
Efficient Large Outer Joins over MapReduce

Long Cheng1 and Spyros Kotoulas2

1 cfaed, TU Dresden, Germany
2 IBM Research, Ireland

long.cheng@tu-dresden.de spyros.kotoulas@ie.ibm.com

Abstract. Big Data analytics largely rely on being able to execute large
joins efficiently. Though inner join approaches have been extensively eval-
uated in parallel and distributed systems, there is little published work
providing analysis of outer joins, especially on the extremely popular
MapReduce platform. In this paper, we studied several current algo-
rithms/techniques used in large outer joins. We find that some of them
could meet performance bottlenecks in the presence of data skew, while
others could be complex and incur significant coordination overheads
when applied to the MapReduce framework. In this light, we propose a
new algorithm, called POPI (Partial Outer join & Partial Inner join),
which targets for efficient processing large outer joins, and most impor-
tant, is lightweight and adapted to the processing model of MapReduce.
We implement our method in Pig and evaluate its performance on a
Hadoop cluster of up to 256 cores and datasets of 1 billion tuples. Experi-
mental results show that our method is scalable, robust and outperforms
current implementations, at least in the case of high skew.

1 Introduction

In light of the explosion of available data and the increasing connectivity between
data systems, the infrastructure for scalable data analytics is as relevant as
ever. An essential operation in this domain is the join, which facilitates the
combination of records based on a common join key. Since this data-intensive
operation can incur significant costs, improving the efficiency of this operation
would have a significant impact on the performance of applications.

Outer join. Although distributed inner join algorithms have been widely
studied [1,2], there has been relatively little done on the topic of outer joins. In
fact, outer joins are common in complex queries and widely used such as in OLAP
applications. For example, in online e-commerce, customer ids are often left outer
joined with a large transaction table for analyzing the purchase patterns [3]. In
contrast to inner joins, outer joins do not discard tuples from one (or both)
table(s) that do not match with any tuple in the other table. As a result, the
final join results contain not only the matched part but also the non-matched
part. This difference makes outer join implementations significantly different
from inner joins in a distributed system and challenge current techniques [4].

MapReduce. As applications grow in scale, joins on multiple CPUs and/or
machines is becoming important. Compared to conventional parallel DBMSs,

MapReduce (over Hadoop) integrates parallelization, fault tolerance and load
balancing in a simple programming framework, and can be easily run in a large
computing center or cloud, making it extremely popular for large-scale data
processing. In fact, most vendors (such as IBM) provide solutions, either on-
premise or on the cloud, to compute on massive amount of structured, semi-
structured and unstructured data for their business applications.

In this light, studying analytic techniques on this platform becomes very im-
portant. In fact, join operations are sometimes hard in MapReduce [5]. Unlike
implementations in DBMS’es, complex designs for joins in MapReduce can eas-
ily lead to poor performance: the overhead of starting a communication phase
between partitions is very high. Namely, we have to start a new job and re-read
(part of) the data. In addition, the MapReduce paradigm is highly sensitive to
the presence of data or computation skew: since coordination is infrequent and
very costly, there are fewer opportunities to re-balance workloads across nodes.

In comparison to most of current studies focusing on inner joins over MapRe-
duce [2,5], in this work, we focus on the design and evaluation of outer joins on
this platform. We summarize our contributions as following:

• We introduce several outer join implementations which are applied in MapRe-
duce and discuss their possible performance issues.

• We discuss the possibility to apply some advanced join strategies used in
parallel DBMSs to outer joins over MapReduce. We find that, they could
either meet performance issues or be complex in implementations and thus
bring in high overhead in terms of the number of MapReduce jobs launched.

• We propose a new approach, called POPI (Partial Outer join & Partial Inner
join), which targets efficient outer joins adapted to MapReduce.

• We implement the various approaches on Apache Pig. Our experimental
results show that our method is robust and can perform better than current
implementations in MapReduce, at least in the presence of high skew.

