
Formale Systeme

19. Vorlesung: Nichtdeterminismus und Turingmächtigkeit

Markus Krötzsch

Professur für Wissensbasierte Systeme

TU Dresden, 5. Januar 2026

https://iccl.inf.tu-dresden.de/web/FS2025
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch


Rückblick

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 2 von 37



Paris im August 1900

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 3 von 37



Der 2. Internationale Mathematikerkongress

„Wer von uns würde nicht gern den Schleier
lüften, unter dem die Zukunft verborgen liegt,
um einen Blick zu werfen auf die bevorstehen-
den Fortschritte unsrer Wissenschaft und in
die Geheimnisse ihrer Entwickelung während
der künftigen Jahrhunderte!“

– David Hilbert, Paris, August 1900

Hilbert präsentiert eine Liste offener Fragen für die Mathematik des 20. Jahrhunderts:

• 1. Problem: Kontinuumshypothese (und Auswahlaxiom)

• 2. Problem: Widerspruchsfreiheit der Arithmetik

• . . .

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 4 von 37



Hilberts Programm

Aber Hilberts wahres Ziel ist ein neues Verständnis der Mathematik:

„So unzugänglich diese Probleme uns erscheinen und so ratlos wir zur Zeit ihnen ge-
genüber stehen – wir haben dennoch die sichere Ueberzeugung, daß ihre Lösung
durch eine endliche Anzahl rein logischer Schlüsse gelingen muß.
[. . . ]
Diese Ueberzeugung von der Lösbarkeit eines jeden mathematischen Problems ist
uns ein kräftiger Ansporn während der Arbeit; wir hören in uns den steten Zuruf: Da
ist das Problem, suche die Lösung. Du kannst sie durch reines Denken finden; denn
in der Mathematik giebt es kein Ignorabimus∗!“

– David Hilbert, Paris, August 1900

∗) lat. „wir werden es niemals wissen“

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 5 von 37



Der Rest ist Geschichte . . .

• 1910–1913: Whitehead und Russel formalisieren in ihrer Principia Mathematica
logische Grundlagen der Mathematik

• 1918–1922: Hilbert spezifiziert sein Programm zur widerspruchsfreien
Formalisierung der Mathematik

• 1928: Hilbert beschreibt das Entscheidungsproblem der Prädikatenlogik

• 1929: Gödel beweist seinen Vollständigkeitssatz: „es gibt ein Kalkül, das alle
Wahrheiten der Prädikatenlogik endlich beweisen kann“

• 1936: Turing definiert ein universelles Rechenmodell: die Turingmaschine

• 1951: Tarski publiziert ein Verfahren, mit dem alle wahren logischen Aussagen über
reelle Zahlen, + und ∗ automatisch durch Computer entschieden werden können

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 6 von 37



Der Rest ist Geschichte . . .

• 1976: Computerbeweis des Vier-Farben-Problems (Appel & Haken)

• 1992: IBM’s Supercomputer WHILE-S beweist die Fermatsche Vermutung

• ab 1995: erste Programmierumgebungen mit automatischer Verifikation

• 2001: IBM beweist die Goldbachsche Vermutung

• 2005: Google beweist die Riemannsche Vermutung

• 2007: „American Mathematical Society“ benennt sich um in „Association of
Mathematical Programmers“

• 2010: Zusammenbruch des Banksystems infolge der Veröffentlichung des
Computerbeweises zur Entschlüsselung von Public-Key-Kryptographie

• 2013: Einstellung des Studiengangs Mathematik an der TU Dresden (Übertragung
der Mathematiklehrer-Ausbildung an die Fakultät Informatik)

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 7 von 37



So ist es nicht gewesen.∗

Warum nicht?
(A) Historischer Zufall – es kam einfach anders

(B) Die Hardware ist noch nicht so weit

(C) Die Software ist noch nicht so weit

(D) Die beschriebene Entwicklung ist in unserem
Universum unmöglich

∗) alle Ereignisse ab 1992 sind nie passiert

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 8 von 37



Informatik als Naturwissenschaft

Informatik erforscht, was Computer sind
und welche Probleme man mit ihnen lösen kann.

Computer = ein System das rechnet (CMOS-Schaltkreise, die Turingmaschine,
DNA-Moleküle, ein quantenmechanisches System, das Universum, Minecraft, . . . )

Ziel: universelle Erkenntnisse – nicht nur über die Computertechnologie, die wir gerade
nutzen, sondern über die Welt, in der wir leben wie Physik

Methode: Spezifikation von einfachen Regeln, aus denen komplexe Systeme entstehen
anders als Physik, die mit dem System anfängt und dessen „Regeln“ sucht

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 9 von 37



Kernfragen der theoretischen Informatik

• Was heißt „berechnen“?

