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Finite Hypothesis Classes

* The simplest type of restriction on a class
IS Imposing an upper bound on its size
(that Is, the number of predictors h in H).

* We will show that if H Is a finite class then
ERM,, will not overfit, provided it Is based
on a sufficiently large training sample (this
size requirement will depend on the size of
H).
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Finite Hypothesis Classes

* Limiting the learner to prediction rules

within some finite hypothesis class may be
considered as a reasonably mild
restriction.

* For example, H can be the set of all
predictors that can be implemented by a

Python program written in at most 10° bits
of code.
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Finite Hypothesis Classes

* Another example of H Is the class of axis
aligned rectangles for the papaya learning
problem, with discretized representation.
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Performance Analysis of ERM,,

* His a finite class.

« For atraining sample, S, labeled according to
some f: X — Y, let hg denote a result of applying
ERM, to S, namely,

he € argmin Lg(h)
heH
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Performance Analysis of ERM,,

The Realizability Assumption:
There exists h* € H such that L j, 5(h*) = 0.

Note that this assumption implies that with
probability 1 over random samples, S, where
the instances of S are sampled according to
D and are labeled by f,

we have Lg(h*) = 0.
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Performance Analysis of ERM,,

« Any guarantee on the error with respect to the
underlying distribution D, for an algorithm that has

access only to a sample S, should depend on the
relationship between D and S.

 The common assumption in statistical machine
learning Is that the training sample S is generated
by sampling points from the distribution D
of each other.

* Expressed formally:
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The examples in the training set are

and distributed (i..d.) according to the
distribution D. That Is, every x; In S Is freshly
sampled according to D and then labeled
according to the labeling function, f. We denote
this assumption by S ~ D™ where m Is the size of
S, and D™ denotes the probabllity over m-tuples
iInduced by applying D to pick each element of the
tuple independently of the other members of the
tuple.
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* Intuitively, the training set S Is a window
through which the learner gets
about the distribution D over
the world and the labeling function, f. The
larger the sample gets, the more likely it Is
to reflect more accurately the distribution
and labeling used to generate It.
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(1-6)

« Since the training set S is picked by a random process, it
IS not realistic to expect that with full certainty S will suffice
to direct the learner toward a good predictor (from the
point of view of D), as there Is always some probability that
S happens to be very nonrepresentative of D.

 In the papaya tasting example, there is always some
chance that all the papayas we have happened to taste
were not tasty, in spite of the fact that, say, 75% of the
papayas in our island are tasty. In such a case, ERM,,(S)
may be the constant function that labels every papaya as
not tasty (and has 75% error on the true distribution of
papayas in the island). Therefore ...

N g v
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(1-6)

« Therefore, we will address the probability to sample a
training set for which L n(hs) Is not too large. Usually, we
denote the probabillity of getting a non-representative
sample by ¢, and call (1 - 9) the of
our prediction.
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« Furthermore, since we cannot guarantee perfect
label prediction, we need another parameter for
the quality of prediction, the accuracy parameter,
commonly denoted by <.

* We interpret the event L 5(hg) > € as a failure
of the learner, while If L ; 5(hs) < € we view the
output of the algorithm as an approximately
correct predictor.

 Therefore ...
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« Therefore, we are interested in upper bounding the prob-
ability to sample m-tuple of instances that will lead to failure
of the learner. The labeling function f: X — Y Is fixed.

* Let S|, = (X4, .., X,,) be the instances of the training set. We
would like to upper bound

D™({S|x: Lp,py(hs) > €})
* Let Hg be the set of
{h € H: L(Df)(h) > E}
and M be the set of
= {S|x:3h € Hp, Ls(h) = 0}
M Is misleadlng, because VS|, € M, there Is a hypo-
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Upper Bounding the Probability of
Learner’s Failure

- We want to bound the probability of the event L, ¢ (hs) >
E.

 Since the realizability assumption implies that L¢(hs) = 0, it
follows that the event L (hs) > € can only happen if for
some h € Hz we have L¢(h) = 0. In other words, this event
will only happen if our sample is in the set of misleading
samples, M. So, formally, we have shown that

{Slx: L(D,f)(hS) >E} c M.
* Rewriting M as
M = Upepy (Sl Ls(h) = 0}

Slides 03



Upper Bounding the Probability of
Learner’s Failure

we have

D™ ({S|x: Lp,fy(hs) >€}) < D™(M) = D™(Upenp{S|x: Ls(h) = 0})

Applying the union bound property from the Probability Theory to

the right-hand side of the preceding equation yields
Dm({Slx:L(D,f) (hs) >E}) = ZhEHBDm({Slx: Ls(h) = 0}) (%)

Next, let us bound each summand of the right-hand side of the

preceding inequality. Fix some “bad” hypothesis h € Hg. The event

Ls(h) = 0 is equivalent to the event Vi, h(x;) = f(x;). Since the
examples in the training set are sampled 1.i.d. we get

D™({S|; : Ls(h) = 0}) = D™ ({S|; : Vi, h(z;) = f(x:)})

— H D({z; : h(z;) = f(z;)}).
i=1
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Upper Bounding the Probability of
Learner’s Failure

* For each individual sampling of an element of the
training set we have

D({xi:h(x) = f(x)}) =1=Lpp(h) <1 —¢
where the last inequality follows from the fact that h € Hy
such that L £)(h) > €. Combining the previous equation
with Equation (**) and using the inequality 1 —e < e™¢

we obtain that for every h € Hyp,
D({S|,:Lg(h) =0}) < (1—¢e)"* < e ™,
Combining this inequality with Inequality (*) we conclude
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A graphical illustration of the union bound result

Each point in the large circle represents a
possible m-tuple of instances. Each colored
oval represents the set of misleading m-tuple
of instances for some predictor h € Hp.
The ERM can potentially overfit whenever it
gets a misleading training set S. That Is, for
some h € Hy we have Lg(h) = 0. The result of the union bound
guarantees that for each individual bad hypothesis, at most (1-
e)M-fraction of the training sets would be misleading. In particular, the
larger m is, the smaller each of these colored ovals becomes. The
union bound formalizes the fact that the area representing the training
sets in M Is at most the sum of the areas of the colored ovals.
Therefore, it is bounded by [Hg| o (the maximum size of a colored oval).
Any sample S outside the colored ovals cannot cause the ERM to
overfit.
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So we have derived the following theorem about learnabillity.

Theorem 1

Let H be a finite hypothesis class. Let 6 € (0,1) and € > 0
and let m be an integer that satisfies

m > MOHI/5)

Then, for any labeling function, f, and for any distribution,

D, for which the realizability assumption holds (that is, for
some h € H,Lp )(h) = 0), with probability of at least 1 — 6
over the choice of an i.i.d. sample S of size m, we have that
for every ERM hypothesis, hg, it holds that

L(D,f) (hS) < €.
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 Theorem 1 tells us that for a sufficiently
large sample m, the ERM,, rule with a
finite hypothesis class H will be probably
(with confidence 1 — §) approximately (up
to an error of €) correct.
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