The rest of this paper is organized as follows: In Section 2, we shortly intro-
duce the MapReduce framework and describe current outer join implementations
over it. In Section 3, we discuss some advanced strategies for large data outer
joins in MapReduce. We describe our new approach in Section 4 and present
the evaluation in Section 5. We report on related work in Section 6 while we
conclude the paper in Section 7.

2 MapReduce and Outer Joins

Overview. MapReduce [6] is designed to operate over key/value pairs. Specifi-
cally, each Map function receives a key/value pair and emits a set of key/value
pairs. All key/value pairs produced during the map phase are grouped by their
key and passed to reduce phase. During the reduce phase, a Reduce function is
called for each unique key, processing the corresponding set of values.

Though MapReduce has various advantages on large data processing, it en-
tails more overhead compared to traditional DBMSs during execution: This plat-
form sacrifices per-node efficiency, for scalability [5]. Namely, performance loss

on a single node can usually be compensated by simply employing more com-
putation resources. Nevertheless, MapReduce has no way of automatically re-
balancing load, and any operation that changes the distribution of data should
only be performed in the context of a new job (which typically incurs a co-
ordination overhead of tens of seconds, if not minutes). Thus, achieving good
load-balancing in data/join processing is critical.

Current Methods for MapReduce. Currently, three outer join methods
are commonly applied in MapReduce implementations: hash-based, replication-
based and histogram-based outer joins. We focus on left outer joins (./) here
since they are the most common ones and their implementations would be anal-
ogous for right outer joins. In the following, we focus on a single outer join
operation between two relations R and S. We assume both R and S are <k, v>
pairs with |R| < |S| and k is the join key. For simplicity, we also assume that R
is uniformly distributed and S is skewed for all of our examples, unless otherwise
specified.

Hash-based outer join. Similarly to inner join implementations, this ap-
proach can be done in a single MapReduce job. In the map phase, each map task
works on either R or S. To identify which relation an input record is from, each
map task tags the record with its originating table, and outputs the extracted
join key and the tagged record. For example, for a record < k1, v1 > from S, the
output will be < k1, (s, k1, v1) > pair, where s is the table tag. Then, the frame-
work brings together records sharing the same key and eventually feed them to
a reducer, based on the hash value of their keys. In the reduce phase, the reduce
function separates the input records into two sets according to their table tags
and then performs a cross-product between each record in these sets and output
the final results.

Normally, this scheme can achieve good performance under ideal balancing
conditions for distributed systems [1]. However, when the processed records has
significant skew, number of records will be flushed to a small part of reducers
and cause hotpots. Such issues impact system scalability which will be reduced
as employing new nodes1 cannot yield improvements - the skew records will still
be distributed to the same reducers.

Replication-based outer join. Compared to the replication-based inner
joins containing only a mapreduce job, outer joins within this scheme is signifi-
cantly different. It is composed by two distinct join stages in an abstract level2:
(1) A map-side inner join between R and S. Namely, all records of the small
table R is retrieved from the DFS and then each map task uses a main-memory
hash table to join S with R, formulating the intermediate results T ; and (2) A
reduce-side outer join between R and T , which is done in the same way as the
hash-based method described above. Namely, all the records of R and T will be
grouped based on their keys, and then fed to reducers for the local outer joins.

1 Note that, in terms of terminology, when we talk about a node, we mean a computing
unit (e.g., a Reducer in MapReduce) in this work.

2 The detailed process about how to identity where a record comes from is the same
as the hash-based approach described above, thus here we do not present it again.

The replication in this method can reduce load imbalance, as each map task
has the same workloads in the first phase. Nevertheless, this operation is costly
and only suitable for small-large outer joins [3]. Moreover, even if R is small,
the cardinality of the intermediate results T could be large when S is highly
skewed [4]. This could make tasks in the second stage very costly and conse-
quently decreases the whole performance.

