
Exercise 9: Semi-Positive Datalog

Database Theory
2025-06-17

Lukas Gerlach, Maximilian Marx, Markus Krötzsch

1 / 53

Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
▶ A Datalog rule H ← B is safe if all variables in H also occur in B.
▶ A Datalog program P is safe if all rules r ∈ P are safe.

Solution.
▶ Consider a (possibly unsafe) Datalog program P.
▶ We define a new Datalog program P′:

▶ we add a fresh predicate Top,
▶ for every ℓ-ary EDB predicate r occurring in P and all 1 ≤ i ≤ ℓ, we add a new rule Top(xi)← r(x1, . . . , xℓ),
▶ for every constant c occurring in P, we add a new fact Top(c),
▶ for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(xℓ).

▶ Then for every fact φ over the signature of P, we have that P′ entails φ over an instance D iff P entails φ over D.
▶ The size of P′ is polynomial in the size of P, and P′ is safe.

2 / 53

Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
▶ A Datalog rule H ← B is safe if all variables in H also occur in B.
▶ A Datalog program P is safe if all rules r ∈ P are safe.

Solution.
▶ Consider a (possibly unsafe) Datalog program P.
▶ We define a new Datalog program P′:

▶ we add a fresh predicate Top,
▶ for every ℓ-ary EDB predicate r occurring in P and all 1 ≤ i ≤ ℓ, we add a new rule Top(xi)← r(x1, . . . , xℓ),
▶ for every constant c occurring in P, we add a new fact Top(c),
▶ for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(xℓ).

▶ Then for every fact φ over the signature of P, we have that P′ entails φ over an instance D iff P entails φ over D.
▶ The size of P′ is polynomial in the size of P, and P′ is safe.

3 / 53

Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
▶ A Datalog rule H ← B is safe if all variables in H also occur in B.
▶ A Datalog program P is safe if all rules r ∈ P are safe.

Solution.

▶ Consider a (possibly unsafe) Datalog program P.
▶ We define a new Datalog program P′:

▶ we add a fresh predicate Top,
▶ for every ℓ-ary EDB predicate r occurring in P and all 1 ≤ i ≤ ℓ, we add a new rule Top(xi)← r(x1, . . . , xℓ),
▶ for every constant c occurring in P, we add a new fact Top(c),
▶ for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(xℓ).

▶ Then for every fact φ over the signature of P, we have that P′ entails φ over an instance D iff P entails φ over D.
▶ The size of P′ is polynomial in the size of P, and P′ is safe.

4 / 53

Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
▶ A Datalog rule H ← B is safe if all variables in H also occur in B.
▶ A Datalog program P is safe if all rules r ∈ P are safe.

Solution.
▶ Consider a (possibly unsafe) Datalog program P.

▶ We define a new Datalog program P′:

▶ we add a fresh predicate Top,
▶ for every ℓ-ary EDB predicate r occurring in P and all 1 ≤ i ≤ ℓ, we add a new rule Top(xi)← r(x1, . . . , xℓ),
▶ for every constant c occurring in P, we add a new fact Top(c),
▶ for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(xℓ).

▶ Then for every fact φ over the signature of P, we have that P′ entails φ over an instance D iff P entails φ over D.
▶ The size of P′ is polynomial in the size of P, and P′ is safe.

5 / 53

Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
▶ A Datalog rule H ← B is safe if all variables in H also occur in B.
▶ A Datalog program P is safe if all rules r ∈ P are safe.

Solution.
▶ Consider a (possibly unsafe) Datalog program P.
▶ We define a new Datalog program P′:

▶ we add a fresh predicate Top,
▶ for every ℓ-ary EDB predicate r occurring in P and all 1 ≤ i ≤ ℓ, we add a new rule Top(xi)← r(x1, . . . , xℓ),
▶ for every constant c occurring in P, we add a new fact Top(c),
▶ for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(xℓ).

▶ Then for every fact φ over the signature of P, we have that P′ entails φ over an instance D iff P entails φ over D.
▶ The size of P′ is polynomial in the size of P, and P′ is safe.

6 / 53

Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
▶ A Datalog rule H ← B is safe if all variables in H also occur in B.
▶ A Datalog program P is safe if all rules r ∈ P are safe.

Solution.
▶ Consider a (possibly unsafe) Datalog program P.
▶ We define a new Datalog program P′:

▶ we add a fresh predicate Top,

▶ for every ℓ-ary EDB predicate r occurring in P and all 1 ≤ i ≤ ℓ, we add a new rule Top(xi)← r(x1, . . . , xℓ),
▶ for every constant c occurring in P, we add a new fact Top(c),
▶ for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(xℓ).

