Agenda

1. Introduction
2. Uninformed Search versus Informed Search (Best First Search, A* Search, Heuristics)
3. Local Search, Stochastic Hill Climbing, Simulated Annealing
4. Tabu Search
5. Answer-set Programming (ASP)
6. Constraint Satisfaction (CSP)
7. Structural Decomposition Techniques (Tree/Hypertree Decompositions)
8. Evolutionary Algorithms/ Genetic Algorithms
Main Idea

- A memory forces the search to explore new areas of the search space
- Memorize solutions that have been examined recently. They become tabu points in next steps
- Tabu search is deterministic
Tabu Search and SAT

- SAT problem with $n = 8$ variables
- Initial (random) assignment $x = (0, 1, 1, 1, 0, 0, 0, 1)$
- Evaluation function: weighted sum of number of satisfied clauses. Weights depend on the number of variables in the clause
- Maximize evaluation function (i.e. we’re trying to satisfy all clauses)
- Random assignment provides $eval(x) = 27$
- Neighborhood of x consists of 8 solutions. Evaluate them and select best
- At this stage, it is the same as hill-climbing
- Suppose flipping 3rd variable generates best evaluation ($eval(x') = 31$)
- Memory keeps track of actions
Tabu Search and SAT

- SAT problem with $n = 8$ variables
- Initial (random) assignment $x = (0, 1, 1, 1, 0, 0, 0, 1)$
- Evaluation function: weighted sum of number of satisfied clauses. Weights depend on the number of variables in the clause
- Maximize evaluation function (i.e. we’re trying to satisfy all clauses)
- Random assignment provides $eval(x) = 27$
- Neighborhood of x consists of 8 solutions. Evaluate them and select best
- At this stage, it is the same as hill-climbing
- Suppose flipping 3rd variable generates best evaluation ($eval(x') = 31$)
- Memory keeps track of actions

Answer the Following Questions

1. What is stored in memory (think of SAT as an example)?
2. How can we escape local optima with help of the memory?
Recency-based Memory

- Index of flipped variable + time when it was flipped
- **Differentiate between older and more recent flips**
- SAT: time stamp for each position of solution vector M (initialized to 0)
- Value of time stamp provides information on recency of flip at position

Memory Vector

$$M(i) = j \text{ (when } j \neq 0)$$

j is most recent iteration when i-th bit was flipped
Recency-based Memory

- Index of flipped variable + time when it was flipped
- Differentiate between older and more recent flips
- SAT: time stamp for each position of solution vector M (initialized to 0)
- Value of time stamp provides information on recency of flip at position

Memory Vector

$M(i) = j$ (when $j \neq 0$)

j is most recent iteration when i-th bit was flipped

Assume information is stored for at most 5 iterations.

Alternative Interpretation

$M(i) = j$ (when $j \neq 0$)

i-th bit was flipped $5 - j$ iterations ago
Recency-based Memory

- Index of flipped variable + time when it was flipped
- Differentiate between older and more recent flips
- SAT: time stamp for each position of solution vector \(M \) (initialized to 0)
- Value of time stamp provides information on recency of flip at position

Memory Vector

\[M(i) = j \text{ (when } j \neq 0) \]

\(j \) is most recent iteration when \(i \)-th bit was flipped

Assume information is stored for at most 5 iterations.

Alternative Interpretation

\[M(i) = j \text{ (when } j \neq 0) \]

\(i \)-th bit was flipped \(5 - j \) iterations ago

Example

\[
\begin{array}{cccccccc}
0 & 0 & 5 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Memory after one iteration. 3rd bit is **tabu** for next 5 iterations.
Different Interpretations

1st Variant

- Stores iteration number of most recent flip
- Requires a current iteration counter t which is compared with memory values
- If $t - M(i) > 5$ forget
- Only requires updating a single entry, and increase the counter
- **Used in most implementations**
Different Interpretations

1st Variant
- Stores iteration number of most recent flip
- Requires a current iteration counter t which is compared with memory values
- If $t - M(i) > 5$ forget
- Only requires updating a single entry, and increase the counter
- **Used in most implementations**

2nd Variant
- Values are interpreted as number of iterations for which a position is **not available**
- **All** nonzero entries are decreased by one **at every iteration**
Example ctd.