• Welche Probleme kann man auf reellen Computern lösen?

• Was wäre wenn wir mächtigere Computer hätten?

• Was macht Rechenprobleme „schwer“ oder „einfach“?

• Sind alternative Rechenmodelle denkbar?

• Welche (mathematischen/physikalischen/biologischen) Systeme können sonst
noch rechnen?

Diese finden sich wieder in zahlreichen Teilgebieten (Berechenbarkeit, Automaten,
Komplexität, Quantencomputing, logisches Schließen, künstliche Intelligenz, . . . )

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 10 von 37



Rückblick: Turingmaschinen

Alan Turing (5 Jahre alt)

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 11 von 37



Turingmaschinen – informell

Schematische Darstellung:

Eingabe-/Speicherband
a a a b b C D C C b D · · ·

Endliche
Steuerung

Lese-/Schreibkopf
(beweglich)

q Zustandsvariable

Übergangsfunktion:

• Eingabe: aktueller Zustand, gelesenes Zeichen

• Ausgabe: neuer Zustand, geschriebenes Zeichen, Änderung
Lese-/Schreibadresse (=̂ Bewegung Lese-/Schreibkopf)

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 12 von 37



Definition DTM

Eine deterministische Turingmaschine (DTM) ist ein Tupel M = ⟨Q,Σ,Γ, δ, q0, F⟩ mit
den folgenden Bestandteilen:

• Q: endliche Menge von Zuständen

• Σ: Eingabealphabet

• Γ: Arbeitsalphabet mit Γ ⊇ Σ ∪ {␣}

• δ: Übergangsfunktion, eine partielle Funktion

Q × Γ→ Q × Γ × {L, R, N}

• q0: Startzustand q0 ∈ Q

• F: Menge von akzeptierenden Endzuständen F ⊆ Q

Dabei bedeutet δ(q, a) = ⟨p, b, D⟩:
„Liest die TM in Zustand q unter dem Lese-/Schreibkopf ein a,
dann wechselt sie zu Zustand p, überschreibt das a mit b
und verschiebt den Lese-/Schreibkopf gemäß D ∈ {L, R, N}
(nach links, nach rechts, gar nicht).“

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 13 von 37



Beispiel

Wir können TMs in Diagrammen darstellen:

Ein Pfeil s1 7→ s2, D von q1 nach q2 bedeutet
δ(q1, s1) = ⟨q2, s2, D⟩ (DTM) bzw. ⟨q2, s2, D⟩ ∈ δ(q1, s1) (NTM)

Beispiel:

q0 q1
0 7→ 1, R
␣ 7→ 1, R

1 7→ 0, R

Was tut diese Turingmaschine?

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 14 von 37



TM: Beispiel Abarbeitung

TMs gehen schrittweise von einer Konfiguration in die nächste über:

q0 q1
0 7→ 1, R
␣ 7→ 1, R

1 7→ 0, R

Eingabe: 1101

q01101 ⊢ 0q0101 ⊢ 00q001 ⊢ 001q11

Ausgabe: 0011

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 15 von 37



Nichtdeterministische Turingmaschinen

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 16 von 37



Nichtdeterministische TMs

Die nichtdeterministische Turingmaschine (NTM)

. . . modelliert die Übergangsfunktion als totale Funktion:

Q × Γ→ 2Q×Γ×{L,R,N}

wobei 2Q×Γ×{L,R,N} die Potenzmenge von Q × Γ × {L, R, N} ist

. . . kann weiterhin mit einem einzigen Anfangszustand arbeiten

Läufe werden wie bei DTMs definiert, aber jetzt kann es pro Eingabe viele Läufe geben

Die Eingabe wird akzeptiert, wenn mindestens ein Lauf endlich ist und in einer
akzeptierenden Konfiguration endet

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 17 von 37



Definition NTM

Eine nichtdeterministische Turingmaschine (NTM) ist ein Tupel M = ⟨Q,Σ,Γ, δ, q0, F⟩
mit den folgenden Bestandteilen:

• Q: endliche Menge von Zuständen

• Σ: Eingabealphabet

• Γ: Arbeitsalphabet mit Γ ⊇ Σ ∪ {␣}

• δ: Übergangsfunktion, eine totale Funktion

Q × Γ→ 2Q×Γ×{L,R,N}

wobei 2Q×Γ×{L,R,N} die Potenzmenge von Q × Γ × {L, R, N} ist

• q0: Startzustand q0 ∈ Q

• F: Menge von akzeptierenden Endzuständen F ⊆ Q

Dabei bedeutet ⟨p, b, D⟩ ∈ δ(q, a):
„Liest die TM in Zustand q unter dem Lese-/Schreibkopf ein a,
dann kann sie zu Zustand p wechseln, a mit b überschreiben
und den Lese-/Schreibkopf gemäß D ∈ {L, R, N} verschieben.“

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 18 von 37



Wiederholung Grundbegriffe

Konfiguration: der „Gesamtzustand“ einer TM, bestehend aus Zustand, Bandinhalt und
Position des Lese-/Schreibkopfs;

geschrieben als Wort (Bandinhalt), in dem der Zustand vor der Position des Kopfes
eingefügt ist

Übergangsrelation: Beziehung zwischen zwei Konfigurationen wenn die TM von der
ersten in die zweite übergehen kann (deterministisch oder nichtdeterministisch);
geschrieben als ⊢

Lauf: mögliche Abfolge von Konfigurationen einer TM, beginnend mit der
Startkonfiguration; kann endlich oder unendlich sein

Halten: Ende der Abarbeitung, wenn die TM in einer Konfiguration keinen Übergang
mehr zur Verfügung hat

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 19 von 37



Was ist das Ergebnis einer TM-Berechnung?

Es gibt zwei wesentliche Arten DTMs zu benutzen:

(1) Transducer: Ausgabe der TM ist der Inhalt des Bandes, wenn sie hält, oder
undefiniert, wenn sie nicht hält (partielle Funktion); Endzustände spielen keine
Rolle und können weggelassen werden

(2) Entscheider: Ausgabe der TM hat nur zwei Werte: die TM „akzeptiert“, wenn sie in
einem Endzustand hält und sie „verwirft“ wenn sie in einem Nicht-Endzustand oder
gar nicht hält; Bandinhalt beim Halten spielt keine Rolle und kann ignoriert werden

Wir werden NTMs nur als Entscheider verwenden: in diesem Fall reicht es, wenn
mindestens ein möglicher Lauf akzeptiert.

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 20 von 37



Nichtdeterminismus , mehr Ausdrucksstärke

Satz: Jede NTM ist äquivalent zu einer DTM.

Beweis: Allgemeine Idee:

• Wir simulieren systematisch einen Lauf nach dem anderen

• Die simulierende TM akzeptiert die Eingabe, wenn ein akzeptierender Lauf
gefunden wird

• Andernfalls hält sie nicht an

Wie kann man systematisch alle möglichen Läufe testen?

• Tiefensuche: berechne zunächst einen Lauf; falls dieser fehlschlägt, dann gehe
zum letzten Entscheidungspunkt zurück und teste eine andere Möglichkeit
{ Problem: nicht akzeptierende Läufe können unendlich sein

• Breitensuche: berechne alle Läufe bis zu einer gewissen Tiefe, für immer größere
Tiefen
{ Simulation eines Laufs wird bei Maximaltiefe abgebrochen

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 21 von 37



Nichtdeterminismus , mehr Ausdrucksstärke

Satz: Jede NTM ist äquivalent zu einer DTM.

Beweis: Die Simulation verwendet eine 3-Band-TM (äquivalent zu einer normalen DTM
wie bereits gezeigt):

Band 1: Eingabewort (wird nie verändert)

Band 2: Arbeitsband der simulierten NTM für aktuellen Lauf

Band 3: Beschreibung der Übergangsentscheidungen des aktuell simulierten Laufs

Für jeden Übergang gibt es nur endlich viele Optionen, sagen wir ℓ.

Dann kann eine Folge von Entscheidungen als Sequenz von Zahlen in {0, . . . , ℓ − 1}
beschrieben werden
{ Band 3 enthält solch ein Wort über {0, . . . , ℓ − 1}

Der Inhalt von Band 3 kann als Zahl zur Basis ℓ gelesen werden: Um systematisch alle
Optionen zu durchsuchen, kann diese Zahl in Schritten von 1 erhöht werden.1

1 Hierbei muss eine leicht modifizierte Form von „Inkrementierung“ verwendet werden, welche die
folgende Sequenz erzeugt: 0, 1, . . . , (ℓ − 1), 00, 01, . . . , 0(ℓ − 1), 10, 11, . . . , (ℓ − 1)(ℓ − 1), 000, 001, . . .
Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 22 von 37



Nichtdeterminismus , mehr Ausdrucksstärke

Satz: Jede NTM ist äquivalent zu einer DTM.