▶ Then for every fact φ over the signature of P, we have that P′ entails φ over an instance D iff P entails φ over D.
▶ The size of P′ is polynomial in the size of P, and P′ is safe.

7 / 53

Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
▶ A Datalog rule H ← B is safe if all variables in H also occur in B.
▶ A Datalog program P is safe if all rules r ∈ P are safe.

Solution.
▶ Consider a (possibly unsafe) Datalog program P.
▶ We define a new Datalog program P′:

▶ we add a fresh predicate Top,
▶ for every ℓ-ary EDB predicate r occurring in P and all 1 ≤ i ≤ ℓ, we add a new rule Top(xi)← r(x1, . . . , xℓ),

▶ for every constant c occurring in P, we add a new fact Top(c),
▶ for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(xℓ).

▶ Then for every fact φ over the signature of P, we have that P′ entails φ over an instance D iff P entails φ over D.
▶ The size of P′ is polynomial in the size of P, and P′ is safe.

8 / 53

Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
▶ A Datalog rule H ← B is safe if all variables in H also occur in B.
▶ A Datalog program P is safe if all rules r ∈ P are safe.

Solution.
▶ Consider a (possibly unsafe) Datalog program P.
▶ We define a new Datalog program P′:

▶ we add a fresh predicate Top,
▶ for every ℓ-ary EDB predicate r occurring in P and all 1 ≤ i ≤ ℓ, we add a new rule Top(xi)← r(x1, . . . , xℓ),
▶ for every constant c occurring in P, we add a new fact Top(c),

▶ for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(xℓ).

▶ Then for every fact φ over the signature of P, we have that P′ entails φ over an instance D iff P entails φ over D.
▶ The size of P′ is polynomial in the size of P, and P′ is safe.

9 / 53

Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
▶ A Datalog rule H ← B is safe if all variables in H also occur in B.
▶ A Datalog program P is safe if all rules r ∈ P are safe.

Solution.
▶ Consider a (possibly unsafe) Datalog program P.
▶ We define a new Datalog program P′:

▶ we add a fresh predicate Top,
▶ for every ℓ-ary EDB predicate r occurring in P and all 1 ≤ i ≤ ℓ, we add a new rule Top(xi)← r(x1, . . . , xℓ),
▶ for every constant c occurring in P, we add a new fact Top(c),
▶ for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(xℓ).

▶ Then for every fact φ over the signature of P, we have that P′ entails φ over an instance D iff P entails φ over D.
▶ The size of P′ is polynomial in the size of P, and P′ is safe.

10 / 53

Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
▶ A Datalog rule H ← B is safe if all variables in H also occur in B.
▶ A Datalog program P is safe if all rules r ∈ P are safe.

Solution.
▶ Consider a (possibly unsafe) Datalog program P.
▶ We define a new Datalog program P′:

▶ we add a fresh predicate Top,
▶ for every ℓ-ary EDB predicate r occurring in P and all 1 ≤ i ≤ ℓ, we add a new rule Top(xi)← r(x1, . . . , xℓ),
▶ for every constant c occurring in P, we add a new fact Top(c),
▶ for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(xℓ).

▶ Then for every fact φ over the signature of P, we have that P′ entails φ over an instance D iff P entails φ over D.

▶ The size of P′ is polynomial in the size of P, and P′ is safe.

11 / 53

Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
▶ A Datalog rule H ← B is safe if all variables in H also occur in B.
▶ A Datalog program P is safe if all rules r ∈ P are safe.

Solution.
▶ Consider a (possibly unsafe) Datalog program P.
▶ We define a new Datalog program P′:

▶ we add a fresh predicate Top,
▶ for every ℓ-ary EDB predicate r occurring in P and all 1 ≤ i ≤ ℓ, we add a new rule Top(xi)← r(x1, . . . , xℓ),
▶ for every constant c occurring in P, we add a new fact Top(c),
▶ for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(xℓ).

▶ Then for every fact φ over the signature of P, we have that P′ entails φ over an instance D iff P entails φ over D.
▶ The size of P′ is polynomial in the size of P, and P′ is safe.

12 / 53

Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

13 / 53

Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

14 / 53

Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

1.

Odd(x)← first(x)

Odd(y)← Even(x), succ(x , y)

Even(y)← Odd(x), succ(x , y)

EvenParity()← Even(x), last(x)

15 / 53

Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

2.

