CONCURRENCY THEORY Exercise Sheet 2: Semantics of Programming Languages 30th of April 2024

Exercise 2.1.

Suppose we represent nummerals **Num** in the binary format:

 $n = 0 \mid 1 \mid n0 \mid n1$

Define the total function $\mathcal{N} : \mathbf{Num} \to \mathbb{Z}$ mapping binary numerals to their positive integers.

Exercise 2.2.

Determine the functional F associated with the statement

while $\neg(x \equiv 0)$ do $x := x \oplus 1$

Consider the following partial functions of **State** \hookrightarrow **State**:

$$g_{1} s = \perp \text{ for all } s$$

$$g_{2} s = \begin{cases} s[x \mapsto 0] \text{ if } s x \ge 0 \\ \perp \text{ if } s x < 0 \end{cases}$$

$$g_{3} s = \begin{cases} s[x \mapsto 0] \text{ if } s x \ge 0 \\ s \text{ if } s x < 0 \end{cases}$$

$$g_{4} s = s[x \mapsto 0] \text{ for all } s$$

$$g_{5} s = s \text{ for all } s$$

Which of the function g_i ($i \in \{1, 2, 3, 4, 5\}$) are fixed points of F?

If there is more than one, which one is the *desired fixed point*?

Exercise 2.3.

Consider again the requirements on fixed points (from slide 20 on, lecture 4). We left option B (local looping) as an exercise. Study this option and carry out an example in the style of the ones given in options A and C. Do we learn anything about the fixed point requirements?

Exercise 2.4.

Let g_1, g_2 , and g_3 be defined as follows:

$$g_1 s = \begin{cases} s & \text{if } s x \text{ is even} \\ \text{undef otherwise} \end{cases}$$

$$g_2 s = \begin{cases} s & \text{if } s x \\ \text{undef otherwise} \end{cases}$$

$$g_3 s = s$$

- (a) Determine the ordering between these partial functions.
- (b) Determine a partial function g_4 such that $g_4 \sqsubseteq g_1, g_4 \sqsubseteq g_2$, and $g_4 \sqsubseteq g_3$ (i.e., g_4 is a lower bound of $\{g_1, g_2, g_3\}$).
- (c) Determine a partial function g_5 such that $g_1 \sqsubseteq g_5$, $g_2 \sqsubseteq g_5$, and $g_5 \sqsubseteq g_3$ but g_5 is distinct from g_1, g_2 , and g_3 .

Exercise 2.5.

Let S be a nonempty set and define $\mathcal{P}_{fin}(S) = \{K \mid K \text{ if finite and } K \subseteq S\}.$

TU Dresden, Knowledge-Based Systems Group Dr. Stephan Mennicke

- (a) Show that $(\mathcal{P}_{\mathrm{fin}}(S),\subseteq)$ as well as $(\mathcal{P}_{\mathrm{fin}}(S),\supseteq)$ are po-sets.
- (b) Do both po-sets have a least element for all choices of S?
- (c) Show that every subset of $\mathcal{P}_{\mathrm{fin}}(S)$ has a least upper bound w.r.t. $\subseteq.$
- (d) Provide a set S such that $(\mathcal{P}_{fin}(S), \subseteq)$ has a chain with no upper bound and, therefore, no least upper bound.
- (e) Is any of the aforementioned po-sets a complete lattice? ccpo?
- (f) Analyze $(\mathcal{P}(S), \subseteq)$ where $\mathcal{P}(S) = \{K \mid K \subseteq S\}$, whether it forms a complete lattice? How about ccpo?
- (g) Construct a subset Y of **State** \hookrightarrow **State** such that Y has no upper bound.

Exercise 2.6.

(a) Consider the ccpo (\mathbb{N}, \subseteq) . Determine which of the following functions in $\mathbb{N} \to \mathbb{N}$ are monotone:

$$f_1 X = \mathbb{N} \setminus X$$

$$f_2 X = X \cup \{27\}$$

$$f_3 X = X \cap \{7, 9, 13\}$$

$$f_4 X = \{n \in X \mid n \text{ is a prime}\}$$

$$f_5 X = \{2 \cdot n \mid n \in X\}$$

(b) Which of the following functionals of

$$($$
State \hookrightarrow State $) \rightarrow ($ State \hookrightarrow State $)$

are monotone:

$$\begin{split} F_0 \, g &= g \\ F_1 \, g &= \begin{cases} g_1 \ \text{if} \ g &= g_2 \\ g_2 \ \text{otherwise} \end{cases} \\ (F_2 \, g) s &= \begin{cases} g \, s \ \text{if} \ s \ x \neq 0 \\ s \ \text{if} \ s \ x &= 0 \end{cases} \end{split}$$

(c) Show that F_2 is even continuous.

Exercise 2.7.

Assume that (D, \preccurlyeq) and (D', \preccurlyeq') are ccpo's, and assume that function $f: D \to D'$ satisfies

$$\bigsqcup' \{ f \, d \, | \, d \in Y \} = f \Bigl(\bigsqcup Y \Bigr)$$

for all non-empty chains Y of D. Show that f is monotone.