Histogram-based outer join. As data skew is common in most applica-
tions, efficient approaches to handle this kind of skew becomes critical for the
join performance. Apache Pig has some built-in resistance to skewed joins, a
typical method is using histogram [7]. Namely, firstly, a histogram of key popu-
larity is calculated, which can be done with a single MapReduce job. Then, the
keys are re-arranged and the jobs are distributed based on that. For instance,
if we have the following histogram k1=19, k2=20, k3=18, k4=60, and we have
two reducers, instead of splitting the keys in a hash-based way (i.e., k1 and k3
go to reducer 1, k2 and k4 go to reducer 2), the workload will be balanced by
sending k1, k2 and k3 to reducer 1 and k4 to reducer 2. However, this does not
work with extreme skew. As shown in [8], if a key is overly popular, the single
reducer that it will be sent to will still become a hotspot.

3 Candidate Strategies for MapReduce

In this section, we present some advanced strategies studied in parallel databases
and discuss about the possibility to apply them to outer joins in MapReduce.

3.1 The PRPD Method

Xu et al. [9] propose an algorithm named PRPD (Partial Redistribution & Par-
tial Duplication) for inner joins. In their implementation, S is partitioned into
two parts: (1) a locally-retained part Sloc, which comprises high skew items and
which is not involved in the redistribution phase, and (2) the redistributed part
Sredis which comprises the records with low frequency of occurrence and is re-
distributed using a common hash-based implementation. The relation R is also
divided into two parts: (1) the duplicated part Rdup, which contain the keys in
Sloc, which will be broadcast to all other nodes, and (2) the redistributed part
Rredis - the remaining part of R that is to be hash redistributed. Then, the final
inner join is composed by Rredis on Sredis and Rdup on Sloc.

This method presents an efficient way to process the high skew records (i.e.
the ones with keys that are highly repetitive). All these records of S are not
transferred at all, instead, a small number of records containing the same keys
from R are broadcast. The results for this approach show significant speedup in
the presence of data skew. Because PRPD is a hybrid method combining both
the hash and duplication-based join scheme, we can simply use outer joins to
replace the corresponding inner joins in the case of MapReduce. Namely, we have

R ./ S = (Rredis ./ Sredis)
⋃

(Rdup ./ Sloc) (1)

However, this implementation could meet the same performance issue as the
duplication-based approach described above: the cardinality of the intermedi-
ate results of Rdup ./ Sloc could be large, because Sloc here is highly skewed,
which means that a naive PRPD algorithm cannot be applied to outer joins in
MapReduce directly.

3.2 The PRPS Approach

Cheng et al. [10] propose an efficient algorithm for inner joins, named as PRPS
(further refined to PRPQ in their work). They use a semijoin-alike way to han-
dle skewed data, inspiring us to apply it to the outer joins of Rdup ./ Sloc in
Equation 1.

In this case, we divide the detailed process into two steps: (1) The unique
keys of Sloc are extracted and we perform an outer join with Rdup; and (2) The
matched part of Rdup is joined with Sloc (inner join), which is union-ed with the
non-matching part of Rdup to formulate the outputs. Namely,

Rdup ./ Sloc = [Rdup ./ πk(Sloc)]
> on Sloc]

⋃
[Rdup ./ πk(Sloc)]⊥ (2)

where the symbol > and ⊥ means the matched and non-matched results of a
outer join respectively.

We can see that this PRPS outer join method (referred as PRPS-O in the
following) will be efficient on skew handling in MapReduce. The reason is that
the large part of skewed records in S is still locally kept and just a small number
of unique keys are extracted and transferred, which can be executed with two
extra jobs in MapReduce. Nevertheless, as we describe later, we can use a simpler
and more efficient method for the outer join implementation.