<(x , y)← succ(x , y)

<(x , z)← <(x , y), succ(y , z)

<>(x , y), <>(y , x)← <(x , y)

TwoOutgoingEdges()← edge(x , y), edge(x , z), <>(y , z)

16 / 53

Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

2.

<(x , y)← succ(x , y)

<(x , z)← <(x , y), succ(y , z)

<>(x , y), <>(y , x)← <(x , y)

TwoOutgoingEdges()← edge(x , y), edge(x , z), <>(y , z)

3. This is (most likely) not expressible (unless P = NP), since 3-colourability is NP-complete and Datalog has P
data complexity.

17 / 53

Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

4. D(x , y , k) x and y are not reachable via a path of length at most k
N(x , y , z, k) there is no path of length k + 1 from x to z via y

D(x , y , ℓ),D(y , x , ℓ)← ¬edge(x , y), first(ℓ), <>(x , y)

N(x , y , z, k)← first(y),D(x , y , k) N(x , y , z, k)← first(y),D(y , z, k)

N(x , y ′, z, k)← succ(y , y ′),N(x , y , z, k),D(x , y ′, k) N(x , y ′, z, k)← succ(y , y ′),N(x , y , z, k),D(y ′, z, k)

D(x , z, k ′)← succ(k , k ′),D(x , z, k), last(y),N(x , y , z, k) Ans()← D(x , y , k), last(k)

18 / 53

Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

5.

oneEdge(x , y)← first(y), edge(x , y) noEdge(x , y)← first(y),¬edge(x , y)

oneEdge(x , z)← noEdge(x , y), succ(y , z), edge(x , z) noEdge(x , z)← noEdge(x , y), succ(y , z),¬edge(x , z)

oneEdge(x , z)← oneEdge(x , y), succ(y , z),¬edge(x , z)

r(x)← last(y), noEdge(x , y) s(x)← first(x), r(x)

r(x)← last(y), oneEdge(x , y) s(y)← succ(x , y), s(x), r(y)

NoTwoOutEdges()← s(x), last(x)

19 / 53

Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.
6.

Chain()← Connected(),NoTwoInEdges(),NoTwoOutEdges(), NoCycle()

Conn(x),Reachable(x)← first(x) Reachable(x)← Reachable(x), succ(x , y),Conn(y)

Conn(y)← Conn(x), edge(x , y) Conn(y)← Conn(x), edge(y , x)

Connected()← last(x),Reachable(x)

NoInEdge(x , y)← first(x),¬edge(x , y)

NoOutEdge(x , y)← first(x),¬edge(y , x)

NoInEdge(x ′, y)← succ(x , x ′),NoInEdge(x , y),¬edge(x ′, y)

NoOutEdge(x ′, y)← succ(x , x ′),NoOutEdge(x , y),¬edge(y , x ′)

NoCycle()← last(x),NoInEdge(x, y), NoOutEdge(x, z)

with NoTwoOutEdges() defined as in 5., and NoTwoInEdges() defined analogously.
20 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.

Solution.
▶ Let P be a propositional Horn logic program.
▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.
▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .
▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules
▶ count number of rules to have fresh identifiers for every newly translated rule, and
▶ count the length of any propositional variable name to have unique identifiers

21 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.

▶ Let P be a propositional Horn logic program.
▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.
▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .
▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules
▶ count number of rules to have fresh identifiers for every newly translated rule, and
▶ count the length of any propositional variable name to have unique identifiers

22 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
▶ Let P be a propositional Horn logic program.

▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.
▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .
▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules
▶ count number of rules to have fresh identifiers for every newly translated rule, and
▶ count the length of any propositional variable name to have unique identifiers

23 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
▶ Let P be a propositional Horn logic program.
▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.
▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .
▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules
▶ count number of rules to have fresh identifiers for every newly translated rule, and
▶ count the length of any propositional variable name to have unique identifiers

24 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
▶ Let P be a propositional Horn logic program.
▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,

▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are
fresh propositional variables.

▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .
▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules
▶ count number of rules to have fresh identifiers for every newly translated rule, and
▶ count the length of any propositional variable name to have unique identifiers

25 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
▶ Let P be a propositional Horn logic program.
▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.

▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .
▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules
▶ count number of rules to have fresh identifiers for every newly translated rule, and
▶ count the length of any propositional variable name to have unique identifiers

26 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
▶ Let P be a propositional Horn logic program.
▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.
▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .
▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules
▶ count number of rules to have fresh identifiers for every newly translated rule, and
▶ count the length of any propositional variable name to have unique identifiers

27 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
▶ Let P be a propositional Horn logic program.
▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.
▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .

▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules
▶ count number of rules to have fresh identifiers for every newly translated rule, and
▶ count the length of any propositional variable name to have unique identifiers

28 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
▶ Let P be a propositional Horn logic program.
▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.
▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .
▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules
▶ count number of rules to have fresh identifiers for every newly translated rule, and
▶ count the length of any propositional variable name to have unique identifiers

29 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
▶ Let P be a propositional Horn logic program.
▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.
▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .
▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules

▶ count number of rules to have fresh identifiers for every newly translated rule, and
▶ count the length of any propositional variable name to have unique identifiers

30 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
▶ Let P be a propositional Horn logic program.
▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.
▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .
▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules
▶ count number of rules to have fresh identifiers for every newly translated rule, and

▶ count the length of any propositional variable name to have unique identifiers

31 / 53

Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.
Solution.
▶ Let P be a propositional Horn logic program.
▶ Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

▶ if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
▶ if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.
▶ otherwise, add Body→ H ∈ P′.

▶ For all propositional variables V occurring in P, we have that P |= V if and only if P′ |= V .
▶ The program P′ can be computed with a LogSpace transducer:

▶ count number of body atoms to generate these rules
▶ count number of rules to have fresh identifiers for every newly translated rule, and
▶ count the length of any propositional variable name to have unique identifiers

32 / 53

Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Solution.
▶ Consider a P-TMM = ⟨Q,Γ,Σ, q0, qf , δ⟩ and an input word w = w1, . . . ,wn ∈ Σ

∗.
▶ We define a Datalog program P such that P entails a predicate Accept() iff the TMM accepts w .
▶ SinceM is polynomial,M halts after at most nk steps for some k ≥ 0.
▶ Constants:

▶ celli ,j for all 1 ≤ i ≤ j ≤ nk + 1, and
▶ all elements q ∈ Q and γ ∈ Γ

▶ Facts:
▶ right(celli ,j , celli ,j+1), future(celli ,j , celli+1,j), for 1 ≤ i ≤ j ≤ nk ,
▶ S(cell0,i ,wi) for 1 ≤ i ≤ n, and S(cell0,i , b) for n + 1 ≤ i ≤ nk , and
▶ T(cell0,0, q0)

▶ Rules:
▶ Accept()← T(x , qf),
▶ NTR(z)← T(x , y) ∧ right(x , z), NTR(y)← NTR(x) ∧ right(x , y), NTL(z)← T(x , y) ∧ right(z, x),

NTL(x)← right(x, y) ∧ NTL(y), NT(x)← NTR(x), NT(x)← NTL(x), S(y , z)← NT(x) ∧ future(x , y) ∧ S(x , z),
▶ T (z, q′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) ∧ right(z, y), S(y , γ′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) for all ⟨q, γ, q′, γ′, L⟩ ∈ δ,
▶ and similarly for all ⟨q, γ, q′, γ′,R⟩ ∈ δ

▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

▶ ground(P) can be computed by a LogSpace transducer.

33 / 53

Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.

▶ Consider a P-TMM = ⟨Q,Γ,Σ, q0, qf , δ⟩ and an input word w = w1, . . . ,wn ∈ Σ
∗.

▶ We define a Datalog program P such that P entails a predicate Accept() iff the TMM accepts w .
▶ SinceM is polynomial,M halts after at most nk steps for some k ≥ 0.
▶ Constants:

▶ celli ,j for all 1 ≤ i ≤ j ≤ nk + 1, and
▶ all elements q ∈ Q and γ ∈ Γ

▶ Facts:
▶ right(celli ,j , celli ,j+1), future(celli ,j , celli+1,j), for 1 ≤ i ≤ j ≤ nk ,
▶ S(cell0,i ,wi) for 1 ≤ i ≤ n, and S(cell0,i , b) for n + 1 ≤ i ≤ nk , and
▶ T(cell0,0, q0)

▶ Rules:
▶ Accept()← T(x , qf),
▶ NTR(z)← T(x , y) ∧ right(x , z), NTR(y)← NTR(x) ∧ right(x , y), NTL(z)← T(x , y) ∧ right(z, x),

NTL(x)← right(x, y) ∧ NTL(y), NT(x)← NTR(x), NT(x)← NTL(x), S(y , z)← NT(x) ∧ future(x , y) ∧ S(x , z),
▶ T (z, q′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) ∧ right(z, y), S(y , γ′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) for all ⟨q, γ, q′, γ′, L⟩ ∈ δ,
▶ and similarly for all ⟨q, γ, q′, γ′,R⟩ ∈ δ

▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

▶ ground(P) can be computed by a LogSpace transducer.

