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Finite Hypothesis Classes

• The simplest type of restriction on a class 

is imposing an upper bound on its size 

(that is, the number of predictors h in H). 

• We will show that if H is a finite class then 

ERMH will not overfit, provided it is based 

on a sufficiently large training sample (this 

size requirement will depend on the size of 

H).
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Finite Hypothesis Classes

• Limiting the learner to prediction rules 

within some finite hypothesis class may be 

considered as a reasonably mild 

restriction. 

• For example, H can be the set of all 

predictors that can be implemented by a 

Python program written in at most 109 bits 

of code. 
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Finite Hypothesis Classes

• Another example of H is the class of axis 

aligned rectangles for the papaya learning 

problem, with discretized representation.
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Performance Analysis of ERMH

• H is a finite class. 

• For a training sample, S, labeled according to 

some f : X → Y, let hS denote a result of applying 

ERMH to S, namely,

ℎ𝑆 ∈ argmin
ℎ∈𝐻

𝐿𝑆(ℎ)
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Performance Analysis of ERMH

The Realizability Assumption: 

There exists h*  H such that L(D,f)(h*) = 0. 

Note that this assumption implies that with 

probability 1 over random samples, S, where 

the instances of S are sampled according to 

D and are labeled by f, 

we have LS(h*) = 0.

Slides 03
7



Performance Analysis of ERMH

• Any guarantee on the error with respect to the 

underlying distribution D, for an algorithm that has 

access only to a sample S, should depend on the 

relationship between D and S. 

• The common assumption in statistical machine 

learning is that the training sample S is generated 

by sampling points from the distribution D

independently of each other. 

• Expressed formally:
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the i.i.d assumption

The examples in the training set are independently

and identically distributed (i.i.d.) according to the 

distribution D. That is, every xi in S is freshly 

sampled according to D and then labeled 

according to the labeling function, f. We denote 

this assumption by S  Dm where m is the size of 

S, and Dm denotes the probability over m-tuples 

induced by applying D to pick each element of the 

tuple independently of the other members of the 

tuple.
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• Intuitively, the training set S is a window 

through which the learner gets partial 

information about the distribution D over 

the world and the labeling function, f. The 

larger the sample gets, the more likely it is 

to reflect more accurately the distribution 

and labeling used to generate it.
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Confidence Parameter (1-)

• Since the training set S is picked by a random process, it 

is not realistic to expect that with full certainty S will suffice 

to direct the learner toward a good predictor (from the 

point of view of D), as there is always some probability that 

S happens to be very nonrepresentative of D.

• In the papaya tasting example, there is always some 

chance that all the papayas we have happened to taste 

were not tasty, in spite of the fact that, say, 75% of the 

papayas in our island are tasty. In such a case, ERMH(S)

may be the constant function that labels every papaya as 

not tasty (and has 75% error on the true distribution of 

papayas in the island). Therefore …
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Confidence Parameter (1-)

• Therefore, we will address the probability to sample a 

training set for which L(D,f)(hS) is not too large. Usually, we 

denote the probability of getting a non-representative 

sample by , and call (1 - ) the confidence parameter of 

our prediction.
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Accuracy Parameter 

• Furthermore, since we cannot guarantee perfect 

label prediction, we need another parameter for 

the quality of prediction, the accuracy parameter, 

commonly denoted by .

• We interpret the event L(D,f)(hS) >  as a failure

of the learner, while if L(D,f)(hS)   we view the 

output of the algorithm as an approximately 

correct predictor. 

• Therefore …
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Accuracy Parameter 
• Therefore, we are interested in upper bounding the prob-

ability to sample m-tuple of instances that will lead to failure

of the learner. The labeling function f : X → Y is fixed.

• Let S|x = (x1, …, xm) be the instances of the training set. We 

would like to upper bound

𝐷𝑚( 𝑆|𝑥: 𝐿 𝐷,𝑓 ℎ𝑆 > 𝜖 )

• Let HB be the set of bad hypotheses:

𝐻𝐵 = ℎ ∈ 𝐻: 𝐿 𝐷,𝑓 ℎ > 𝜖

and M be the set of misleading samples: 

𝑀 = 𝑆|𝑥: ∃ℎ ∈ 𝐻𝐵 , 𝐿𝑆 ℎ = 0

• M is misleading, because ∀𝑆|𝑥 ∈ 𝑀, there is a bad hypo-

thesis that looks like a “good” hypothesis on 𝑆|𝑥.
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Upper Bounding the Probability of 

Learner’s Failure

• We want to bound the probability of the event 𝐿 𝐷,𝑓 ℎ𝑆 >

∈.

