM, the rule set of which is not core-stratified, both strategies

were still able to produce a core model. Although restrained rules were selected

by both variants, none of those lead to new derivations. But again, we observe

no change in the number of derivations.

In the rule set of DEEP almost all of the rules restrain themselves. Therefore, the

number of restrained rules selected is merely indicative of the total number of

times any rule has been applied. The Unrestrained First strategy required 2084

steps to finish while Positive First terminated in only 1199 steps. We therefore

see a corresponding amount of selected resrained rules in each variant.

Using the Unrestrained First strategy also did not lead to any significant advan-

tage over using Positive First in the knowledge bases ONTOLOGY and UOMB. Al-

though Unrestrained First is less likely to select a restrained rule during its run

over both knowledge bases than Positive First, the number restrained rules which

were applied and lead to new derivations still remains the same for ONTOLOGY

and is only reduced by one in the case of UOMB.

In all of the experiments, the number of derived facts either did not change or

only by an insignificant margin compared to the total amount of derivations.

We attribute this to three possible factors. For one, a significant number of re-

straint reliances originate from datalog rules as shown in Table A.1. The rule set

of REACTOME, for instance, does not contain any restraint relation between two

non-datalog rules. But since VLog prioritizes the application of datalog rules, vio-

lations of restraints might be naturally rare. Secondly, the order of rules given in

the input file might play a role in the effectiveness of the chosen strategy. VLog

cycles through the rules in the order they are given. If a restrained rule often

appears later in the file than the rule restraining it, such a strategy may prevent

alternative matches without explicitly calculating them. This indeed holds true

for most of the considered knowledge bases as seen in Table A.1. As an example

take the knowledge base ONTOLOGY. Although most of the restraint relations are

between non-datalog rules, a vast majority of the them follows the order as given

in the input. Combined with the fact that in most experiments, each rule was
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Dataset
Naive Optimized

Calls Time [ms] Calls Time [ms] Frac. [%]

CYCLE 72 4 16 1 0.0

DEEP 2880000 3336 70806 244 3.6

DOCTORS 50 3 8 1 0.0

LUBM 36992 35 335 6 0.1

ONTOLOGY 559682 486 1527 23 0.5

REACTOME 722402 579 2504 28 0.8

STB 79202 72 255 8 0.6

UNIPROT 563952 440 671 31 0.9

UOMB 362952 274 1463 32 0.4

Table 5.4: Impact of computing the reliance relationship

only applied at most once or twice on average this again might lead to a situation

where most of the restraint reliances are satisfied indirectly. Lastly, it might also

be the case that alternative matches are simply rare in the considered knowledge

bases independently of the chosen order. Recall that the violation of a restraint

reliance only presents a necessary condition but is not sufficient for alternative

matches to actually occur.

5.4 Computing the Reliance Relationship

Table 5.4 summarizes the cost of calculating the existence of a reliance relation-

ship between the rules. In theory, the corresponding algorithms would have to

be called for every pair of rules in the given rule set. However, we observe that

a rule can only positively rely on another, if the second rule contains a predicate

in its head which is also present in the body of the first rule. Similarly, a rule may

only restrain another, if there exists a predicate which occurs in the head of both

rules such that the corresponding atom contains an existential variable in the re-

strained rule. As an optimization, we record which predicates are present in the

body or head of which rules via a hash map. Based on that, we only call the re-

liance algorithms on rule pairs that meet the condition laid out above. Although

the reliance algorithms would have rejected non-unifiable rules early, this tech-

nique stills prevents the construction of costly auxiliary data structures. To show

the impact of this optimization rule pairs in this manner, Table 5.4 distinguishes

between the naive method, which calculates the relationships between every rule

pair and the optimized method, which filters rule pairs as described above. We
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record the total number of calls to both reliance algorithms and their overall run

times for both methods. For reference, the last column shows the percentage

of the time needed for computing the reliances using the filtered approach com-

pared to the time it takes VLog to materialize the full knowledge base.

In every one of the considered knowledge bases filtering the rule pairs saved a

majority of calls to the reliance algorithms from being performed. Except for the

small rule sets in CYCLE and DOCTORS at least 95% of the calls were prevented. For

these larger rule sets, this resulted in time savings between 84% and 96%.

Calculating the reliances of DEEP was by far the most time consuming compared

to all other knowledge bases. In this case, the computation took almost 250 ms,

which corresponds to about 3.6% of the time for materializing the full knowledge

base by VLog. However, this is offset by the fact that we improved the run time by

49% or 63% depending on the variant using the result of this computation. In ev-

ery other experiment, the total time taken for computing the reliance relationship

does not exceed 1% compared to performing a full materialization.

We therefore conclude that computing the existence of reliances between rules

is feasible in practice even for larger rule sets and does not greatly impact the

overall run time. But it should be noted that the considered rule sets mostly

consisted of simple rules, which only contained a small number of body and head

atoms and rarely used a predicate multiple times. This severely limits the amount

of unifiers that need to be tested. Hence, the result might not apply to knowledge

bases containing a large amount of complex rules.



Chapter 6

Conclusion

6.1 Summary

In this thesis we presented strategies for selecting rules during a restricted chase

run. We evaluated their effectiveness by implementing them into the rule reason-

ing engine VLog.

The proposed strategies are based on syntactic relations between rules called

reliances. These indicate whether the application of one rule may trigger the ap-

plication of another, or whether satisfying two rules in the wrong other might

introduce redundancies into the chase result. We showed a method of testing

whether such a relationship holds between two given rules. It is based on com-

puting representative interpretations, which verify that the corresponding situ-

ation is possible in principle. Furthermore, we proved the correctness of the

presented algorithms. Soundness was shown by confirming the validity of the

constructed interpretations while completeness followed from the fact that they

were constructed from the most flexible unifier between the rules.

