

Exercise 9: Semi-Positive Datalog

Database Theory

2025-06-17

Lukas Gerlach, Maximilian Marx, Markus Krötzsch

Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is **safe** if all variables in H also occur in B .
- ▶ A Datalog program P is **safe** if all rules $r \in P$ are safe.

Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is **safe** if all variables in H also occur in B .
- ▶ A Datalog program P is **safe** if all rules $r \in P$ are safe.

Solution.

Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is **safe** if all variables in H also occur in B .
- ▶ A Datalog program P is **safe** if all rules $r \in P$ are safe.

Solution.

- ▶ Consider a (possibly unsafe) Datalog program P .

Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is **safe** if all variables in H also occur in B .
- ▶ A Datalog program P is **safe** if all rules $r \in P$ are safe.

Solution.

- ▶ Consider a (possibly unsafe) Datalog program P .
- ▶ We define a new Datalog program P' :

Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is **safe** if all variables in H also occur in B .
- ▶ A Datalog program P is **safe** if all rules $r \in P$ are safe.

Solution.

- ▶ Consider a (possibly unsafe) Datalog program P .
- ▶ We define a new Datalog program P' :
 - ▶ we add a fresh predicate `Top`,

Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is **safe** if all variables in H also occur in B .
- ▶ A Datalog program P is **safe** if all rules $r \in P$ are safe.

Solution.

- ▶ Consider a (possibly unsafe) Datalog program P .
- ▶ We define a new Datalog program P' :
 - ▶ we add a fresh predicate Top ,
 - ▶ for every ℓ -ary EDB predicate r occurring in P and all $1 \leq i \leq \ell$, we add a new rule $\text{Top}(x_i) \leftarrow r(x_1, \dots, x_\ell)$,

Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is **safe** if all variables in H also occur in B .
- ▶ A Datalog program P is **safe** if all rules $r \in P$ are safe.

Solution.

- ▶ Consider a (possibly unsafe) Datalog program P .
- ▶ We define a new Datalog program P' :
 - ▶ we add a fresh predicate Top ,
 - ▶ for every ℓ -ary EDB predicate r occurring in P and all $1 \leq i \leq \ell$, we add a new rule $\text{Top}(x_i) \leftarrow r(x_1, \dots, x_\ell)$,
 - ▶ for every constant c occurring in P , we add a new fact $\text{Top}(c)$,

Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is **safe** if all variables in H also occur in B .
- ▶ A Datalog program P is **safe** if all rules $r \in P$ are safe.

Solution.

- ▶ Consider a (possibly unsafe) Datalog program P .
- ▶ We define a new Datalog program P' :
 - ▶ we add a fresh predicate Top ,
 - ▶ for every ℓ -ary EDB predicate r occurring in P and all $1 \leq i \leq \ell$, we add a new rule $\text{Top}(x_i) \leftarrow r(x_1, \dots, x_\ell)$,
 - ▶ for every constant c occurring in P , we add a new fact $\text{Top}(c)$,
 - ▶ for every rule $(H \leftarrow B)[x_1, \dots, x_n] \in P$, we add the rule $H \leftarrow B \wedge \text{Top}(x_1) \wedge \dots \wedge \text{Top}(x_\ell)$.

Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is **safe** if all variables in H also occur in B .
- ▶ A Datalog program P is **safe** if all rules $r \in P$ are safe.

Solution.

- ▶ Consider a (possibly unsafe) Datalog program P .
- ▶ We define a new Datalog program P' :
 - ▶ we add a fresh predicate Top ,
 - ▶ for every ℓ -ary EDB predicate r occurring in P and all $1 \leq i \leq \ell$, we add a new rule $\text{Top}(x_i) \leftarrow r(x_1, \dots, x_\ell)$,
 - ▶ for every constant c occurring in P , we add a new fact $\text{Top}(c)$,
 - ▶ for every rule $(H \leftarrow B)[x_1, \dots, x_n] \in P$, we add the rule $H \leftarrow B \wedge \text{Top}(x_1) \wedge \dots \wedge \text{Top}(x_\ell)$.
- ▶ Then for every fact φ over the signature of P , we have that P' entails φ over an instance D iff P entails φ over D .

