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Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.
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Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
> A Datalog rule H « B is safe if all variables in H also occur in B.

> A Datalog program P is safe if all rules r € P are safe.

Solution.
> Consider a (possibly unsafe) Datalog program P.
> We define a new Datalog program P’:
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Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)

> A Datalog rule H « Biis safe if all variables in H also occur in B.
> A Datalog program P is safe if all rules r € P are safe.

Solution.
> Consider a (possibly unsafe) Datalog program P.

> We define a new Datalog program P’:
> we add a fresh predicate Top,

> for every ¢-ary EDB predicate r occurring in P and all 1 < i < ¢, we add a new rule Top(x;) « r(x1,...,X¢),
> for every constant ¢ occurring in P, we add a new fact Top(c),
> for every rule (H « B)[xi,...,Xs] € P, we add the rule H « B A Top(x1) A --- A Top(x¢).

> Then for every fact ¢ over the signature of P, we have that P’ entails ¢ over an instance D iff P entails ¢ over D.
> The size of P’ is polynomial in the size of P, and P’ is safe.
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.

. The graph contains a node with two outgoing edges.

. The graph is 3-colourable.

. The graph is not connected (*).

. The graph does not contain a node with two outgoing edges.
. The graph is a chain.

oA WN
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1.

The database contains an even number of elements.

2. The graph contains a node with two outgoing edges.

3. The graph is 3-colourable.

4.

5. The graph does not contain a node with two outgoing edges.
6.

The graph is not connected (*).

The graph is a chain.

Solution.

1.

Odd(x) « first(x)

Odd(y) « Even(x),succ(x,y)

Even(y) « Odd(x),succ(x, y)
EvenParity() < Even(x), last(x)
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.

2. The graph contains a node with two outgoing edges.

3. The graph is 3-colourable.

4. The graph is not connected (*).

5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.
2.
<(x,y) « succ(x,y)
<(x,2) « <(x,y),succ(y, z)
<>(x. ), <>y, x) « <(x.y)
)

TwoOutgoingEdges() « edge(x, y), edge(x, z),<>(y, z)
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.

2. The graph contains a node with two outgoing edges.

3. The graph is 3-colourable.

4. The graph is not connected (*).

5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.
2.
<(x,y) « succ(x,y)
<(x,2) « <(x,y),succ(y, z)
<>(%.y),<>(y.x) < <(x.y)
TwoOutgoingEdges() « edge(x, y), edge(x, z),<>(y, z)

3. This is (most likely) not expressible (unless P = NP), since 3-colourability is NP-complete and Datalog has P
data complexity.
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Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.

2. The graph contains a node with two outgoing edges.

3. The graph is 3-colourable.

4. The graph is not connected (*).

5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

4. D(x,y.k) x and y are not reachable via a path of length at most k
N(x.y.z k) thereis no path of length k + 1 from x to z via y

D(x,y.,€),D(y, x,€) « —edge(x, y).first(£), <>(x, y)
N(x,y,z, k) « first(y),D(x, y, k) N(x, y, z, k) « first(y),D(y, z, k)
N(x,y’,z, k) « succ(y,y’),N(x,y, z,k),D(x,y’, k) N(x,y’, z, k) « succ(y,y'),N(x,y,z.k),D(y’, z, k)
D(x, z, k") « succ(k, k’),D(x, z, k), last(y),N(x, y, z, k) Ans() « D(x, y, k), last(k)
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1.

The database contains an even number of elements.

2. The graph contains a node with two outgoing edges.

3. The graph is 3-colourable.

4.

5. The graph does not contain a node with two outgoing edges.
6.

The graph is not connected (*).

The graph is a chain.

Solution.

5.

oneEdge(x, y) « first(y),edge(x, y) noEdge(x, y) « first(y), —edge(x, y)
oneEdge(x, z) « noEdge(x, y),succ(y, z), edge(x, z) noEdge(x, z) « noEdge(x, y), succ(y, z), ~edge(x, z)
oneEdge(x, z) « oneEdge(x, y),succ(y, z), ~edge(x, z)
r(x) « last(y), noEdge(x, y) s(x) « first(x),r(x)
r(x) « last(y),oneEdge(x, y) s(y) « succ(x,y),s(x),r(y)
NoTwoOutEdges() « s(x), last(x)
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Exercise 2

Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.
. The database contains an even number of elements.

. The graph contains a node with two outgoing edges.