Beweis: Arbeitsweise der Simulation:

(1) Initialisiere Band 3 mit dem Inhalt 0

(2) Kopiere die Eingabe von Band 1 nach Band 2

(3) Simuliere einen Lauf der NTM auf Band 2. In jedem Schritt wird von Band 3 eine
Zahl gelesen und der Übergang ausgeführt, der dieser Zahl entspricht.

– Falls ein Übergang mit der gelesenen Zahl nicht möglich ist, gehe zu (4)
– Falls alle Zahlen auf Band 3 gelesen sind, gehe zu (4)

(4) Prüfe ob die simulierte NTM in einem Endzustand angehalten hat und akzeptiere
in diesem Fall, andernfalls:

(5) Inkrementiere die Zahl auf Band 3, lösche Band 2 und gehe zu Schritt (2) □

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 23 von 37



Komplexität und Terminierung

Satz: Jede NTM ist äquivalent zu einer DTM.

Komplexität: Wenn die NTM einen akzeptierenden Lauf der Länge n hat, dann findet
ihn die DTM nach O(ℓn) Schritten.

{ Exponentielle Komplexität
(Es ist bis heute unbekannt, ob es eine effizientere Simulation geben könnte –
scheinbar nicht, aber der Beweis steht aus)

Terminierung: Wenn die NTM ein Entscheider ist (auch bei Nichtakzeptanz garantiert
hält), dann ist die simulierende DTM . . .
nicht unbedingt ein Entscheider (da die Simulation auch bei endlicher Nichtakzeptanz weiter fortgesetzt wird).

Der Beweis kann allerdings so abgewandelt werden, dass diese Eigenschaft gilt, also:

Satz: Jede Sprache die von einer NTM entschieden wird, kann auch von einer DTM
entschieden werden.

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 24 von 37



TM, DFA und PDA

Mehrband-NTMs und ihre Äquivalenz zu 1-Band-NTMs sind analog zum
deterministischen Fall.

Damit ist leicht zu sehen:

• Ein DFA kann als DTM aufgefasst werden, welche die Eingabe auf dem Band nur
in einer Richtung liest und niemals beschreibt.

• Ein PDA kann als 2-Band-NTM aufgefasst werden, die das zweite Band als
Kellerspeicher verwendet.

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 25 von 37



Church-Turing-These

Church-Turing-These: Eine Funktion ist genau dann im intuitiven Sinne berechenbar,
wenn es eine Turingmaschine gibt, die für jede mögliche Eingabe den Wert der Funkti-
on auf das Band schreibt und anschließend hält.

In der Tat sind eine große Menge von Ansätzen genau gleich stark:

• Turingmaschinen in vielen Varianten (deterministisch/nichtdeterministisch,
Einband/Mehrband, einseitig/zweiseitig unendlich, mit/ohne wahlfreiem Zugriff, . . . )

• λ-Kalkül nach Church

• Gödel und Herbrands allgemeine rekursive Funktionen

• alle bekannten Programmiersprachen1

• Typ-0-Sprachen

• Prädikatenlogik (erster Stufe)

1Sofern wir eventuelle technische Beschränkungen der maximalen verwendbaren
Speichergröße ignorieren.
Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 26 von 37



Turing-Mächtigkeit

Ein Formalismus ist Turing-mächtig, wenn er das Ein-/Ausgabe-Verhalten jeder Turing-
Maschine simulieren kann.

Vorteil: Turing-Mächtigkeit garantiert ein Maximum an Ausdrucksstärke
{ gewünscht besonders bei Programmiersprachen

Nachteil: Turing-Mächtigkeit bedeutet, dass viele Fragen in Bezug auf die berechnete
Funktion unentscheidbar sind (z.B. Äquivalenz zweier Darstellungen)
{ zumeist unerwünscht, wenn nicht programmiert wird

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 27 von 37



Versehentlich Turing-mächtig (1)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-mächtig heraus.

C++ Templates

Ein Mechanismus zur generischen Programmierung in C++, bei dem zur Compilezeit
(beliebig viele) Code-Templates instantiiert werden. Damit lassen sich TMs simulieren.
Daher ist das Halteproblem für C++-Compiler unentscheidbar. Sogar die Frage, ob
eine gegebene Textdatei ein gültiges C++-Programm ist, ist unentscheidbar. Praktisch
wurde demonstriert, wie der Compiler Primzahlen berechnen und als Compilerfehler
ausgeben kann.

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 28 von 37



Versehentlich Turing-mächtig (2)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-mächtig heraus.