Exercise 1

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is **safe** if all variables in H also occur in B .
- ▶ A Datalog program P is **safe** if all rules $r \in P$ are safe.

Solution.

- ▶ Consider a (possibly unsafe) Datalog program P .
- ▶ We define a new Datalog program P' :
 - ▶ we add a fresh predicate Top ,
 - ▶ for every ℓ -ary EDB predicate r occurring in P and all $1 \leq i \leq \ell$, we add a new rule $\text{Top}(x_i) \leftarrow r(x_1, \dots, x_\ell)$,
 - ▶ for every constant c occurring in P , we add a new fact $\text{Top}(c)$,
 - ▶ for every rule $(H \leftarrow B)[x_1, \dots, x_n] \in P$, we add the rule $H \leftarrow B \wedge \text{Top}(x_1) \wedge \dots \wedge \text{Top}(x_\ell)$.
- ▶ Then for every fact φ over the signature of P , we have that P' entails φ over an instance D iff P entails φ over D .
- ▶ The size of P' is polynomial in the size of P , and P' is safe.

Exercise 2

Exercise. Assume that the database uses a binary EDB predicate *edge* to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is *not* connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Exercise 2

Exercise. Assume that the database uses a binary EDB predicate *edge* to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is *not* connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

Exercise 2

Exercise. Assume that the database uses a binary EDB predicate `edge` to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is *not* connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

- 1.

```
Odd(x) ← first(x)
Odd(y) ← Even(x), succ(x, y)
Even(y) ← Odd(x), succ(x, y)
EvenParity() ← Even(x), last(x)
```

Exercise 2

Exercise. Assume that the database uses a binary EDB predicate `edge` to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is *not* connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

2.

$$\begin{aligned}& <(x, y) \leftarrow \text{succ}(x, y) \\& <(x, z) \leftarrow <(x, y), \text{succ}(y, z) \\& <>(x, y), <>(y, x) \leftarrow <(x, y) \\& \text{TwoOutgoingEdges}() \leftarrow \text{edge}(x, y), \text{edge}(x, z), <>(y, z)\end{aligned}$$

Exercise 2

Exercise. Assume that the database uses a binary EDB predicate `edge` to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is *not* connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

- 2.

```
<(x, y) ← succ(x, y)
<(x, z) ← <(x, y), succ(y, z)
<>(x, y), <>(y, x) ← <(x, y)
TwoOutgoingEdges() ← edge(x, y), edge(x, z), <>(y, z)
```

3. This is (most likely) not expressible (unless $P = NP$), since 3-colourability is NP-complete and Datalog has P data complexity.

Exercise 2

Exercise. Assume that the database uses a binary EDB predicate `edge` to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is *not* connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

4. $D(x, y, k)$ x and y are not reachable via a path of length at most k
 $N(x, y, z, k)$ there is no path of length $k + 1$ from x to z via y

$D(x, y, \ell), D(y, x, \ell) \leftarrow \neg \text{edge}(x, y), \text{first}(\ell), \text{<>}(x, y)$

$N(x, y, z, k) \leftarrow \text{first}(y), D(x, y, k)$

$N(x, y', z, k) \leftarrow \text{succ}(y, y'), N(x, y, z, k), D(x, y', k)$

$D(x, z, k') \leftarrow \text{succ}(k, k'), D(x, z, k), \text{last}(y), N(x, y, z, k)$

$N(x, y, z, k) \leftarrow \text{first}(y), D(y, z, k)$

$N(x, y', z, k) \leftarrow \text{succ}(y, y'), N(x, y, z, k), D(y', z, k)$

$\text{Ans}() \leftarrow D(x, y, k), \text{last}(k)$

Exercise 2

Exercise. Assume that the database uses a binary EDB predicate `edge` to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is *not* connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

5.

`oneEdge(x, y) ← first(y), edge(x, y)`

`noEdge(x, y) ← first(y), \neg edge(x, y)`

`oneEdge(x, z) ← noEdge(x, y), succ(y, z), edge(x, z)`

`noEdge(x, z) ← noEdge(x, y), succ(y, z), \neg edge(x, z)`

`oneEdge(x, z) ← oneEdge(x, y), succ(y, z), \neg edge(x, z)`

`r(x) ← last(y), noEdge(x, y)`

`s(x) ← first(x), r(x)`

`r(x) ← last(y), oneEdge(x, y)`

`s(y) ← succ(x, y), s(x), r(y)`

`NoTwoOutEdges() ← s(x), last(x)`

Exercise 2

Exercise. Assume that the database uses a binary EDB predicate `edge` to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is *not* connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

- 6.