. The graph is 3-colourable.

. The graph is not connected (*).

. The graph does not contain a node with two outgoing edges.

. The graph is a chain.

Solution.

oS ouhwN =

Chain() « Connected(), NoTwoInEdges(), NoTwoOutEdges(), NoCycle()
Conn(x), Reachable(x) « first(x) Reachable(x) « Reachable(x), succ(x, y), Conn(y)
Conn(y) « Conn(x), edge(x, y) Conn(y) « Conn(x), edge(y, x)
Connected() « last(x), Reachable(x)
NolnEdge(x, y) « first(x), —edge(x, y)
NoOutEdge(x, y) « first(x), —edge(y, x)
NolnEdge(x’, y) « succ(x, x"), NoInEdge(x, y), ~edge(x’, y)
NoOutEdge(x’, y) « succ(x, x"), NoOutEdge(x, y), ~edge(y, x")
NoCycle() « last(x), NolnEdge(x, y), NoOutEdge(x, z)
with NoTwoOutEdges() defined as in 5., and NoTwolnEdges() defined analogously.
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Exercise 3

Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.

It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
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> Let P be a propositional Horn logic program.
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Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.

It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.

Solution.

> Let P be a propositional Horn logic program.

> Then, let P’ be the proposition Horn logic program such that, for all formulas Body — H € P,

> if Body = B consists of a single atom, thenadd BA B —» He P,
> if Body = By A...AB,withn>3,thenadd Bi AB, > Fo, Fp ABs = F3,...,Fp1 ABy » H € P’ where Fp,..., F,_q are
fresh propositional variables.
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Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.

> Let P be a propositional Horn logic program.

> Then, let P’ be the proposition Horn logic program such that, for all formulas Body — H € P,

> if Body = B consists of a single atom, thenadd BA B —» He P,

> if Body = By A...AB,withn>3,thenadd Bi AB, > Fo, Fp ABs = F3,...,Fp1 ABy » H € P’ where Fp,..., F,_q are
fresh propositional variables.

> otherwise, add Body — H e P’.
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Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.

It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
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> if Body = By A...AB,withn>3,thenadd Bi AB, > Fo, Fp ABs = F3,...,Fp1 ABy » H € P’ where Fp,..., F,_q are
fresh propositional variables.

> otherwise, add Body — H e P’.

> For all propositional variables V occurring in P, we have that P = Vif and only if P’ = V.

28/53



Exercise 3

Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.
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Solution.

> Let P be a propositional Horn logic program.

> Then, let P’ be the proposition Horn logic program such that, for all formulas Body — H € P,

> if Body = B consists of a single atom, thenadd BA B —» He P,

> if Body = By A...AB,withn>3,thenadd Bi AB, > Fo, Fp ABs = F3,...,Fp1 ABy » H € P’ where Fp,..., F,_q are
fresh propositional variables.

> otherwise, add Body — H e P’.

> For all propositional variables V occurring in P, we have that P = Vif and only if P’ = V.
> The program P’ can be computed with a LOGSPACE transducer:
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Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
> Let P be a propositional Horn logic program.
> Then, let P’ be the proposition Horn logic program such that, for all formulas Body — H € P,
> if Body = B consists of a single atom, then add BA B — H € P,
> if Body = By A...AB,withn>3,thenadd Bi AB, > Fo, Fp ABs = F3,...,Fp1 ABy » H € P’ where Fp,..., F,_q are
fresh propositional variables.
> otherwise, add Body — H e P’.
> For all propositional variables V occurring in P, we have that P = Vif and only if P’ = V.
> The program P’ can be computed with a LOGSPACE transducer:
> count number of body atoms to generate these rules
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Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
> Let P be a propositional Horn logic program.
> Then, let P’ be the proposition Horn logic program such that, for all formulas Body — H € P,
> if Body = B consists of a single atom, thenadd BA B —» He P,
> if Body = By A...AB,withn>3,thenadd Bi AB, > Fo, Fp ABs = F3,...,Fp1 ABy » H € P’ where Fp,..., F,_q are
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> otherwise, add Body — H e P’.
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> count number of rules to have fresh identifiers for every newly translated rule, and
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Exercise 3

Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H < or H < By A Bs.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
> Let P be a propositional Horn logic program.
> Then, let P’ be the proposition Horn logic program such that, for all formulas Body — H € P,
> if Body = B consists of a single atom, thenadd BA B —» He P,
> if Body = By A...AB,withn>3,thenadd Bi AB, > Fo, Fp ABs = F3,...,Fp1 ABy » H € P’ where Fp,..., F,_q are
fresh propositional variables.
> otherwise, add Body — H e P’.
> For all propositional variables V occurring in P, we have that P = Vif and only if P’ = V.
> The program P’ can be computed with a LOGSPACE transducer:

> count number of body atoms to generate these rules
> count number of rules to have fresh identifiers for every newly translated rule, and
> count the length of any propositional variable name to have unique identifiers
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Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
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Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
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Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.