TypeScript Typsystem:

Rekursive definierte Typen in TypeScript ermöglichen es, beliebige Berechnungen al-
lein im Typsystem zu implementieren. Erstmals veröffentlicht von Henning Dieterichs,
2017 [Link]. In 2025 wurde eine erste vollständige Implementierung von DOOM in
TypeScript Typen vorgestellt [Link], wobei Typdefinitionen im Umfang von insgesamt
177TB nötig waren.

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 29 von 37

https://github.com/Microsoft/TypeScript/issues/14833
https://www.youtube.com/watch?v=0mCsluv5FXA


Versehentlich Turing-mächtig (3)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-mächtig heraus.

Java Generics:

Mechanismus zur generischen Programmierung in Java. Sollte die Turing-
Vollständigkeit von C++-Templates vermeiden. Offenbar ist das nicht gelungen. Erst-
mals publiziert Mai 2016.

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 30 von 37



Versehentlich Turing-mächtig (4)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-mächtig heraus.

Sendmail:

SMTP-Server, welcher die automatische Umschreibung von Emails mit Regeln unter-
stützt. Die Zeichenketten können in diesem Zusammenhang fast direkt als Speicher-
band verwendet werden (ähnliche Effekte gibt es bei anderen String-Umschreibungs-
Systemen, wie Apache Rewrite Rules, wenn diese nicht in ihrer Rekursionstiefe be-
schränkt werden).

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 31 von 37



Versehentlich Turing-mächtig (5)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-mächtig heraus.

X86 Memory Management Unit:

Hardwarekomponente einer verbreiteten Computerarchitektur. Die Verarbeitung von
Seitenfehlern (page faults) kann genutzt werden, um eine Turing-vollständige Berech-
nung in Gang zu setzten, ohne die CPU zu verwenden. Demonstriert wurde eine Im-
plementierung von Conway’s Game of Life.

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 32 von 37



Versehentlich Turing-mächtig (6)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-mächtig heraus.

SQL:

Verbreitete Anfragesprache für relationale Datenbanken. Mit Hilfe von rekursiven Hilf-
stabellen (Common Table Expressions/WITH RECURSIVE) kann eine einzelne Abfrage
Turingmaschinen simulieren.

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 33 von 37



Versehentlich Turing-mächtig (7)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-mächtig heraus.

Magic: The Gathering:

Populäres Tauschkartenspiel. Es ist möglich, einen Spielverlauf zu konstruieren, bei
dem Spieler fast keine Entscheidungen treffen müssen und die komplexen Spielregeln
automatisch zur Entwicklung einer TM-Simulation führen. Dabei wird ein Stapelspei-
cher als Reihe von Zombies mit linear ansteigenden Lebenspunkten repräsentiert.
[Paper] [Video]

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 34 von 37

https://arxiv.org/abs/1904.09828
https://www.youtube.com/watch?v=pdmODVYPDLA


Versehentlich Turing-mächtig (8)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-mächtig heraus.

Microsoft Powerpoint: Programm zum Erstellen von Präsentationen. Simulationen

von Turing-Maschinen auf beliebigem aber begrenztem Speicher können allein durch
Animationen, Links und AutoShapes (ohne VB Makros etc.) realisiert werden. Prak-
tisch wurde lediglich demonstriert, wie man Palindrome gerader Länge erkennen kann.
Veröffentlicht April 2017.
[Video] [Paper]

(Weitere Beispiele siehe
http://beza1e1.tuxen.de/articles/accidentally_turing_complete.html.)

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 35 von 37

https://youtu.be/uNjxe8ShM-8
https://www.andrew.cmu.edu/user/twildenh/PowerPointTM/Paper.pdf
http://beza1e1.tuxen.de/articles/accidentally_turing_complete.html


Zusammenfassung und Ausblick

Die Theorie der Informatik untersucht Systeme im Hinblick auf ihre Fähigkeit zur
Informationsverarbeitung (Berechnung)

Grundbegriffe: Turingmaschine (det./nichtdet.), Konfiguration, Lauf, Akzeptanz

Nichtdeterministische Turingmaschinen (NTMs) haben die gleiche Ausdrucksstärke wie
deterministische

Church-Turing-These: „Alle Computer sind gleich“

Was erwartet uns als nächstes?

• Probleme

• Paradoxien

• Phenomenal große Zahlen

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 36 von 37



Bildrechte

Folie 3: Fotografie von 1900, gemeinfrei
Folie 4: Fotografie von 1912, gemeinfrei
Folie 11: Fotografie von 1917, gemeinfrei

Markus Krötzsch, 5. Januar 2026 Formale Systeme Folie 37 von 37