Given these syntactic relations, we devised methods for selecting rules that fol-

low the order implied by the reliances as best as possible. We began by con-

sidering the core-stratified case. Here, it is always possible to pick a rule order

which does not introduce any redundancies while at the same time optimizing

for the semi-naive evaluation strategy employed by VLog. This resulted in an al-

gorithm that first divides the rule set into an ordered partitioning and then strings

together multiple restricted chase sequences executed on each partition. We ex-

tended this strategy to arbitrary rule sets by relaxing the condition imposed on
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the allowed partitionings and disregarding inactive rule during a chase run. In

addition, we considered potential ways of selecting rules within the partitions.

The Positive First strategy tries to minimize the number of rule applications, while

Unrestrained First is a generalization of Datalog-First and aims to avoid deriving

redundant facts.

We implemented our approach in both of its variants into VLog and evaluated

its effectiveness on several benchmark and real-world knowledge bases. We saw

a significant improvement in the run time of performing a full materialization in

two of the nine tested cases. On every other knowledge base run times remained

the same or improved by only a small margin. Furthermore, we did not manage

to show any advantage of using our approach to remove redundant facts. How-

ever, our implementation demonstrates that calculating the reliance relationship

is feasible in practice, taking up only a small portion of the computational re-

sources.

6.2 Future Work

In this section we address open questions and directions for future work as well

as some limitations of our current results.

One problem left unsolved is to provide a complete algorithm for restraint re-

liances. In its current state, certain cases of self-restrains cannot be detected. In

this work, we also altered the original definition of the restraining relationship

provided by Krötzsch. The impact of this change on the theoretical guarantees

possible as well as its practical implications need further consideration. This also

brings about questions of how to implement the detection of the original restraint

reliances, since the algorithms shown so far seem not to be quite sufficient. More-

over, the characterization of both types of reliances assumes the restricted chase

even though we use them in an environment where the 1-parallel chase is ap-

plied. Here, the benefits of adjusting the notions to this case need to be weighted

against potential overhead such a change would cause.

As shown in Section 4.2.4, our approach to selecting rules might exclude termi-

nating runs. We proposed a new type of reliance, called blocking, as a way to

address this issue. It is an open question of how blocking relates to restraint re-

liances and whether or not including it into consideration when selecting rules is

of any practical benefit.



Computing the reliances could be performed in a reasonable time frame in every

of our experiments. However, further examples, in particular of knowledge bases

containing more complex rules, are needed to assess whether this holds true in

general. We would also like to repeat the experiments on better hardware which

is able to handle more input facts. We suspect that this would lead to rules being

applied more often by VLog, which may increase the impact of the suggested

strategies.

Early experiments also revealed that the order of applying rules within strongly

connected may have a huge impact on the overall run time even on rule sets

which only contain datalog rules. Such cases cannot be resolved with our tech-

niques. We would therefore like to investigate what other properties of rule sets

can be used for optimizing their application order.
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Appendix

Algorithm A.1: dynamic partitioned chase (1-parallel version)

Input: KnowledgeBase K = 〈R,D〉
Output: Interpretation I∞

1 Function updateActive(Group [ρ]):
2 if predĜ+([ρ]) ∩ A = ∅ and [ρ] ∩ T = ∅ then
3 A := A \ {[ρ]};
4 change := true;
5 foreach [ρ′] ∈ succĜ+([ρ]) do
6 updateActive([ρ′]);
7 end

8 end

9 G+ := G(R,≺+);
10 I := D;
11 A := R/≺+ ;

12 T := {ρ ∈ R | predG+(ρ) = ∅};
13 change := true;
14 while A 6= ∅ do
15 if change then

16 RA :=
⋃
A;

17 Q1, . . . , Qn := topological sort of Ĝ(RA,≺+ ∪ ≺�);
18 change := false;

19 end

20 ρ := select(Q1);
21 I := apply-1-parallel(ρ);
22 T := T \ {ρ};
23 foreach [ρ] ∈ A with predĜ+([ρ]) = ∅ do updateActive([ρ]) ;
24 if new facts were derived during this step then

25 foreach ρ′ ∈ succG+(ρ) do T := T ∪ {ρ′};
26 end

27 end

28 return I;



Dataset
Restrained By Appeared Earlier

Datalog Non-Datalog yes no

CYCLE 0 0 0 0

DEEP 0 11297 5730 4742

DOCTORS 0 1 1 0

LUBM 37 0 24 13

ONTOLOGY 103 291 313 17

REACTOME 16 0 16 0

STB 12 41 50 3

UNIPROT 31 3 29 5

UOMB 131 6 91 46

Table A.1: Shows how often a rule has been restrained by a datalog/non-datalog

rule and how many times the restraining rule appeared earlier in the

input file


	Introduction
	Existential Rules
	The Chase and Core Models
	The Rule Engine VLog
	Goal and Structure

	Preliminaries
	Basic Notation and Existential Rules
	The Chase
	The Restricted Chase
	1-Parallel Chase
	Datalog-First Chase

	Cores and Core-Stratification
	The Rule Engine VLog

	Computation of the Reliance Relationship
	General Strategy
	Unification
	Positive Reliances
	Restraint Reliances
	Proving Correctness

	Optimizing the Chase
	Core-Stratified Rule Sets
	Existing Approaches for Computing Cores
	Minimizing the Number of Parallel Chase Steps

	Dealing with Non-Stratified Rule Sets
	The Generalized Partitioned Chase
	The Dynamic Partitioned Chase
	Order Within Strongly Connected Components
	Termination


	Evaluation
	Experimental Setup
	Time Measurements
	Cores and Alternative Matches
	Computing the Reliance Relationship

	Conclusion
	Summary
	Future Work

	Appendix