3.3 Complex Techniques

Other approaches (e.g., [4]) are also very efficient on distributed outer joins.
They focus on a fine grained operation of per-node data movement (e.g., peer-
to-peer communication based on requirements) to minimizing network commu-
nication during implementation. We believe that these algorithms can be coded
in MapReduce, however, the number of their execution jobs could be large, more
than the PRPS-O method at least. In this case, their implementations could be
costly, not only because of their complex data flows, but also the overheads of
MapReduce as we described. Actually, in our later evaluation, we have shown
that, with two more jobs, PRPS-O takes around 80secs more on runtime, com-
pared to our new method. Thus, we do not consider the detailed implementation
and evaluation of these complex techniques in this work.

4 Our Approach

In this section, we present our POPI method and its implementation over Pig [7].

4.1 The POPI Algorithm

The design principles of POPI are: (1) large scale redistribution of skewed records
should be limited, so as to avoid load balancing problems; and (2) duplication-
based outer join operations should be avoided to the extend possible, in order to
simplify the implementation and also reduce possible redundant communication
and computation. Based on this, our algorithm adopts the same partitioning
approach as PRPD [9]. We process the partitioned records as follows:

R ./ S = (Rredis ./ Sredis)
⋃

(Rdup on Sloc) (3)

Namely, the skewed part is executed as an inner join directly. For clarification,
we first give a brief proof of the correctness of Equation 3 here:

Proof sketch: Assume that L is the set of skewed keys of S, then we have that:
(1) L is extracted from the skewed part of S, namely, there is L = πb(Sloc); (2) be-
cause the partitioning of R is based on L, namely, a record of R, < a, x >∈ Rdup

if only if the key meets the condition a ∈ L. Namely, every key of Rdup appears
in L. In this condition, there will be no non-matched results in Rdup during its
outer join execution with Sloc. Therefore, the outer join can be represented as
an inner join. Note that, even if a skewed key in S does not appear in R, the
inner join between Rdup and Sloc will still be valid here, since the final left outer
join results depend on the match conditions of R only. �

We can see that our outer join implementation is composed by an outer join
and an inner join, which is different from a naive transformation, such as that
in Equation 1, in which there are two outer join operations involved. In the
meantime, compared to the PRPS-O as Equation 2, our approach also greatly
simplifies the outer join implementations (with two jobs less over Pig for a left
outer join). That is also the motivation behind the naming of our approach,
POPI (Partial Outer join & Partial Inner join), since the processing between
the skewed part and non-skewed part is different from current approaches and
allows us to replace an outer join with an inner join.

Inheriting the advantages of the same data partitioning approach as PRPD,
we believe that POPI will be robust and efficient on large outer joins in MapRe-
duce. The reason is that we only need to transfer a small part of keys/records
(via DFS), rather than the large number of records in S. Moreover, this method
will be more efficient than the PRPS-O algorithm, as the number of MapReduce
jobs has been reduced.

Following above, with regard to the case of skewed-skewed outer joins (i.e., the
relation R is also skewed), we partition R into three parts: the Rdup and Rredis

as we described previous, as well as the locally kept part Rloc, which contains all
the skewed records in R. Correspondingly, records in S is partitioned into three
parts as well, the Sloc, Sredis and the duplicated part Sdup, in which records
contains join key belongs to Rloc. Then, the final outputs will be composed by
three joins: a left outer join for the non-skew part records, namely Rredis ./Sredis,
and two inner joins for the skewed records, namely Rdup on Sloc and Rloc on Sdup.

In this case, the outer join R ./ S can be presented as:

(Rredis ./ Sredis)
⋃

(Rdup on Sloc)
⋃

(Rloc on Sdup) (4)

As the uniform-skew join is the core part of a join [9, 11], we will focus on such
kind of outer joins in our subsequent implementation and evaluation.

