Concurrency Theory

Exercise Sheet 2: Semantics of Programming Languages

$$
30^{\text {th }} \text { of April } 2024
$$

Exercise 2.1.

Suppose we represent nummerals Num in the binary format:

$$
n::=0 \quad|\quad 1 \quad| n 0 \quad \mid n 1
$$

Define the total function $\mathcal{N}: \operatorname{Num} \rightarrow \mathbb{Z}$ mapping binary numerals to their positive integers.

Exercise 2.2.

Determine the functional F associated with the statement

$$
\text { while } \neg(x \equiv 0) \text { do } x:=x \oplus 1
$$

Consider the following partial functions of State \hookrightarrow State:

$$
\begin{aligned}
& g_{1} s=\perp \text { for all } s \\
& g_{2} s=\left\{\begin{array}{l}
s[x \mapsto 0] \text { if } s x \geq 0 \\
\perp \text { if } s x<0
\end{array}\right. \\
& g_{3} s=\left\{\begin{array}{l}
s[x \mapsto 0] \text { if } s x \geq 0 \\
s \text { if } s x<0
\end{array}\right. \\
& g_{4} s=s[x \mapsto 0] \text { for all } s \\
& g_{5} s=s \text { for all } s
\end{aligned}
$$

Which of the function $g_{i}(i \in\{1,2,3,4,5\})$ are fixed points of F ?
If there is more than one, which one is the desired fixed point?

Exercise 2.3.

Consider again the requirements on fixed points (from slide 20 on, lecture 4). We left option B (local looping) as an exercise. Study this option and carry out an example in the style of the ones given in options A and C. Do we learn anything about the fixed point requirements?

Exercise 2.4.

Let g_{1}, g_{2}, and g_{3} be defined as follows:

$$
\begin{aligned}
& g_{1} s= \begin{cases}s & \text { if } s x \text { is even } \\
\text { undef otherwise }\end{cases} \\
& g_{2} s= \begin{cases}s & \text { if } s x \\
\text { undef otherwise }\end{cases} \\
& g_{3} s=s
\end{aligned}
$$

$$
g_{2} s=\left\{\begin{array}{ll}
s & \text { if } s x \\
\text { undef } & \text { otherwise }
\end{array} \quad a^{\prime}\right.
$$

(a) Determine the ordering between these partial functions.
(b) Determine a partial function g_{4} such that $g_{4} \sqsubseteq g_{1}, g_{4} \sqsubseteq g_{2}$, and $g_{4} \sqsubseteq g_{3}$ (i.e., g_{4} is a lower bound of $\left\{g_{1}, g_{2}, g_{3}\right\}$).
(c) Determine a partial function g_{5} such that $g_{1} \sqsubseteq g_{5}, g_{2} \sqsubseteq g_{5}$, and $g_{5} \sqsubseteq g_{3}$ but g_{5} is distinct from g_{1}, g_{2}, and g_{3}.

Exercise 2.5.

Let S be a nonempty set and define $\mathcal{P}_{\text {fin }}(S)=\{K \mid K$ if finite and $K \subseteq S\}$.
(a) Show that $\left(\mathcal{P}_{\text {fin }}(S), \subseteq\right)$ as well as $\left(\mathcal{P}_{\text {fin }}(S), \supseteq\right)$ are po-sets.
(b) Do both po-sets have a least element for all choices of S ?
(c) Show that every subset of $\mathcal{P}_{\text {fin }}(S)$ has a least upper bound w.r.t. \subseteq.
(d) Provide a set S such that $\left(\mathcal{P}_{\text {fin }}(S), \subseteq\right)$ has a chain with no upper bound and, therefore, no least upper bound.
(e) Is any of the aforementioned po-sets a complete lattice? ccpo?
(f) Analyze $(\mathcal{P}(S), \subseteq)$ where $\mathcal{P}(S)=\{K \mid K \subseteq S\}$, whether it forms a complete lattice? How about ccpo?
(g) Construct a subset Y of State \hookrightarrow State such that Y has no upper bound.

Exercise 2.6.

(a) Consider the ccpo (\mathbb{N}, \subseteq). Determine which of the following functions in $\mathbb{N} \rightarrow \mathbb{N}$ are monotone:

$$
\begin{aligned}
& f_{1} X=\mathbb{N} \backslash X \\
& f_{2} X=X \cup\{27\} \\
& f_{3} X=X \cap\{7,9,13\} \\
& f_{4} X=\{n \in X \mid n \text { is a prime }\} \\
& f_{5} X=\{2 \cdot n \mid n \in X\}
\end{aligned}
$$

(b) Which of the following functionals of

$$
(\text { State } \hookrightarrow \text { State }) \rightarrow(\text { State } \hookrightarrow \text { State })
$$

are monotone:

$$
\begin{aligned}
F_{0} g & =g \\
F_{1} g & =\left\{\begin{array}{l}
g_{1} \text { if } g=g_{2} \\
g_{2} \text { otherwise }
\end{array}\right. \\
\left(F_{2} g\right) s & = \begin{cases}g s & \text { if } s x \neq 0 \\
s & \text { if } s x=0\end{cases}
\end{aligned}
$$

(c) Show that F_{2} is even continuous.

Exercise 2.7.

Assume that (D, \preccurlyeq) and $\left(D^{\prime}, \preccurlyeq^{\prime}\right)$ are ccpo's, and assume that function $f: D \rightarrow D^{\prime}$ satisfies

$$
\bigsqcup^{\prime}\{f d \mid d \in Y\}=f(\bigsqcup Y)
$$

for all non-empty chains Y of D. Show that f is monotone.