34 / 53

Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
▶ Consider a P-TMM = ⟨Q,Γ,Σ, q0, qf , δ⟩ and an input word w = w1, . . . ,wn ∈ Σ

∗.

▶ We define a Datalog program P such that P entails a predicate Accept() iff the TMM accepts w .
▶ SinceM is polynomial,M halts after at most nk steps for some k ≥ 0.
▶ Constants:

▶ celli ,j for all 1 ≤ i ≤ j ≤ nk + 1, and
▶ all elements q ∈ Q and γ ∈ Γ

▶ Facts:
▶ right(celli ,j , celli ,j+1), future(celli ,j , celli+1,j), for 1 ≤ i ≤ j ≤ nk ,
▶ S(cell0,i ,wi) for 1 ≤ i ≤ n, and S(cell0,i , b) for n + 1 ≤ i ≤ nk , and
▶ T(cell0,0, q0)

▶ Rules:
▶ Accept()← T(x , qf),
▶ NTR(z)← T(x , y) ∧ right(x , z), NTR(y)← NTR(x) ∧ right(x , y), NTL(z)← T(x , y) ∧ right(z, x),

NTL(x)← right(x, y) ∧ NTL(y), NT(x)← NTR(x), NT(x)← NTL(x), S(y , z)← NT(x) ∧ future(x , y) ∧ S(x , z),
▶ T (z, q′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) ∧ right(z, y), S(y , γ′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) for all ⟨q, γ, q′, γ′, L⟩ ∈ δ,
▶ and similarly for all ⟨q, γ, q′, γ′,R⟩ ∈ δ

▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

▶ ground(P) can be computed by a LogSpace transducer.

35 / 53

Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
▶ Consider a P-TMM = ⟨Q,Γ,Σ, q0, qf , δ⟩ and an input word w = w1, . . . ,wn ∈ Σ

∗.
▶ We define a Datalog program P such that P entails a predicate Accept() iff the TMM accepts w .

▶ SinceM is polynomial,M halts after at most nk steps for some k ≥ 0.
▶ Constants:

▶ celli ,j for all 1 ≤ i ≤ j ≤ nk + 1, and
▶ all elements q ∈ Q and γ ∈ Γ

▶ Facts:
▶ right(celli ,j , celli ,j+1), future(celli ,j , celli+1,j), for 1 ≤ i ≤ j ≤ nk ,
▶ S(cell0,i ,wi) for 1 ≤ i ≤ n, and S(cell0,i , b) for n + 1 ≤ i ≤ nk , and
▶ T(cell0,0, q0)

▶ Rules:
▶ Accept()← T(x , qf),
▶ NTR(z)← T(x , y) ∧ right(x , z), NTR(y)← NTR(x) ∧ right(x , y), NTL(z)← T(x , y) ∧ right(z, x),

NTL(x)← right(x, y) ∧ NTL(y), NT(x)← NTR(x), NT(x)← NTL(x), S(y , z)← NT(x) ∧ future(x , y) ∧ S(x , z),
▶ T (z, q′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) ∧ right(z, y), S(y , γ′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) for all ⟨q, γ, q′, γ′, L⟩ ∈ δ,
▶ and similarly for all ⟨q, γ, q′, γ′,R⟩ ∈ δ

▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

▶ ground(P) can be computed by a LogSpace transducer.

36 / 53

Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
▶ Consider a P-TMM = ⟨Q,Γ,Σ, q0, qf , δ⟩ and an input word w = w1, . . . ,wn ∈ Σ

∗.
▶ We define a Datalog program P such that P entails a predicate Accept() iff the TMM accepts w .
▶ SinceM is polynomial,M halts after at most nk steps for some k ≥ 0.