- Initial assignment $x = (0, 1, 1, 1, 0, 0, 0, 1)$
- After 4 additional iterations M:

 $\begin{array}{ccccccc}
 3 & 0 & 1 & 5 & 0 & 4 & 2 & 0
 \end{array}$

- Most recent flip $M(4) = 5$
- Current solution: $x = (1, 1, 0, 0, 0, 1, 1, 1)$ with $\text{eval}(x) = 33$
Example ctd.

- Initial assignment \(x = (0, 1, 1, 1, 0, 0, 0, 1) \)
- After 4 additional iterations \(M \):

 \[
 \begin{array}{cccccccc}
 3 & 0 & 1 & 5 & 0 & 4 & 2 & 0 \\
 \end{array}
 \]

- Most recent flip \(M(4) = 5 \)
- Current solution: \(x = (1, 1, 0, 0, 0, 1, 1, 1) \) with \(\text{eval}(x) = 33 \)

Neighborhood of \(x \)

\[
\begin{align*}
 x_1 &= (0, 1, 0, 0, 0, 1, 1, 1) \\
 x_2 &= (1, 0, 0, 0, 0, 1, 1, 1) \\
 x_3 &= (1, 1, 1, 0, 0, 1, 1, 1) \\
 x_4 &= (1, 1, 0, 1, 0, 1, 1, 1) \\
 x_5 &= (1, 1, 0, 0, 1, 1, 1, 1) \\
 x_6 &= (1, 1, 0, 0, 0, 0, 1, 1) \\
 x_7 &= (1, 1, 0, 0, 0, 0, 1, 0) \\
 x_8 &= (1, 1, 0, 0, 0, 1, 1, 0)
\end{align*}
\]
Example ctd.

- Initial assignment $x = (0, 1, 1, 0, 0, 0, 1)$
- After 4 additional iterations M:

 $M = \begin{bmatrix} 3 & 0 & 1 & 5 & 0 & 4 & 2 & 0 \end{bmatrix}$

- Most recent flip $M(4) = 5$
- Current solution: $x = (1, 1, 0, 0, 1, 1, 1)$ with $eval(x) = 33$

Neighborhood of x

- $x_1 = (0, 1, 0, 0, 0, 1, 1, 1)$
- $x_2 = (1, 0, 0, 0, 0, 1, 1, 1)$
- $x_3 = (1, 1, 1, 0, 0, 1, 1, 1)$
- $x_4 = (1, 1, 0, 1, 0, 1, 1, 1)$
- $x_5 = (1, 1, 0, 0, 1, 1, 1, 1)$
- $x_6 = (1, 1, 0, 0, 0, 0, 1, 1)$
- $x_7 = (1, 1, 0, 0, 0, 1, 0, 1)$
- $x_8 = (1, 1, 0, 0, 0, 1, 1, 0)$

TABU, best evaluation $eval(x_5) = 32$, decrease!
Example ctd.

- Current solution: $\mathbf{x} = (1, 1, 0, 0, 1, 1, 1)$ with $eval(\mathbf{x}) = 33$
- New solution: $\mathbf{x}_5 = (1, 1, 0, 0, 1, 1, 1)$ with $eval(\mathbf{x}_5) = 32$

<table>
<thead>
<tr>
<th>3</th>
<th>0</th>
<th>1</th>
<th>5</th>
<th>0</th>
<th>4</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
</table>

changes to:

| 2 | 0 | 0 | 4 | 5 | 3 | 1 | 0 |
Example ctd.

- Current solution: \(x = (1, 1, 0, 0, 0, 1, 1, 1) \) with \(\text{eval}(x) = 33 \)
- New solution: \(x_5 = (1, 1, 0, 0, 1, 1, 1, 1) \) with \(\text{eval}(x_5) = 32 \)

changes to:

\[
\begin{array}{cccccccc}
3 & 0 & 1 & 5 & 0 & 4 & 2 & 0 \\
\end{array}
\]

Policy might be too restrictive

- What if tabu neighbor \(x_6 \) provides excellent evaluation score?
- Make search more flexible: override tabu classification if solution is outstanding

\(\implies \text{aspiration criterion} \)
Frequency-based Memory

- Operates over a longer horizon
- SAT: vector H serves as long-term memory.
 - Initialized to 0, at any stage of the search

$$H(i) = j$$

interpreted as: during last h (horizon) iterations, the i-th bit was flipped j times
- Usually horizon is large
- After 100 iterations with $h = 50$, long-term memory H might have the following values

```
5 7 11 3 9 8 1 6
```
- Shows distribution of moves throughout the last 50 iterations

Diversity of Search

Frequency-based memory provides information about which flips have been under-represented or not represented.