`Chain() ← Connected(), NoTwoInEdges(), NoTwoOutEdges(), NoCycle()`

`Conn(x), Reachable(x) ← first(x)`

`Reachable(x) ← Reachable(x), succ(x, y), Conn(y)`

`Conn(y) ← Conn(x), edge(x, y)`

`Conn(y) ← Conn(x), edge(y, x)`

`Connected() ← last(x), Reachable(x)`

`NoInEdge(x, y) ← first(x), \neg edge(x, y)`

`NoOutEdge(x, y) ← first(x), \neg edge(y, x)`

`NoInEdge(x', y) ← succ(x, x'), NoInEdge(x, y), \neg edge(x', y)`

`NoOutEdge(x', y) ← succ(x, x'), NoOutEdge(x, y), \neg edge(y, x')`

`NoCycle() ← last(x), NoInEdge(x, y), NoOutEdge(x, z)`

with `NoTwoOutEdges()` defined as in 5., and `NoTwoInEdges()` defined analogously.

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

- ▶ Let P be a propositional Horn logic program.

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

- ▶ Let P be a propositional Horn logic program.
- ▶ Then, let P' be the propositional Horn logic program such that, for all formulas $\text{Body} \rightarrow H \in P$,

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

- ▶ Let P be a propositional Horn logic program.
- ▶ Then, let P' be the propositional Horn logic program such that, for all formulas $\text{Body} \rightarrow H \in P$,
 - ▶ if $\text{Body} = B$ consists of a single atom, then add $B \wedge B \rightarrow H \in P'$,

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

- ▶ Let P be a propositional Horn logic program.
- ▶ Then, let P' be the propositional Horn logic program such that, for all formulas $\text{Body} \rightarrow H \in P$,
 - ▶ if $\text{Body} = B$ consists of a single atom, then add $B \wedge B \rightarrow H \in P'$,
 - ▶ if $\text{Body} = B_1 \wedge \dots \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \rightarrow F_2, F_2 \wedge B_3 \rightarrow F_3, \dots, F_{n-1} \wedge B_n \rightarrow H \in P'$ where F_2, \dots, F_{n-1} are fresh propositional variables.

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

- ▶ Let P be a propositional Horn logic program.
- ▶ Then, let P' be the propositional Horn logic program such that, for all formulas $\text{Body} \rightarrow H \in P$,
 - ▶ if $\text{Body} = B$ consists of a single atom, then add $B \wedge B \rightarrow H \in P'$,
 - ▶ if $\text{Body} = B_1 \wedge \dots \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \rightarrow F_2, F_2 \wedge B_3 \rightarrow F_3, \dots, F_{n-1} \wedge B_n \rightarrow H \in P'$ where F_2, \dots, F_{n-1} are fresh propositional variables.
 - ▶ otherwise, add $\text{Body} \rightarrow H \in P'$.

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

- ▶ Let P be a propositional Horn logic program.
- ▶ Then, let P' be the propositional Horn logic program such that, for all formulas $\text{Body} \rightarrow H \in P$,
 - ▶ if $\text{Body} = B$ consists of a single atom, then add $B \wedge B \rightarrow H \in P'$,
 - ▶ if $\text{Body} = B_1 \wedge \dots \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \rightarrow F_2, F_2 \wedge B_3 \rightarrow F_3, \dots, F_{n-1} \wedge B_n \rightarrow H \in P'$ where F_2, \dots, F_{n-1} are fresh propositional variables.
 - ▶ otherwise, add $\text{Body} \rightarrow H \in P'$.
- ▶ For all propositional variables V occurring in P , we have that $P \models V$ if and only if $P' \models V$.