4.2 Implementation

We present a general implementation of our method using Pig Latin [12], a lan-
guage that can be compiled to produce MapReduce programs used with Hadoop.
We have three main advantages using this language: (1) It provides a concise
notation for algorithms. (2) The outer join methods, such as hash, replicated and
histogram, have been integrated in Pig, allowing us for a fair comparison. (3) In
a larger pipeline of operations, we can avail of optimisations that are already im-
plemented in Pig, such as performing multiple operation within a job, re-using
partitioning of data or executing multiple jobs in parallel.

The detailed implementation of our method in Pig is shown in Algorithm 1.
There, R, S, k, t refer to the left table of the outer join, the right side of the
outer join, the sampling rate (referred to as samplingPercentage later) and the
number of chosen top popular keys (refer as samplingThreshold) respectively.
Initially, we sample the large table S (line 3), group by its join keys (line 4) and
count the number of occurrences of sampled key (line 5). Then we order the keys
and pick up the most popular keys based on the threshold t (lines 6-7). After
that, the tables R and S are partitioned into two parts respectively based on
the skewed keys (lines 9-13). With the partitioned data, we then start the outer
joins (line 15) and inner joins (line 16). Finally, the outputs of the outer join are
composed by the results from both parts (line 18).

5 Experimental Evaluation

5.1 Experiment Setup

Each computation unit of our experimental system has two 8-core Intel Xeon
CPU E5-2690 processors running at 2.90 GHz, resulting in a total of 16 cores per
physical node. Each node has 32GB of RAM and a single 128 GB SSD local disk
and nodes are connected by Infiniband. The operating system is Linux kernel
version 2.6.32-279 and the software stack consists of Hadoop version 1.2.1, Pig
version 0.14.0 and Java version 1.7.0 25.

The evaluation is implemented on two relations R and S. We fix the car-
dinality of R to 64 million records and S to 1 billion records. Because data in
warehouses is commonly stored following a column-oriented model, we set the
data format to <key, value> pairs, where both the key and value are 8-byte
integers. We assume that R and S meet the foreign key relationship and when S
is uniform, the tuples are created in such a way that each of them matches the
tuples in the relation R with the same probability. Meanwhile we only add skew

Algorithm 1 POPI Outer Joins

1: DEFINE Skew resistant outer join(R,S,k,t)
2: RETURNS Result {
3: SS = SAMPLE S k; //sample S
4: SG = GROUP SS BY S::key;
5: SC = FOREACH S2 GENERATE group, COUNT(SS) as c;
6: OrderedKey = ORDER SC BY c DESC;
7: SkewedKey = LIMIT OrderedKey t;
8:
9: SS = JOIN S BY key LEFT, SkewedKey BY group USING ’replicated’;

10: SPLIT SS INTO S loc IF SkewedKey::group is not null, S red IF Skewed-
Key::group is null;

11:
12: RS = JOIN R BY key LEFT, SkewedKey BY group USING ’replicated’;
13: SPLIT RS INTO R dup IF SkewedKey::group is not null, R dis IF Skewed-

Key::group is null;
14:
15: JA = JOIN R dis BY R::key LEFT, S dis by S::key;
16: JB = JOIN S loc BY S::key, R dup BY R::key USING ’replicated’;
17:
18: $Result = UNION JA, JB; }

to S, following the Zipf distribution. The skew factor is set to 0 for uniform, 1 for
the low skew (top ten popular keys appear 14% of the time) and 1.4 for high skew
dataset (top ten appear 68%). Joins with such characteristics and workloads are
common in data warehouses and column-oriented architectures [10].

In all experiments, we set the following system parameters: map.tasks.maxi-
mum to 16 and reduce.tasks.maximum to 8 and the rest of the parameters are
left to the default values. The implementation parameters of our method are
configured as follows: samplingPercentage is set to 10, samplingThreshold to
4000 as default. We measure runtime as the elapsed time from job submission
to the job being reported as finished.

5.2 Experimental Results

Runtime. We focus on examining the runtime of three algorithms: the hash-
based algorithm (referred to Hash), histogram-based method (referred to as
Skewed) and the proposed POPI approaches. Since the first two methods have
been integrated in Pig, we just simple use them directly. Though Pig also pro-
vides the replicated implementation, we do not compare with it here, since it is
limited by the fact that the replicated relation needs to fit in memory [4].