> Consider a P-TM M =(Q,T, X, qo, gr,6) and an input word w = wy, ..., w, € X*.
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Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
> Considera P-TM M =(Q, T, X, qo, gr,6) and an input word w = wy, ..., W, € X*.
> We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.
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Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
> Considera P-TM M =(Q, T, X, qo, gr,6) and an input word w = wy, ..., W, € X*.
> We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.
> Since M is polynomial, M halts after at most n* steps for some k > 0.
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Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
> Considera P-TM M =(Q, T, X, qo, gr,6) and an input word w = wy, ..., W, € X*.
> We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.
> Since M is polynomial, M halts after at most n* steps for some k > 0.
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> celljjforall1<i<j<nk+1, and
> allelementsge Qandy el
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Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.

> Considera P-TM M =(Q, T, X, qo, gr,6) and an input word w = wy, ..., W, € X*.

We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.

»
> Since M is polynomial, M halts after at most n* steps for some k > 0.
> Constants:

> celljjforall1<i<j<nk+1, and

> allelementsge Qandy el
Facts:

> right(cell;j, cell;j1), future(cell;j, celli1 ), for 1 < i < j < n¥,
> S(cellp;, w;) for 1 < i < n, and S(celly;, b) for n+1 < i < nk, and
> T(cello,o. Go)

v
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Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.

> Considera P-TM M =(Q, T, X, qo, gr,6) and an input word w = wy, ..., W, € X*.
> We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.
> Since M is polynomial, M halts after at most n* steps for some k > 0.
> Constants:
> celljjforall1<i<j<nk+1, and
> allelementsge Qandy el
Facts:
> right(cell;j, cell;j1), future(cell;j, celli1 ), for 1 < i < j < n¥,
> S(cellp;, w;) for 1 < i < n, and S(celly;, b) for n+1 < i < nk, and
> T(cello,o. Go)
> Rules:
> Accept() « T(x,qr),
> NTR(z) « T(x,y) Aright(x, z), NTR(y) « NTR(x) A right(x, y), NTL(z) « T(x, y) A right(z, x),
NTL(x) « right(x, y) A NTL(y), NT(x) « NTR(x), NT(x) « NTL(x), S(y.z) « NT(x) A future(x, y) A S(x, 2),
> T(z,q') « T(x,9) A S(x,y) Afuture(x, y) Aright(z,y), S(y.¥') <« T(x,q) A S(x,y) Afuture(x, y) for all{q,y,q’,y’,L) € 5,
> and similarly for all (q.y,q".y.R) €

v
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Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.

>

»
>
>

Consider a P-TM M =(Q,T', X, qo, g, 6) and an input word w = wy, ..., w, € X*.
We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.
Since M is polynomial, M halts after at most n steps for some k > 0.
Constants:
> celljjforall1<i<j<nf+1,and
> allelementsge Qandy el
Facts:
> right(cell;j, cell;j1), future(cell;j, celli1 ), for 1 < i < j < n¥,
> S(cellp;, w;) for 1 < i < n, and S(celly;, b) for n+1 < i < nk, and
> T(cello,o. Go)
Rules:
> Accept() « T(x,qr),
> NTR(z) « T(x,y) Aright(x, z), NTR(y) « NTR(x) A right(x, y), NTL(z) « T(x, y) A right(z, x),
NTL(x) « right(x, y) A NTL(y), NT(x) « NTR(x), NT(x) « NTL(x), S(y.z) « NT(x) A future(x, y) A S(x, 2),
> T(z,q') « T(x,q) A S(x,y) Afuture(x, y) Aright(z,y), S(¥,¥') < T(x,q) A S(x,y) Afuture(x, y) forall (q,v,q’.y'. L) € 6,
> and similarly for all (q.y,q".y.R) €
The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).
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Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.

