

Foundations for Machine Learning

L. Y. Stefanus

TU Dresden, June-July 2018

Reference

- Shai Shalev-Shwartz and Shai Ben-David.
**UNDERSTANDING MACHINE
LEARNING: From Theory to Algorithms.**
Cambridge University Press, 2014.

Finite Hypothesis Classes

- The simplest type of restriction on a class is imposing an upper bound on its size (that is, the number of predictors h in H).
- We will show that if H is a finite class then ERM_H will not overfit, provided it is based on a sufficiently large training sample (this size requirement will depend on the size of H).

Finite Hypothesis Classes

- Limiting the learner to prediction rules within some finite hypothesis class may be considered as a reasonably mild restriction.
- For example, H can be the set of all predictors that can be implemented by a **Python** program written in at most 10^9 bits of code.

Finite Hypothesis Classes

- Another example of H is the class of axis aligned rectangles for the papaya learning problem, with discretized representation.

Performance Analysis of ERM_H

- H is a finite class.
- For a training sample, S , labeled according to some $f : X \rightarrow Y$, let h_S denote a result of applying ERM_H to S , namely,

$$h_S \in \operatorname{argmin}_{h \in H} L_S(h)$$

Performance Analysis of ERM_H

The Realizability Assumption:

There exists $h^* \in H$ such that $L_{(D,f)}(h^*) = 0$.

Note that this assumption implies that with probability 1 over random samples, S , where the instances of S are sampled according to D and are labeled by f ,

we have $L_S(h^*) = 0$.

Performance Analysis of ERM_H

- Any guarantee on the error with respect to the underlying distribution D , for an algorithm that has access only to a sample S , should depend on the relationship between D and S .
- The common assumption in statistical machine learning is that the training sample S is generated by sampling points from the distribution D **independently** of each other.
- Expressed formally:

the i.i.d assumption

The examples in the training set are **independently** and **identically** distributed (i.i.d.) according to the distribution D . That is, every x_i in S is freshly sampled according to D and then labeled according to the labeling function, f . We denote this assumption by $S \sim D^m$ where m is the size of S , and D^m denotes the probability over m -tuples induced by applying D to pick each element of the tuple independently of the other members of the tuple.

- Intuitively, the training set S is a window through which the learner gets **partial information** about the distribution D over the world and the labeling function, f . The larger the sample gets, the more likely it is to reflect more accurately the distribution and labeling used to generate it.

Confidence Parameter ($1-\delta$)

- Since the training set S is picked by a random process, it is not realistic to expect that with full certainty S will suffice to direct the learner toward a good predictor (from the point of view of D), as there is always some probability that S happens to be very nonrepresentative of D .
- In the papaya tasting example, there is always some chance that all the papayas we have happened to taste were **not tasty**, in spite of the fact that, say, 75% of the papayas in our island are tasty. In such a case, $\text{ERM}_H(S)$ may be the constant function that labels every papaya as **not tasty** (and has 75% error on the true distribution of papayas in the island). Therefore ...

Confidence Parameter ($1-\delta$)

- Therefore, we will address the **probability** to sample a training set for which $L_{(D,f)}(h_S)$ is not too large. Usually, we denote the probability of getting a non-representative sample by δ , and call $(1 - \delta)$ the **confidence parameter** of our prediction.

Accuracy Parameter ϵ

- Furthermore, since we cannot guarantee perfect label prediction, we need another parameter for the quality of prediction, the **accuracy parameter**, commonly denoted by ϵ .
- We interpret the event $L_{(D,f)}(h_S) > \epsilon$ as a **failure** of the learner, while if $L_{(D,f)}(h_S) \leq \epsilon$ we view the output of the algorithm as an **approximately correct predictor**.
- Therefore ...

Accuracy Parameter ϵ

- Therefore, we are interested in upper bounding the probability to sample m -tuple of instances that will lead to failure of the learner. The labeling function $f : X \rightarrow Y$ is fixed.
- Let $S|_x = (x_1, \dots, x_m)$ be the instances of the training set. We would like to upper bound

$$D^m(\{S|_x : L_{(D,f)}(h_S) > \epsilon\})$$

- Let H_B be the set of bad hypotheses:

$$H_B = \{h \in H : L_{(D,f)}(h) > \epsilon\}$$

and M be the set of misleading samples:

$$M = \{S|_x : \exists h \in H_B, L_S(h) = 0\}$$

- M is misleading, because $\forall S|_x \in M$, there is a bad hypothesis that looks like a “good” hypothesis on $S|_x$.

Upper Bounding the Probability of Learner's Failure

- We want to bound the probability of the event $L_{(D,f)}(h_S) > \epsilon$.
- Since the realizability assumption implies that $L_S(h_S) = 0$, it follows that the event $L_{(D,f)}(h_S) > \epsilon$ can only happen if for some $h \in H_B$ we have $L_S(h) = 0$. In other words, this event will only happen if our sample is in the set of misleading samples, M . So, formally, we have shown that

$$\{S|_x : L_{(D,f)}(h_S) > \epsilon\} \subseteq M.$$

- Rewriting M as

$$M = \bigcup_{h \in H_B} \{S|_x : L_S(h) = 0\}$$

we have ...