We implement our tests using over 128 cores (8 nodes) and Figure 1 shows
the runtime of each algorithm. It can be seen that: (1) When S is uniform,
Hash is more faster than the other two algorithms. The possible reason is the
later two methods have extra-sampling operation and also the overhead of more
MapReduce jobs. (2) With low skew, all the runtime increases, which is out of

1 7 0

3 1 6 2 9 8
2 1 3

4 0 5 4 3 7

7 3 3 7 3 1

3 6 1

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0
 S k e w = 0
 S k e w = 1
 S k e w = 1 . 4

Ru
nti

me
 (s

)

A l g o r i t h m / S k e w

P O P I
S k e w e d

P O P I
S k e w e d

H a s h
H a s h

P O P I
S k e w e d

H a s h

Fig. 1. Runtime of each algorithm.

2 9 8
1 8 1 1 9 3

4 3 7

2 4 3

3 7 8 3 6 1

2 0 8
2 8 8

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0
 S k e w = 0
 S k e w = 1
 S k e w = 1 . 4

Ru
nti

me
 (s

)

A l g o r i t h m / S k e w

(P R P S - O)

(P O P I)
(P R P S - O)

(P O P I)
P O P I

P O P I
(P R P S - O)

(P O P I)
P O P I

Fig. 2. Compare POPI and PRPS-O.

our expectation. As skew handling techniques have been adopted in the later two
algorithms, the possible reason could be that not all the highly skewed records
were sampled and there remains serious skew in both executions. (3) With high
skew, our method becomes the best, which means that, the POPI algorithm can
efficiently handle high skew at least.

We also compare the performance of POPI and PRPS-O. The results are
shown in Figure 2. There, the algorithm within “()” means that its sampling
operation has been removed. Instead, the top popular keys are stored in a flat
file and read as the skewed keys during executions. The reason to do so is for a
more precise comparison: the join performance is sensitive to the sampled skew
keys and operations like sampling cannot guarantee we always get the skewed
keys. In addition, in most data processing pipelines, there is ample opportunity
to extract this information as a side-effect of previous jobs. It can be observed
that the (POPI) implementation is always faster than the original POPI, which
means that the sampling operation could be costly and the sampled skewed keys
are also critical for the performance. Moreover, the (POPI) is always faster than
(PRPS-O), indicating the more jobs brought by complex implementations in
PRPS-O are also costly, about 80 secs out of 288 secs in a high skewed dataset.

Load Balancing. We also track the detailed time spent on each reducer for each
algorithm in the presence of data skew. Under low skew, the results are shown in
Figure 3. It can be seen that there are relatively small discrepancies for all the
algorithms. The possible reason is that Hash can not handle data skew and the
Skewed and POPI algorithm can not fully catch the skew keys because of their
huge number. Furthermore, Figure 4 shows the results in the condition of high
skew. There, Hash is not balanced at all, in comparison, the Skewed method
and POPI are much better. We should highlight that POPI achieves excellent
load-balancing here. The reason could be that the the number of skewed key
is relative small in the condition of high skew and most of the popular keys
are extracted, even when we only sample a small part of the input. Moreover,
our runtime is much smaller than the Skewed method, which demonstrates the
efficiency of this new approach.

Scalability. We finally test the scalability of our algorithm by varying the num-
ber of processing cores. We implement our test on the system from 2 nodes (32

0 1 0 2 0 3 0 4 0 5 0 6 0
5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Ru
nti

me
 (s

ec
)

R e d u c e r N o .

 H a s h
 S k e w e d
 P O P I

Fig. 3. Runtime of reducer in Skew=1.