>

»
>
>

Consider a P-TM M =(Q,T', X, qo, g, 6) and an input word w = wy, ..., w, € X*.
We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.

Since M is polynomial, M halts after at most n steps for some k > 0.
Constants:
> celljjforall1<i<j<nk+1, and
> allelementsge Qandy el
Facts:
> right(cell;;, cellj1), future(cell;j, celli 1), for 1 <i<j < nk,
> S(cellp;, w;) for 1 < i < n, and S(celly;, b) for n+1 < i < nk, and
> T(cello,o. Go)
Rules:
> Accept() « T(x,qr),
> NTR(z) « T(x,y) Aright(x, z), NTR(y) « NTR(x) A right(x, y), NTL(z) « T(x, y) A right(z, x),
NTL(x) « right(x, y) A NTL(y), NT(x) « NTR(x), NT(x) « NTL(x), S(y.z) « NT(x) A future(x, y) A S(x, 2),
> T(z,q') « T(x,q) A S(x,y) Afuture(x, y) Aright(z,y), S(¥,¥') < T(x,q) A S(x,y) Afuture(x, y) forall (q,v,q’.y'. L) € 6,
> and similarly for all (q.y,q".y.R) €
The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

ground(P) can be computed by a LOGSPACE transducer.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?
4. ... aninequality predicate # with the obvious semantics?
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?
4. ... aninequality predicate # with the obvious semantics?

Solution.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,

i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
1.

<(x,y) « succ(x,y) properEdge(x, y) « edge(x, y),<(x,y)
<(x,z) « <(x,y),succ(y, z) properEdge(x, y) « edge(x, y),<(y, x)
properPath(x, y) « properEdge(x, y)
properPath(x, z) « properPath(x, y), properEdge(y, z)
properCycle() « properPath(x, x)
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
2. > Suppose that P is a program entailing Accept iff edge contains a proper cycle.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
2. > Suppose that P is a program entailing Accept iff edge contains a proper cycle.
> Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
2. > Suppose that P is a program entailing Accept iff edge contains a proper cycle.
> Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.
> Then P, I = Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively
speaking, one could add an “evil self loop” to 7 that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in 7. This would contradict the first
bulletpoint.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge cycle maps homomorphically onto edge(a, a).

> Suppose that P is a program entailing Accept iff edge contains a proper cycle.

> Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.

> Then P, I = Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively
speaking, one could add an “evil self loop” to 7 that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in 7. This would contradict the first
bulletpoint.

> Let P, C P be the negation-free subset of P.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

2. > Suppose that P is a program entailing Accept iff edge contains a proper cycle.

> Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.

> Then P, I = Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively
speaking, one could add an “evil self loop” to 7 that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in 7. This would contradict the first
bulletpoint.
Let P, C P be the negation-free subset of P.
> P,,T = Accept, and 7 maps homomorphically onto { edge(a, a) }, contradiction.

v
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
2. > Suppose that P is a program entailing Accept iff edge contains a proper cycle.
> Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.
> Then P, I = Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively
speaking, one could add an “evil self loop” to 7 that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in 7. This would contradict the first
bulletpoint.
> Let P, C P be the negation-free subset of P.
> P,,T = Accept, and 7 maps homomorphically onto { edge(a, a) }, contradiction.
3. Since ~ can be axiomatised using x ~ x <, Datalog with an equality predicate is not more expressive than
Datalog.
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Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using ...

1. ... asuccessor ordering?

2. ... atomic EDB negation?

3. ... an equality predicate ~ with the obvious semantics?

4. ... aninequality predicate # with the obvious semantics?
Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge cycle maps homomorphically onto edge(a, a).
2. > Suppose that P is a program entailing Accept iff edge contains a proper cycle.
> Consider the DB 7 = {edge(i,j) | i,j € {1,2}}.
> Then P, I |= Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively
speaking, one could add an “evil self loop” to 7 that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in 7. This would contradict the first
bulletpoint.
> Let P, C P be the negation-free subset of P.
> P, T = Accept, and 7 maps homomorphically onto { edge(a, a) }, contradiction.
3. Since ~ can be axiomatised using x ~ x «, Datalog with an equality predicate is not more expressive than
Datalog.
4.

properEdge(x, y) « edge(x,y) Ax # y properPath(x, y) « properEdge(x, y)
properPath(x, z) « properPath(x, y) A properEdge(y, z) properCycle() « properPath(x, x)
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