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

- ▶ Let P be a propositional Horn logic program.
- ▶ Then, let P' be the propositional Horn logic program such that, for all formulas $\text{Body} \rightarrow H \in P$,
 - ▶ if $\text{Body} = B$ consists of a single atom, then add $B \wedge B \rightarrow H \in P'$,
 - ▶ if $\text{Body} = B_1 \wedge \dots \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \rightarrow F_2, F_2 \wedge B_3 \rightarrow F_3, \dots, F_{n-1} \wedge B_n \rightarrow H \in P'$ where F_2, \dots, F_{n-1} are fresh propositional variables.
 - ▶ otherwise, add $\text{Body} \rightarrow H \in P'$.
- ▶ For all propositional variables V occurring in P , we have that $P \models V$ if and only if $P' \models V$.
- ▶ The program P' can be computed with a LOGSPACE transducer:

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

- ▶ Let P be a propositional Horn logic program.
- ▶ Then, let P' be the propositional Horn logic program such that, for all formulas $\text{Body} \rightarrow H \in P$,
 - ▶ if $\text{Body} = B$ consists of a single atom, then add $B \wedge B \rightarrow H \in P'$,
 - ▶ if $\text{Body} = B_1 \wedge \dots \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \rightarrow F_2, F_2 \wedge B_3 \rightarrow F_3, \dots, F_{n-1} \wedge B_n \rightarrow H \in P'$ where F_2, \dots, F_{n-1} are fresh propositional variables.
 - ▶ otherwise, add $\text{Body} \rightarrow H \in P'$.
- ▶ For all propositional variables V occurring in P , we have that $P \models V$ if and only if $P' \models V$.
- ▶ The program P' can be computed with a LOGSPACE transducer:
 - ▶ count number of body atoms to generate these rules

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

- ▶ Let P be a propositional Horn logic program.
- ▶ Then, let P' be the propositional Horn logic program such that, for all formulas $\text{Body} \rightarrow H \in P$,
 - ▶ if $\text{Body} = B$ consists of a single atom, then add $B \wedge B \rightarrow H \in P'$,
 - ▶ if $\text{Body} = B_1 \wedge \dots \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \rightarrow F_2, F_2 \wedge B_3 \rightarrow F_3, \dots, F_{n-1} \wedge B_n \rightarrow H \in P'$ where F_2, \dots, F_{n-1} are fresh propositional variables.
 - ▶ otherwise, add $\text{Body} \rightarrow H \in P'$.
- ▶ For all propositional variables V occurring in P , we have that $P \models V$ if and only if $P' \models V$.
- ▶ The program P' can be computed with a LOGSPACE transducer:
 - ▶ count number of body atoms to generate these rules
 - ▶ count number of rules to have fresh identifiers for every newly translated rule, and

Exercise 3

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow B_1 \wedge B_2$.

It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

- ▶ Let P be a propositional Horn logic program.
- ▶ Then, let P' be the propositional Horn logic program such that, for all formulas $\text{Body} \rightarrow H \in P$,
 - ▶ if $\text{Body} = B$ consists of a single atom, then add $B \wedge B \rightarrow H \in P'$,
 - ▶ if $\text{Body} = B_1 \wedge \dots \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \rightarrow F_2, F_2 \wedge B_3 \rightarrow F_3, \dots, F_{n-1} \wedge B_n \rightarrow H \in P'$ where F_2, \dots, F_{n-1} are fresh propositional variables.
 - ▶ otherwise, add $\text{Body} \rightarrow H \in P'$.
- ▶ For all propositional variables V occurring in P , we have that $P \models V$ if and only if $P' \models V$.
- ▶ The program P' can be computed with a LOGSPACE transducer:
 - ▶ count number of body atoms to generate these rules
 - ▶ count number of rules to have fresh identifiers for every newly translated rule, and
 - ▶ count the length of any propositional variable name to have unique identifiers

Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Solution.

Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Solution.

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.

Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Solution.

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program P such that P entails a predicate $\text{Accept}()$ iff the TM \mathcal{M} accepts w .

Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Solution.

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program P such that P entails a predicate $\text{Accept}()$ iff the TM \mathcal{M} accepts w .
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \geq 0$.

Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Solution.

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program P such that P entails a predicate $\text{Accept}()$ iff the TM \mathcal{M} accepts w .
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \geq 0$.
- ▶ Constants:
 - ▶ $\text{cell}_{i,j}$ for all $1 \leq i \leq j \leq n^k + 1$, and
 - ▶ all elements $q \in Q$ and $\gamma \in \Gamma$

Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Solution.