0 1 0 2 0 3 0 4 0 5 0 6 0
0

2 0 0

4 0 0

6 0 0

8 0 0

Ru
nti

me
 (s

ec
)

R e d u c e r N o .

 H a s h
 S k e w e d
 P O P I

Fig. 4. Runtime of reducer in Skew=1.4.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

Ru
nti

me
 (s

ec
)

N u m b e r o f c o r e s

 H a s h
 S k e w e d
 P O P I

Fig. 5. Scalablity in Skew=1.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

Ru
nti

me
 (s

ec
)

N u m b e r o f c o r e s

 H a s h
 S k e w e d
 P O P I

Fig. 6. Scalablity in Skew=1.4.

cores) to 16 nodes (256 cores) over the skewed datasets. The detailed time-cost
is shown in Figure 5 and Figure 6. We can see that the Skewed method and
our algorithms generally scales well with the number of cores under low skew.
However, they are slower than Hash. The reason could be the overhead of their
implementations on MapReduce since Hash has only a single mapreduce job.
This result is greatly different from the conditions when using other program-
ming languages (e.g., X10 in [4]), where the Hash method is slower. In such
scenarios, we believe that the hash-based approach could still be a better choice
for MapReduce, under low skew. In comparison, with high skew, our method
scales well while the other two are not. More importantly, our approach is signif-
icantly faster. Combining this with the good load balancing we have illustrated
in Figure 4, it can be seen that our method could be more suitable for the large
outer joins in the presence of high skew.

6 Related Work

Several approaches have been proposed to improve the performance of joins over
MapReduce [13], regardless, they have modified the basic MapReduce frame-
work and cannot be readily used by existing platforms like Hadoop. Though
the work [5] presents an extensive implementation on joins in MapReduce, they
focus on execution profiling and performance evaluation, but not for robust join
algorithms in the presence of big data.

As data skew has significant impact on distributed join processing, there has
been in-depth research on skew handling in parallel and distributed DBMSs [1,
3, 4, 9, 10]. However, as we have explained, their methods could either have per-
formance issues or be complex in MapReduce implementations. In comparison,
our POPI algorithm is simple on implementation and also shown to be efficient.

Many algorithms have been introduced on skew handling for joins over MapRe-
duce [14], regardless, most of them focus on inner joins, as opposed to consider
the challenges on the complexity of outer join implementations. Moreover, sev-
eral efforts in designing high level query languages on MapReduce, such as Pig [7]
and Hive [15], have employed advanced mechanisms on skew handling in outer
joins, however, as we have described, sometimes they could be not very efficient.
Additionally, though some platforms (e.g., Stratosphere [16]) have provided effi-
cient techniques on big data analytics, they focus on creating optimized plans of
executing jobs, in contrast to the detailed implementation of a single operation
as we studied in this work.

Recently, Bruno et al. [17] present three SkewJoin transformations to miti-
gate the impact of data skew in a distributed join operation. To prevent an outer
join operator from generating null values, they partition the skewed tuples (e.g.,
in S) in a round-robin way so that each node can see at least one such tuple.
In comparison, our approach is more light-weighted, since we do not need to
repartition the skewed tuples, the number of which is always huge. Even when
that some skewed tuples do not appear on some nodes, we will not generate null,
as we use an inner join operation for the skewed tuples in our approach.

The PRPD algorithm [9] is a very popular method adopted by many compa-
nies (e.g., Teradata [9], Microsoft [17] and Oracle [18]). Nevertheless, as we have
analyzed, PRPD cannot be applied to outer joins directly. The underlying data
partitioning of our method is the same as PRPD, both are based on the skewed
keys, therefore, the statistical information of data skew that is collected by the
current systems using PRPD can be applied to POPI directly. This means that
POPI can be used to extend the join implementations of current systems (or over
current platforms like MapReduce [6] and Spark [19]) and consequently simplify
the general executions of data queries. For example, skew statistics on the join
keys (a, b) for the inner join implementation R(a, x) on S(b, y) can be applied to
the implementation of R(a, x) ./ S(b, y) directly, without any modifications for
the underlying join patterns.