▶ Constants:
▶ celli ,j for all 1 ≤ i ≤ j ≤ nk + 1, and
▶ all elements q ∈ Q and γ ∈ Γ

▶ Facts:
▶ right(celli ,j , celli ,j+1), future(celli ,j , celli+1,j), for 1 ≤ i ≤ j ≤ nk ,
▶ S(cell0,i ,wi) for 1 ≤ i ≤ n, and S(cell0,i , b) for n + 1 ≤ i ≤ nk , and
▶ T(cell0,0, q0)

▶ Rules:
▶ Accept()← T(x , qf),
▶ NTR(z)← T(x , y) ∧ right(x , z), NTR(y)← NTR(x) ∧ right(x , y), NTL(z)← T(x , y) ∧ right(z, x),

NTL(x)← right(x, y) ∧ NTL(y), NT(x)← NTR(x), NT(x)← NTL(x), S(y , z)← NT(x) ∧ future(x , y) ∧ S(x , z),
▶ T (z, q′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) ∧ right(z, y), S(y , γ′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) for all ⟨q, γ, q′, γ′, L⟩ ∈ δ,
▶ and similarly for all ⟨q, γ, q′, γ′,R⟩ ∈ δ

▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

▶ ground(P) can be computed by a LogSpace transducer.

37 / 53

Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
▶ Consider a P-TMM = ⟨Q,Γ,Σ, q0, qf , δ⟩ and an input word w = w1, . . . ,wn ∈ Σ

∗.
▶ We define a Datalog program P such that P entails a predicate Accept() iff the TMM accepts w .
▶ SinceM is polynomial,M halts after at most nk steps for some k ≥ 0.
▶ Constants:

▶ celli ,j for all 1 ≤ i ≤ j ≤ nk + 1, and
▶ all elements q ∈ Q and γ ∈ Γ

▶ Facts:
▶ right(celli ,j , celli ,j+1), future(celli ,j , celli+1,j), for 1 ≤ i ≤ j ≤ nk ,
▶ S(cell0,i ,wi) for 1 ≤ i ≤ n, and S(cell0,i , b) for n + 1 ≤ i ≤ nk , and
▶ T(cell0,0, q0)

▶ Rules:
▶ Accept()← T(x , qf),
▶ NTR(z)← T(x , y) ∧ right(x , z), NTR(y)← NTR(x) ∧ right(x , y), NTL(z)← T(x , y) ∧ right(z, x),

NTL(x)← right(x, y) ∧ NTL(y), NT(x)← NTR(x), NT(x)← NTL(x), S(y , z)← NT(x) ∧ future(x , y) ∧ S(x , z),
▶ T (z, q′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) ∧ right(z, y), S(y , γ′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) for all ⟨q, γ, q′, γ′, L⟩ ∈ δ,
▶ and similarly for all ⟨q, γ, q′, γ′,R⟩ ∈ δ

▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

▶ ground(P) can be computed by a LogSpace transducer.

38 / 53

Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
▶ Consider a P-TMM = ⟨Q,Γ,Σ, q0, qf , δ⟩ and an input word w = w1, . . . ,wn ∈ Σ

∗.
▶ We define a Datalog program P such that P entails a predicate Accept() iff the TMM accepts w .
▶ SinceM is polynomial,M halts after at most nk steps for some k ≥ 0.
▶ Constants:

▶ celli ,j for all 1 ≤ i ≤ j ≤ nk + 1, and
▶ all elements q ∈ Q and γ ∈ Γ

▶ Facts:
▶ right(celli ,j , celli ,j+1), future(celli ,j , celli+1,j), for 1 ≤ i ≤ j ≤ nk ,
▶ S(cell0,i ,wi) for 1 ≤ i ≤ n, and S(cell0,i , b) for n + 1 ≤ i ≤ nk , and
▶ T(cell0,0, q0)

▶ Rules:
▶ Accept()← T(x , qf),
▶ NTR(z)← T(x , y) ∧ right(x , z), NTR(y)← NTR(x) ∧ right(x , y), NTL(z)← T(x , y) ∧ right(z, x),

NTL(x)← right(x, y) ∧ NTL(y), NT(x)← NTR(x), NT(x)← NTL(x), S(y , z)← NT(x) ∧ future(x , y) ∧ S(x , z),
▶ T (z, q′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) ∧ right(z, y), S(y , γ′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) for all ⟨q, γ, q′, γ′, L⟩ ∈ δ,
▶ and similarly for all ⟨q, γ, q′, γ′,R⟩ ∈ δ

▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

▶ ground(P) can be computed by a LogSpace transducer.