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program P such that P entails a predicate $\text{Accept}()$ iff the TM \mathcal{M} accepts w .
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \geq 0$.
- ▶ Constants:
 - ▶ $\text{cell}_{i,j}$ for all $1 \leq i \leq j \leq n^k + 1$, and
 - ▶ all elements $q \in Q$ and $\gamma \in \Gamma$
- ▶ Facts:
 - ▶ $\text{right}(\text{cell}_{i,j}, \text{cell}_{i,j+1})$, $\text{future}(\text{cell}_{i,j}, \text{cell}_{i+1,j})$, for $1 \leq i \leq j \leq n^k$,
 - ▶ $\text{S}(\text{cell}_{0,i}, w_i)$ for $1 \leq i \leq n$, and $\text{S}(\text{cell}_{0,i}, b)$ for $n+1 \leq i \leq n^k$, and
 - ▶ $\text{T}(\text{cell}_{0,0}, q_0)$

Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Solution.

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program P such that P entails a predicate $\text{Accept}()$ iff the TM \mathcal{M} accepts w .
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \geq 0$.
- ▶ Constants:
 - ▶ $\text{cell}_{i,j}$ for all $1 \leq i \leq j \leq n^k + 1$, and
 - ▶ all elements $q \in Q$ and $\gamma \in \Gamma$
- ▶ Facts:
 - ▶ $\text{right}(\text{cell}_{i,j}, \text{cell}_{i,j+1})$, $\text{future}(\text{cell}_{i,j}, \text{cell}_{i+1,j})$, for $1 \leq i \leq j \leq n^k$,
 - ▶ $\text{S}(\text{cell}_{0,i}, w_i)$ for $1 \leq i \leq n$, and $\text{S}(\text{cell}_{0,i}, b)$ for $n+1 \leq i \leq n^k$, and
 - ▶ $\text{T}(\text{cell}_{0,0}, q_0)$
- ▶ Rules:
 - ▶ $\text{Accept}() \leftarrow \text{T}(x, q_f)$,
 - ▶ $\text{NTR}(z) \leftarrow \text{T}(x, y) \wedge \text{right}(x, z)$, $\text{NTR}(y) \leftarrow \text{NTR}(x) \wedge \text{right}(x, y)$, $\text{NTL}(z) \leftarrow \text{T}(x, y) \wedge \text{right}(z, x)$,
 $\text{NTL}(x) \leftarrow \text{right}(x, y) \wedge \text{NTL}(y)$, $\text{NT}(x) \leftarrow \text{NTR}(x)$, $\text{NT}(x) \leftarrow \text{NTL}(x)$, $\text{S}(y, z) \leftarrow \text{NT}(x) \wedge \text{future}(x, y) \wedge \text{S}(x, z)$,
 - ▶ $\text{T}(z, q') \leftarrow \text{T}(x, q) \wedge \text{S}(x, \gamma) \wedge \text{future}(x, y) \wedge \text{right}(z, y)$, $\text{S}(y, \gamma') \leftarrow \text{T}(x, q) \wedge \text{S}(x, \gamma) \wedge \text{future}(x, y)$ for all $\langle q, \gamma, q', \gamma', L \rangle \in \delta$,
 - ▶ and similarly for all $\langle q, \gamma, q', \gamma', R \rangle \in \delta$

Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Solution.

