

Fakultät Informatik, Institut für Theoretische Informatik, Lehrstuhl für Automatentheorie

Formale Systeme

6. Übungsblatt

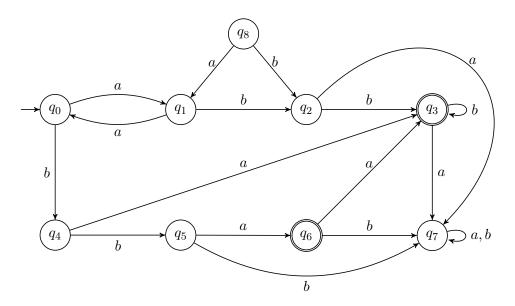
Wintersemester 2023/24

Aufgabe zur Selbstkontrolle

- S11) Sei $\Sigma_1 = \{a, b\}$ und $\Sigma_2 = \{a, b, c\}$. Geben Sie für jede der folgenden Sprachen L_i einen regulären Ausdruck α_i mit $L_i = L(\alpha_i)$ an. Begründen Sie die von Ihnen gewählten regulären Ausdrücke α_i .
 - (a) $L_1 = \{ w \in \Sigma_1^* \mid w \text{ beginnt mit } a \text{ und } |w|_b \text{ ist gerade} \}$
 - (b) $L_2 = \{w \in \Sigma_2^* \mid w \text{ beginnt mit } a \text{ und } |w|_b \text{ ist gerade} \}$
 - (c) $L_3 = \{w \in \Sigma_1^* \mid \text{es gibt kein } u, v \in \Sigma_1^* \text{ mit } w = uaav\}$
 - (d) $L_4 = \{w \in \Sigma_2^* \mid \text{es gibt kein } u, v \in \Sigma_2^* \text{ mit } w = uaav\}$
- S12) Wiederholen Sie die Begriffe Potenzmengenkonstruktion, erreichbarer Zustand, äquivalente Zustände, Quotientenautomat, reduzierter Automat und Nerode-Rechtskongruenz.

Aufgabe 1

Gegeben ist der DFA $\mathcal{M} = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8\}, \{a, b\}, \delta, q_0, \{q_3, q_6\})$ mit δ :



Geben Sie den zu \mathcal{M} reduzierten DFA \mathcal{M}_r an.

Aufgabe 2

Beweisen oder widerlegen Sie unter Verwendung von Resultaten aus der Vorlesung folgende Aussagen.

- a) Für die Grammatik $G = (\{S, X, Y, Z\}, \{a, b\}, \{S \rightarrow Y, X \rightarrow b, Y \rightarrow aYYb, aY \rightarrow aZ, ZY \rightarrow ZX, Z \rightarrow a\}, S)$ gilt: $abab \in L(G)$.
- b) Kann eine Sprache L von einem DFA erkannt werden, so gibt es auch einen ε -NFA \mathcal{M} mit $L(\mathcal{M}) = L$.
- c) Für jeden NFA \mathcal{M} mit Wortübergängen gibt es einen äquivalenten NFA.
- d) Es gibt eine reguläre Sprache, für welche die Anzahl der Äquivalenzklassen der zugehörigen Nerode-Rechtskongruenz endlich ist.
- e) Wenn es für eine Sprache L ein $n \in \mathbb{N}$ gibt, so dass die *Nerode*-Rechtskongruenz \simeq_L höchstens n Äquivalenzklassen hat, so kann L von einem DFA erkannt werden.
- f) Für jede Sprache L gilt: $L=\bigcup_{u\in L} [u]_{\simeq_L}$, d. h. L ist die Vereinigung von \simeq_L -Klassen.

Aufgabe 3

Gegeben ist das Alphabet $\Sigma=\{a,b\}$. Welche der folgenden Sprachen L_j über Σ mit $1\leq j\leq 3$ ist regulär? Beweisen Sie Ihre jeweilige Antwort.

a)
$$L_1 = \{a^i b^i \mid i \ge 1\}$$

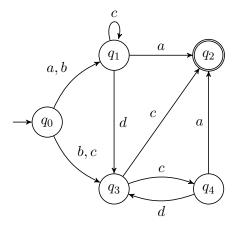
b)
$$L_2 = \{xyz \mid x, y \in \Sigma^*, |x| \ge 1, |y| \ge 1, z = sp(x)\}$$

 $Hinweis: sp(x)$ bildet das Spiegelwort zu x .

c)
$$L_3 = \{a^{i^2} \mid i \ge 1\}$$

Aufgabe 4

Gegeben ist der NFA $\mathcal{M} = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b, c, d\}, \delta, \{q_0\}, \{q_2\})$ mit δ :



Geben Sie für jedes $z \in \{bc, adc, cda, bcdc, acdc\}$ alle Zerlegungen z = uvw mit $u, w \in \Sigma^*$, $v \in \Sigma^+$ an, sodass für alle $k \ge 0$ gilt: $uv^k w \in L(\mathcal{M})$. Begründen Sie Ihre Antworten.