39 / 53

Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
▶ Consider a P-TMM = ⟨Q,Γ,Σ, q0, qf , δ⟩ and an input word w = w1, . . . ,wn ∈ Σ

∗.
▶ We define a Datalog program P such that P entails a predicate Accept() iff the TMM accepts w .
▶ SinceM is polynomial,M halts after at most nk steps for some k ≥ 0.
▶ Constants:

▶ celli ,j for all 1 ≤ i ≤ j ≤ nk + 1, and
▶ all elements q ∈ Q and γ ∈ Γ

▶ Facts:
▶ right(celli ,j , celli ,j+1), future(celli ,j , celli+1,j), for 1 ≤ i ≤ j ≤ nk ,
▶ S(cell0,i ,wi) for 1 ≤ i ≤ n, and S(cell0,i , b) for n + 1 ≤ i ≤ nk , and
▶ T(cell0,0, q0)

▶ Rules:
▶ Accept()← T(x , qf),
▶ NTR(z)← T(x , y) ∧ right(x , z), NTR(y)← NTR(x) ∧ right(x , y), NTL(z)← T(x , y) ∧ right(z, x),

NTL(x)← right(x, y) ∧ NTL(y), NT(x)← NTR(x), NT(x)← NTL(x), S(y , z)← NT(x) ∧ future(x , y) ∧ S(x , z),
▶ T (z, q′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) ∧ right(z, y), S(y , γ′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) for all ⟨q, γ, q′, γ′, L⟩ ∈ δ,
▶ and similarly for all ⟨q, γ, q′, γ′,R⟩ ∈ δ

▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

▶ ground(P) can be computed by a LogSpace transducer.

40 / 53

Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
▶ Consider a P-TMM = ⟨Q,Γ,Σ, q0, qf , δ⟩ and an input word w = w1, . . . ,wn ∈ Σ

∗.
▶ We define a Datalog program P such that P entails a predicate Accept() iff the TMM accepts w .
▶ SinceM is polynomial,M halts after at most nk steps for some k ≥ 0.
▶ Constants:

▶ celli ,j for all 1 ≤ i ≤ j ≤ nk + 1, and
▶ all elements q ∈ Q and γ ∈ Γ

▶ Facts:
▶ right(celli ,j , celli ,j+1), future(celli ,j , celli+1,j), for 1 ≤ i ≤ j ≤ nk ,
▶ S(cell0,i ,wi) for 1 ≤ i ≤ n, and S(cell0,i , b) for n + 1 ≤ i ≤ nk , and
▶ T(cell0,0, q0)

▶ Rules:
▶ Accept()← T(x , qf),
▶ NTR(z)← T(x , y) ∧ right(x , z), NTR(y)← NTR(x) ∧ right(x , y), NTL(z)← T(x , y) ∧ right(z, x),

NTL(x)← right(x, y) ∧ NTL(y), NT(x)← NTR(x), NT(x)← NTL(x), S(y , z)← NT(x) ∧ future(x , y) ∧ S(x , z),
▶ T (z, q′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) ∧ right(z, y), S(y , γ′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) for all ⟨q, γ, q′, γ′, L⟩ ∈ δ,
▶ and similarly for all ⟨q, γ, q′, γ′,R⟩ ∈ δ

▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

▶ ground(P) can be computed by a LogSpace transducer.

41 / 53

Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.
Solution.
▶ Consider a P-TMM = ⟨Q,Γ,Σ, q0, qf , δ⟩ and an input word w = w1, . . . ,wn ∈ Σ

∗.
▶ We define a Datalog program P such that P entails a predicate Accept() iff the TMM accepts w .
▶ SinceM is polynomial,M halts after at most nk steps for some k ≥ 0.
▶ Constants:

▶ celli ,j for all 1 ≤ i ≤ j ≤ nk + 1, and
▶ all elements q ∈ Q and γ ∈ Γ

▶ Facts:
▶ right(celli ,j , celli ,j+1), future(celli ,j , celli+1,j), for 1 ≤ i ≤ j ≤ nk ,
▶ S(cell0,i ,wi) for 1 ≤ i ≤ n, and S(cell0,i , b) for n + 1 ≤ i ≤ nk , and
▶ T(cell0,0, q0)

▶ Rules:
▶ Accept()← T(x , qf),
▶ NTR(z)← T(x , y) ∧ right(x , z), NTR(y)← NTR(x) ∧ right(x , y), NTL(z)← T(x , y) ∧ right(z, x),

NTL(x)← right(x, y) ∧ NTL(y), NT(x)← NTR(x), NT(x)← NTL(x), S(y , z)← NT(x) ∧ future(x , y) ∧ S(x , z),
▶ T (z, q′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) ∧ right(z, y), S(y , γ′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) for all ⟨q, γ, q′, γ′, L⟩ ∈ δ,
▶ and similarly for all ⟨q, γ, q′, γ′,R⟩ ∈ δ

▶ The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

▶ ground(P) can be computed by a LogSpace transducer.