Upper Bounding the Probability of Learner's Failure

we have

$$D^m(\{S|_x : L_{(D,f)}(h_S) > \epsilon\}) \leq D^m(M) = D^m(\bigcup_{h \in H_B} \{S|_x : L_S(h) = 0\})$$

- Applying the union bound property from the Probability Theory to the right-hand side of the preceding equation yields

$$D^m(\{S|_x : L_{(D,f)}(h_S) > \epsilon\}) \leq \sum_{h \in H_B} D^m(\{S|_x : L_S(h) = 0\}) \quad (*)$$

- Next, let us bound each summand of the right-hand side of the preceding inequality. Fix some “bad” hypothesis $h \in H_B$. The event $L_S(h) = 0$ is equivalent to the event $\forall i, h(x_i) = f(x_i)$. Since the examples in the training set are sampled i.i.d. we get

$$\begin{aligned} \mathcal{D}^m(\{S|_x : L_S(h) = 0\}) &= \mathcal{D}^m(\{S|_x : \forall i, h(x_i) = f(x_i)\}) \\ &= \prod_{i=1}^m \mathcal{D}(\{x_i : h(x_i) = f(x_i)\}). \end{aligned} \quad (**) \quad \text{[Note: The original image shows a dark blue gradient background with a white box containing the equation, and the page number 16 is in the bottom right corner. The text '(**)' is placed to the right of the box.]}$$

Upper Bounding the Probability of Learner's Failure

- For each individual sampling of an element of the training set we have

$$D(\{x_i: h(x_i) = f(x_i)\}) = 1 - L_{(D,f)}(h) \leq 1 - \epsilon,$$

where the last inequality follows from the fact that $h \in H_B$ such that $L_{(D,f)}(h) > \epsilon$. Combining the previous equation with Equation (**) and using the inequality $1 - \epsilon \leq e^{-\epsilon}$ we obtain that for every $h \in H_B$,

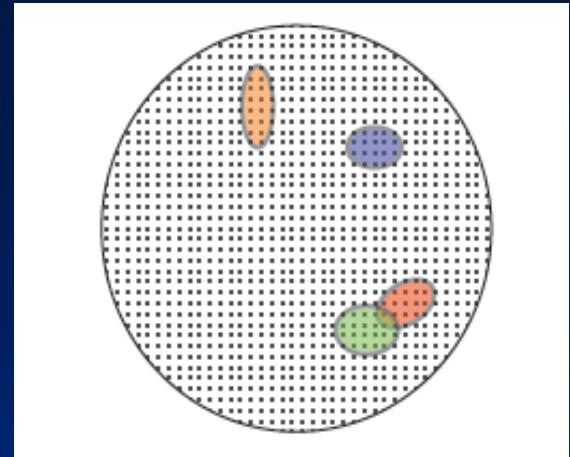
$$D^m(\{S|_x: L_S(h) = 0\}) \leq (1 - \epsilon)^m \leq e^{-\epsilon m}.$$

Combining this inequality with Inequality (*) we conclude that $D^m(\{S|_x: L_{(D,f)}(h_S) > \epsilon\}) \leq |H_B|e^{-\epsilon m} \leq |H|e^{-\epsilon m}$.

A graphical illustration of the union bound result

Each point in the large circle represents a possible m -tuple of instances. Each colored oval represents the set of misleading m -tuple of instances for some **bad** predictor $h \in H_B$.

The ERM can potentially overfit whenever it gets a misleading training set S . That is, for some $h \in H_B$ we have $L_S(h) = 0$. The result of the union bound guarantees that for each individual bad hypothesis, at most $(1 - \epsilon)^m$ -fraction of the training sets would be misleading. In particular, the larger m is, the smaller each of these colored ovals becomes. The union bound formalizes the fact that the area representing the training sets in M is at most the sum of the areas of the colored ovals. Therefore, it is bounded by $|H_B| \cdot$ (the maximum size of a colored oval). Any sample S outside the colored ovals cannot cause the ERM to overfit.



So we have derived the following theorem about learnability.

Theorem 1

Let H be a finite hypothesis class. Let $\delta \in (0,1)$ and $\epsilon > 0$ and let m be an integer that satisfies

$$m \geq \frac{\ln(|H|/\delta)}{\epsilon}.$$

Then, for any labeling function, f , and for any distribution, D , for which the realizability assumption holds (that is, for some $h \in H, L_{(D,f)}(h) = 0$), with probability of at least $1 - \delta$ over the choice of an i.i.d. sample S of size m , we have that for every ERM hypothesis, h_S , it holds that

$$L_{(D,f)}(h_S) \leq \epsilon.$$

- Theorem 1 tells us that for a sufficiently large sample m , the ERM_H rule with a finite hypothesis class H will be probably (with confidence $1 - \delta$) approximately (up to an error of ϵ) correct.