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program P such that P entails a predicate $\text{Accept}()$ iff the TM \mathcal{M} accepts w .
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \geq 0$.
- ▶ Constants:
 - ▶ $\text{cell}_{i,j}$ for all $1 \leq i \leq j \leq n^k + 1$, and
 - ▶ all elements $q \in Q$ and $\gamma \in \Gamma$
- ▶ Facts:
 - ▶ $\text{right}(\text{cell}_{i,j}, \text{cell}_{i,j+1})$, $\text{future}(\text{cell}_{i,j}, \text{cell}_{i+1,j})$, for $1 \leq i \leq j \leq n^k$,
 - ▶ $\text{S}(\text{cell}_{0,i}, w_i)$ for $1 \leq i \leq n$, and $\text{S}(\text{cell}_{0,i}, b)$ for $n+1 \leq i \leq n^k$, and
 - ▶ $\text{T}(\text{cell}_{0,0}, q_0)$
- ▶ Rules:
 - ▶ $\text{Accept}() \leftarrow \text{T}(x, q_f)$,
 - ▶ $\text{NTR}(z) \leftarrow \text{T}(x, y) \wedge \text{right}(x, z)$, $\text{NTR}(y) \leftarrow \text{NTR}(x) \wedge \text{right}(x, y)$, $\text{NTL}(z) \leftarrow \text{T}(x, y) \wedge \text{right}(z, x)$,
 $\text{NTL}(x) \leftarrow \text{right}(x, y) \wedge \text{NTL}(y)$, $\text{NT}(x) \leftarrow \text{NTR}(x)$, $\text{NT}(x) \leftarrow \text{NTL}(x)$, $\text{S}(y, z) \leftarrow \text{NT}(x) \wedge \text{future}(x, y) \wedge \text{S}(x, z)$,
 - ▶ $\text{T}(z, q') \leftarrow \text{T}(x, q) \wedge \text{S}(x, \gamma) \wedge \text{future}(x, y) \wedge \text{right}(z, y)$, $\text{S}(y, \gamma') \leftarrow \text{T}(x, q) \wedge \text{S}(x, \gamma) \wedge \text{future}(x, y)$ for all $\langle q, \gamma, q', \gamma', L \rangle \in \delta$,
 - ▶ and similarly for all $\langle q, \gamma, q', \gamma', R \rangle \in \delta$
- ▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial in the size of n).

Exercise 4

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Solution.

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program P such that P entails a predicate $\text{Accept}()$ iff the TM \mathcal{M} accepts w .
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \geq 0$.
- ▶ Constants:
 - ▶ $\text{cell}_{i,j}$ for all $1 \leq i \leq j \leq n^k + 1$, and
 - ▶ all elements $q \in Q$ and $\gamma \in \Gamma$
- ▶ Facts:
 - ▶ $\text{right}(\text{cell}_{i,j}, \text{cell}_{i,j+1})$, $\text{future}(\text{cell}_{i,j}, \text{cell}_{i+1,j})$, for $1 \leq i \leq j \leq n^k$,
 - ▶ $\text{S}(\text{cell}_{0,i}, w_i)$ for $1 \leq i \leq n$, and $\text{S}(\text{cell}_{0,i}, b)$ for $n+1 \leq i \leq n^k$, and
 - ▶ $\text{T}(\text{cell}_{0,0}, q_0)$
- ▶ Rules:
 - ▶ $\text{Accept}() \leftarrow \text{T}(x, q_f)$,
 - ▶ $\text{NTR}(z) \leftarrow \text{T}(x, y) \wedge \text{right}(x, z)$, $\text{NTR}(y) \leftarrow \text{NTR}(x) \wedge \text{right}(x, y)$, $\text{NTL}(z) \leftarrow \text{T}(x, y) \wedge \text{right}(z, x)$,
 $\text{NTL}(x) \leftarrow \text{right}(x, y) \wedge \text{NTL}(y)$, $\text{NT}(x) \leftarrow \text{NTR}(x)$, $\text{NT}(x) \leftarrow \text{NTL}(x)$, $\text{S}(y, z) \leftarrow \text{NT}(x) \wedge \text{future}(x, y) \wedge \text{S}(x, z)$,
 - ▶ $\text{T}(z, q') \leftarrow \text{T}(x, q) \wedge \text{S}(x, \gamma) \wedge \text{future}(x, y) \wedge \text{right}(z, y)$, $\text{S}(y, \gamma') \leftarrow \text{T}(x, q) \wedge \text{S}(x, \gamma) \wedge \text{future}(x, y)$ for all $\langle q, \gamma, q', \gamma', L \rangle \in \delta$,
 - ▶ and similarly for all $\langle q, \gamma, q', \gamma', R \rangle \in \delta$
- ▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial in the size of n).
- ▶ $\text{ground}(P)$ can be computed by a LOGSPACE transducer.

Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form $\text{edge}(a, a)$.

Can you express this property using ...

1. ... a successor ordering?
2. ... atomic EDB negation?
3. ... an equality predicate \approx with the obvious semantics?
4. ... an inequality predicate \neq with the obvious semantics?

Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form $\text{edge}(a, a)$.

Can you express this property using ...

1. ... a successor ordering?
2. ... atomic EDB negation?
3. ... an equality predicate \approx with the obvious semantics?
4. ... an inequality predicate \neq with the obvious semantics?

Solution.

Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper cycle*, i.e., a cycle that is not of the form $\text{edge}(a, a)$.

Can you express this property using ...

1. ... a successor ordering?
2. ... atomic EDB negation?
3. ... an equality predicate \approx with the obvious semantics?
4. ... an inequality predicate \neq with the obvious semantics?

Solution.

0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto $\text{edge}(a, a)$.

Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper cycle*, i.e., a cycle that is not of the form $\text{edge}(a, a)$.

Can you express this property using ...

1. ... a successor ordering?
2. ... atomic EDB negation?
3. ... an equality predicate \approx with the obvious semantics?
4. ... an inequality predicate \neq with the obvious semantics?

Solution.

0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto $\text{edge}(a, a)$.
- 1.

$\text{<}(x, y) \leftarrow \text{succ}(x, y)$	$\text{properEdge}(x, y) \leftarrow \text{edge}(x, y), \text{<}(x, y)$
$\text{<}(x, z) \leftarrow \text{<}(x, y), \text{succ}(y, z)$	$\text{properEdge}(x, y) \leftarrow \text{edge}(x, y), \text{<}(y, x)$
$\text{properPath}(x, y) \leftarrow \text{properEdge}(x, y)$	
$\text{properPath}(x, z) \leftarrow \text{properPath}(x, y), \text{properEdge}(y, z)$	
$\text{properCycle}() \leftarrow \text{properPath}(x, x)$	

Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper cycle*, i.e., a cycle that is not of the form $\text{edge}(a, a)$.

Can you express this property using ...

1. ... a successor ordering?
2. ... atomic EDB negation?
3. ... an equality predicate \approx with the obvious semantics?
4. ... an inequality predicate \neq with the obvious semantics?

Solution.

0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto $\text{edge}(a, a)$.
2. ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.

Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper cycle*, i.e., a cycle that is not of the form $\text{edge}(a, a)$.

Can you express this property using ...

1. ... a successor ordering?
2. ... atomic EDB negation?
3. ... an equality predicate \approx with the obvious semantics?
4. ... an inequality predicate \neq with the obvious semantics?

Solution.

0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto $\text{edge}(a, a)$.
2. ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.
▶ Consider the DB $\mathcal{I} = \{ \text{edge}(i, j) \mid i, j \in \{1, 2\} \}$.

Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper cycle*, i.e., a cycle that is not of the form $\text{edge}(a, a)$.

Can you express this property using ...

1. ... a successor ordering?
2. ... atomic EDB negation?
3. ... an equality predicate \approx with the obvious semantics?
4. ... an inequality predicate \neq with the obvious semantics?

Solution.

0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto $\text{edge}(a, a)$.
2.
 - ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.
 - ▶ Consider the DB $\mathcal{I} = \{ \text{edge}(i, j) \mid i, j \in \{1, 2\} \}$.
 - ▶ Then $P, \mathcal{I} \models \text{Accept}$. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively speaking, one could add an “evil self loop” to \mathcal{I} that matches the negated atom and therefore violates this derivation. But note that the “evil self loop” would not invalidate the proper cycle, which still exists in \mathcal{I} . This would contradict the first bulletpoint.

Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper cycle*, i.e., a cycle that is not of the form $\text{edge}(a, a)$.

Can you express this property using ...

1. ... a successor ordering?
2. ... atomic EDB negation?
3. ... an equality predicate \approx with the obvious semantics?
4. ... an inequality predicate \neq with the obvious semantics?

Solution.

0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto $\text{edge}(a, a)$.
2.
 - ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.
 - ▶ Consider the DB $\mathcal{I} = \{ \text{edge}(i, j) \mid i, j \in \{1, 2\} \}$.
 - ▶ Then $P, \mathcal{I} \models \text{Accept}$. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively speaking, one could add an “evil self loop” to \mathcal{I} that matches the negated atom and therefore violates this derivation. But note that the “evil self loop” would not invalidate the proper cycle, which still exists in \mathcal{I} . This would contradict the first bulletpoint.
 - ▶ Let $P_+ \subseteq P$ be the negation-free subset of P .

Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper cycle*, i.e., a cycle that is not of the form $\text{edge}(a, a)$.

Can you express this property using ...

1. ... a successor ordering?
2. ... atomic EDB negation?
3. ... an equality predicate \approx with the obvious semantics?
4. ... an inequality predicate \neq with the obvious semantics?

Solution.

0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto $\text{edge}(a, a)$.
2.
 - ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.
 - ▶ Consider the DB $\mathcal{I} = \{ \text{edge}(i, j) \mid i, j \in \{1, 2\} \}$.
 - ▶ Then $P, \mathcal{I} \models \text{Accept}$. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively speaking, one could add an “evil self loop” to \mathcal{I} that matches the negated atom and therefore violates this derivation. But note that the “evil self loop” would not invalidate the proper cycle, which still exists in \mathcal{I} . This would contradict the first bulletpoint.
 - ▶ Let $P_+ \subseteq P$ be the negation-free subset of P .
 - ▶ $P_+, \mathcal{I} \models \text{Accept}$, and \mathcal{I} maps homomorphically onto $\{ \text{edge}(a, a) \}$, contradiction.

Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper cycle*, i.e., a cycle that is not of the form $\text{edge}(a, a)$.

Can you express this property using ...

1. ... a successor ordering?
2. ... atomic EDB negation?
3. ... an equality predicate \approx with the obvious semantics?
4. ... an inequality predicate \neq with the obvious semantics?

Solution.

0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto $\text{edge}(a, a)$.
2.
 - ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.
 - ▶ Consider the DB $\mathcal{I} = \{ \text{edge}(i, j) \mid i, j \in \{1, 2\} \}$.
 - ▶ Then $P, \mathcal{I} \models \text{Accept}$. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively speaking, one could add an “evil self loop” to \mathcal{I} that matches the negated atom and therefore violates this derivation. But note that the “evil self loop” would not invalidate the proper cycle, which still exists in \mathcal{I} . This would contradict the first bulletpoint.
 - ▶ Let $P_+ \subseteq P$ be the negation-free subset of P .
 - ▶ $P_+, \mathcal{I} \models \text{Accept}$, and \mathcal{I} maps homomorphically onto $\{ \text{edge}(a, a) \}$, contradiction.
3. Since \approx can be axiomatised using $x \approx x \leftarrow$, Datalog with an equality predicate is not more expressive than Datalog.

Exercise 5

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper cycle*, i.e., a cycle that is not of the form $\text{edge}(a, a)$.

Can you express this property using ...

1. ... a successor ordering?
2. ... atomic EDB negation?
3. ... an equality predicate \approx with the obvious semantics?
4. ... an inequality predicate \neq with the obvious semantics?

Solution.

0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto $\text{edge}(a, a)$.
2.
 - ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.
 - ▶ Consider the DB $\mathcal{I} = \{ \text{edge}(i, j) \mid i, j \in \{1, 2\} \}$.
 - ▶ Then $P, \mathcal{I} \models \text{Accept}$. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively speaking, one could add an “evil self loop” to \mathcal{I} that matches the negated atom and therefore violates this derivation. But note that the “evil self loop” would not invalidate the proper cycle, which still exists in \mathcal{I} . This would contradict the first bulletpoint.
 - ▶ Let $P_+ \subseteq P$ be the negation-free subset of P .
 - ▶ $P_+, \mathcal{I} \models \text{Accept}$, and \mathcal{I} maps homomorphically onto $\{ \text{edge}(a, a) \}$, contradiction.
3. Since \approx can be axiomatised using $x \approx x \leftarrow$, Datalog with an equality predicate is not more expressive than Datalog.
- 4.

$\text{properEdge}(x, y) \leftarrow \text{edge}(x, y) \wedge x \neq y$

$\text{properPath}(x, z) \leftarrow \text{properPath}(x, y) \wedge \text{properEdge}(y, z)$

$\text{properPath}(x, y) \leftarrow \text{properEdge}(x, y)$

$\text{properCycle}() \leftarrow \text{properPath}(x, x)$