7 Conclusions

In this paper, we focus on one data-intensive operation - outer joins - over
the MapReduce platform. We have described current applied techniques and
discussed the potential performance issues in the condition of using current ad-
vanced methods from parallel databases. Based on that, we propose our POPI
algorithm for efficient large-scale data outer joins over MapReduce. We describe
the detailed design and present the evaluation over a Hadoop cluster and Pig.
We show that our new method is simple to implement. In the meantime, the ex-

periment results also show that POPI is scalable, robust and can perform better
compared with current implementations, at least in the case of high skew.

Acknowledgments. This work is supported by the German Research Founda-
tion (DFG) within the Collaborative Research Center SFB 912 (HAEC) and in
Emmy Noether grant KR 4381/1-1 (DIAMOND).

References

1. DeWitt, D., Gray, J.: Parallel database systems: the future of high performance
database systems. Commun. ACM 35(6) (June 1992) 85–98

2. Li, F., Ooi, B.C., Özsu, M.T., Wu, S.: Distributed data management using MapRe-
duce. ACM Computing Surveys 46(3) (2014) 31

3. Xu, Y., Kostamaa, P.: A new algorithm for small-large table outer joins in parallel
DBMS. In: ICDE. (2010) 1018–1024

4. Cheng, L., Kotoulas, S., Ward, T.E., et al.: Robust and efficient large-large table
outer joins on distributed infrastructures. In: Euro-Par. (2014) 258–369

5. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., et al.: A comparison of join algo-
rithms for log processing in MapReduce. In: SIGMOD. (2010) 975–986

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Communications of the ACM 51(1) (2008) 107–113

7. Gates, A.F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S.M., Ol-
ston, C., Reed, B., Srinivasan, S., Srivastava, U.: Building a high-level dataflow
system on top of Map-Reduce: the Pig experience. PVLDB 2(2) (2009) 1414–1425

8. Kotoulas, S., Urbani, J., et al.: Robust runtime optimization and skew-resistant
execution of analytical SPARQL queries on PIG. In: ISWC. (2012) 247–262

9. Xu, Y., Kostamaa, P., Zhou, X., Chen, L.: Handling data skew in parallel joins in
shared-nothing systems. In: SIGMOD. (2008) 1043–1052

10. Cheng, L., Kotoulas, S., Ward, T.E., Theodoropoulos, G.: Robust and skew-
resistant parallel joins in shared-nothing systems. In: CIKM. (2014) 1399–1408

11. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join
algorithms for multi-core CPUs. In: SIGMOD. (2011) 37–48

12. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: SIGMOD. (2008) 1099–1110

13. Jiang, D., Tung, A., Chen, G.: Map-Join-Reduce: Toward scalable and efficient
data analysis on large clusters. TKDE 23(9) (2011) 1299–1311

14. Liao, W., Wang, T., Li, H., et al.: An adaptive skew insensitive join algorithm for
large scale data analytics. In: Asia-Pacific Web Conf. (2014) 494–502

15. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyck-
off, P., Murthy, R.: Hive: a warehousing solution over a Map-Reduce framework.
PVLDB 2(2) (2009) 1626–1629

16. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.C., Hueske, F., Heise, A., Kao,
O., Leich, M., Leser, U., Markl, V., et al.: The stratosphere platform for big data
analytics. The VLDB Journal 23(6) (2014) 939–964

17. Bruno, N., Kwon, Y., Wu, M.C.: Advanced join strategies for large-scale distributed
computation. PVLDB 7(13) (2014)

18. Bellamkonda, S., Li, H.G., Jagtap, U., Zhu, Y., Liang, V., Cruanes, T.: Adaptive
and big data scale parallel execution in Oracle. PVLDB 6(11) (2013) 1102–1113

19. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: NSDI. (2012) 15–28