42 / 53

Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

43 / 53

Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

44 / 53

Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

45 / 53

Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

1.

<(x , y)← succ(x , y) properEdge(x , y)← edge(x , y), <(x , y)

<(x , z)← <(x , y), succ(y , z) properEdge(x , y)← edge(x , y), <(y , x)

properPath(x , y)← properEdge(x , y)

properPath(x , z)← properPath(x , y), properEdge(y , z)

properCycle()← properPath(x , x)

46 / 53

Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

2. ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.

▶ Consider the DB I = { edge(i , j) | i , j ∈ { 1, 2 } }.
▶ Then P,I |= Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively

speaking, one could add an “evil self loop” to I that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in I. This would contradict the first
bulletpoint.

▶ Let P+ ⊆ P be the negation-free subset of P.
▶ P+,I |= Accept, and I maps homomorphically onto { edge(a, a) }, contradiction.

47 / 53

Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

2. ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.
▶ Consider the DB I = { edge(i , j) | i , j ∈ { 1, 2 } }.

▶ Then P,I |= Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively
speaking, one could add an “evil self loop” to I that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in I. This would contradict the first
bulletpoint.

▶ Let P+ ⊆ P be the negation-free subset of P.
▶ P+,I |= Accept, and I maps homomorphically onto { edge(a, a) }, contradiction.

48 / 53

Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

2. ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.
▶ Consider the DB I = { edge(i , j) | i , j ∈ { 1, 2 } }.
▶ Then P,I |= Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively

speaking, one could add an “evil self loop” to I that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in I. This would contradict the first
bulletpoint.

▶ Let P+ ⊆ P be the negation-free subset of P.
▶ P+,I |= Accept, and I maps homomorphically onto { edge(a, a) }, contradiction.

49 / 53

Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

2. ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.
▶ Consider the DB I = { edge(i , j) | i , j ∈ { 1, 2 } }.
▶ Then P,I |= Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively

speaking, one could add an “evil self loop” to I that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in I. This would contradict the first
bulletpoint.

▶ Let P+ ⊆ P be the negation-free subset of P.

▶ P+,I |= Accept, and I maps homomorphically onto { edge(a, a) }, contradiction.

50 / 53

Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

2. ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.
▶ Consider the DB I = { edge(i , j) | i , j ∈ { 1, 2 } }.
▶ Then P,I |= Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively

speaking, one could add an “evil self loop” to I that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in I. This would contradict the first
bulletpoint.

▶ Let P+ ⊆ P be the negation-free subset of P.
▶ P+,I |= Accept, and I maps homomorphically onto { edge(a, a) }, contradiction.

51 / 53

Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

2. ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.
▶ Consider the DB I = { edge(i , j) | i , j ∈ { 1, 2 } }.
▶ Then P,I |= Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively

speaking, one could add an “evil self loop” to I that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in I. This would contradict the first
bulletpoint.

▶ Let P+ ⊆ P be the negation-free subset of P.
▶ P+,I |= Accept, and I maps homomorphically onto { edge(a, a) }, contradiction.

3. Since ≈ can be axiomatised using x ≈ x ←, Datalog with an equality predicate is not more expressive than
Datalog.

52 / 53

Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.
0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any

edge-cycle maps homomorphically onto edge(a, a).
2. ▶ Suppose that P is a program entailing Accept iff edge contains a proper cycle.

▶ Consider the DB I = { edge(i , j) | i , j ∈ { 1, 2 } }.
▶ Then P,I |= Accept. In particular, there must be a derivation of Accept that does not use negation. Otherwise, intuitively

speaking, one could add an “evil self loop” to I that matches the negated atom and therefore violates this derivation. But
note that the “evil self loop” would not invalidate the proper cycle, which still exists in I. This would contradict the first
bulletpoint.

▶ Let P+ ⊆ P be the negation-free subset of P.
▶ P+,I |= Accept, and I maps homomorphically onto { edge(a, a) }, contradiction.

3. Since ≈ can be axiomatised using x ≈ x ←, Datalog with an equality predicate is not more expressive than
Datalog.

4.

properEdge(x , y)← edge(x , y) ∧ x 0 y properPath(x , y)← properEdge(x , y)

properPath(x , z)← properPath(x , y) ∧ properEdge(y , z) properCycle()← properPath(x , x)

53 / 53