• Since the realizability assumption implies that 𝐿𝑆 ℎ𝑆 = 0, it 

follows that the event 𝐿 𝐷,𝑓 ℎ𝑆 > ∈ can only happen if for 

some ℎ ∈ 𝐻𝐵 we have 𝐿𝑆 ℎ = 0. In other words, this event 

will only happen if our sample is in the set of misleading 

samples, M. So, formally, we have shown that

𝑆|𝑥: 𝐿 𝐷,𝑓 ℎ𝑆 >∈ ⊆ 𝑀.

• Rewriting M as

𝑀 = ⋃ℎ∈𝐻𝐵
𝑆|𝑥: 𝐿𝑆 ℎ = 0

we have … 
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Upper Bounding the Probability of 

Learner’s Failure

we have

𝐷𝑚 𝑆|𝑥: 𝐿 𝐷,𝑓 ℎ𝑆 >∈ ≤ 𝐷𝑚 𝑀 = 𝐷𝑚 ⋃ℎ∈𝐻𝐵
𝑆|𝑥: 𝐿𝑆 ℎ = 0

• Applying the union bound property from the Probability Theory to 

the right-hand side of the preceding equation yields

𝐷𝑚 𝑆|𝑥: 𝐿 𝐷,𝑓 ℎ𝑆 >∈ ≤ ∑ℎ∈𝐻𝐵
𝐷𝑚( 𝑆|𝑥: 𝐿𝑆 ℎ = 0 ) (*)

• Next, let us bound each summand of the right-hand side of the 

preceding inequality. Fix some “bad” hypothesis ℎ ∈ 𝐻𝐵 . The event 

𝐿𝑆 ℎ = 0 is equivalent to the event ∀𝑖, ℎ(𝑥𝑖) = 𝑓 𝑥𝑖 . Since the 

examples in the training set are sampled i.i.d. we get

(**)

Slides 03
16



Upper Bounding the Probability of 

Learner’s Failure

• For each individual sampling of an element of the 

training set we have

𝐷({𝑥𝑖: ℎ(𝑥𝑖) = 𝑓 𝑥𝑖 }) = 1 − 𝐿 𝐷,𝑓 ℎ ≤ 1 − 𝜖,

where the last inequality follows from the fact that ℎ ∈ 𝐻𝐵

such that 𝐿 𝐷,𝑓 ℎ > 𝜖. Combining the previous equation  

with Equation (**) and using the inequality 1 − 𝜖 ≤ 𝑒−𝜖

we obtain that for every ℎ ∈ 𝐻𝐵,

𝐷𝑚 𝑆|𝑥: 𝐿𝑆 ℎ = 0 ≤ 1 − 𝜖 𝑚 ≤ 𝑒−𝜖𝑚.

Combining this inequality with Inequality (*) we conclude    

that 𝐷𝑚 𝑆|𝑥: 𝐿 𝐷,𝑓 ℎ𝑆 > 𝜖 ≤ 𝐻𝐵 𝑒−𝜖𝑚 ≤ 𝐻 𝑒−𝜖𝑚.
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Each point in the large circle represents a 

possible m-tuple of instances. Each colored 

oval represents the set of misleading m-tuple 

of instances for some bad predictor ℎ ∈ 𝐻𝐵. 

The ERM can potentially overfit whenever it 

gets a misleading training set S. That is, for 

some ℎ ∈ 𝐻𝐵 we have LS(h) = 0. The result of the union bound 

guarantees that for each individual bad hypothesis, at most           (1-

)m-fraction of the training sets would be misleading. In particular, the 

larger m is, the smaller each of these colored ovals becomes. The 

union bound formalizes the fact that the area representing the training 

sets in M is at most the sum of the areas of the colored ovals. 

Therefore, it is bounded by |HB|  (the maximum size of a colored oval). 

Any sample S outside the colored ovals cannot cause the ERM to 

overfit.
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A graphical illustration of the union bound result



Theorem 1

Let H be a finite hypothesis class. Let    (0,1) and 𝜖 > 0
and let m be an integer that satisfies

𝑚 ≥ ln(|H|/δ )
𝜖

.

Then, for any labeling function, f, and for any distribution, 

D, for which the realizability assumption holds (that is, for 

some ℎ ∈ 𝐻, 𝐿 𝐷,𝑓 ℎ = 0 ), with probability of at least 1 − 𝛿

over the choice of an i.i.d. sample S of size m, we have that 

for every ERM hypothesis, ℎ𝑆, it holds that

𝐿 𝐷,𝑓 ℎ𝑆 ≤ 𝜖.
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So we have derived the following theorem about learnability.



• Theorem 1 tells us that for a sufficiently 

large sample m, the ERMH rule with a 

finite hypothesis class H will be probably

(with confidence 1 − 𝛿) approximately (up 

to an error of 𝜖) correct. 
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