⇒ we can diversify the search by exploring these possibilities
Use of Long-term Memory

Special Circumstances

- Situations where **all non-tabu moves lead to worse solution**
- To make a meaningful decision about which direction to explore next
- Typically: **most frequent moves are less attractive**
- Value of evaluation score is decreased by some **penalty measure** that depends on frequency, final score implies the winner
Example SAT

- Assume value of current solution is $eval(x) = 35$
- Non-tabu flips 2, 3 and 7 have values 30, 33, 31
- None of tabu moves provides value greater than 37 (highest value so far)
 \implies we can’t apply aspiration criterion
Example SAT

- Assume value of current solution is $eval(x) = 35$
- Non-tabu flips 2, 3 and 7 have values 30, 33, 31
- None of tabu moves provides value greater than 37 (highest value so far) \implies we can’t apply aspiration criterion
- Frequency based-memory and evaluation function for new solution x' is

$$eval(x') - penalty(x')$$

- $penalty(x') = 0.7 \times H(i)$, where 0.7 coefficient, $H(i)$ value from long-term memory H:

 | 7 | for solution created by flipping 2nd bit |
 | 11 | for solution created by flipping 3nd bit |
 | 1 | for solution created by flipping 7nd bit |
Example SAT

- Assume value of current solution is \(\text{eval}(x) = 35 \)
- Non-tabu flips 2, 3 and 7 have values 30, 33, 31
- None of tabu moves provides value greater than 37 (highest value so far) \(\implies \) we can’t apply aspiration criterion
- Frequency based-memory and evaluation function for new solution \(x' \) is

\[
\text{eval}(x') - \text{penalty}(x')
\]

- \(\text{penalty}(x') = 0.7 \times H(i) \), where 0.7 coefficient, \(H(i) \) value from long-term memory \(H \):
 - 7 for solution created by flipping 2nd bit
 - 11 for solution created by flipping 3rd bit
 - 1 for solution created by flipping 7th bit

- New scores are:

\[
\begin{align*}
30 - 0.7 \times 7 &= 25.1 & \text{2nd bit} \\
33 - 0.7 \times 11 &= 25.3 & \text{3rd bit} \\
31 - 0.7 \times 1 &= 30.3 & \text{7th bit}
\end{align*}
\]
Example SAT

- Frequency based-memory and evaluation function for new solution \(x' \) is
 \[
 eval(x') - penalty(x')
 \]

- \(penalty(x') = 0.7 \times H(i) \), where 0.7 coefficient, \(H(i) \) value from long-term memory \(H \):

<table>
<thead>
<tr>
<th>Bit</th>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.7</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>0.7</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>1</td>
</tr>
</tbody>
</table>

 for solution created by flipping 2nd bit
 for solution created by flipping 3nd bit
 for solution created by flipping 7nd bit

- New scores are:

 \[
 \begin{align*}
 30 - 0.7 \times 7 &= 25.1 & & \text{2nd bit} \\
 33 - 0.7 \times 11 &= 25.3 & & \text{3nd bit} \\
 31 - 0.7 \times 1 &= 30.3 & & \text{7th bit}
 \end{align*}
 \]
Further Options to Diversify Search

We might add additional rules:

- **Aspiration by default:** select the oldest of all considered
- **Aspiration by search direction:** memorize whether or not the performed moves generated any improvement
- **Aspiration by influence:** measures the degree of change of the new solution
 a) in terms of the distance between old and new solution
 b) change in solution’s feasibility, if we deal with a constraint problem
 - **Intuition:** particular move has a larger influence if a larger step was made from old to new solution
Groupwork

Questions

1. How "close" were your answers to the presented information?
2. Which information was (un)expected?
Summary

- Simulated annealing and tabu search are both design to escape local optima
- Tabu search makes uphill moves only when it is stuck in local optima
- Simulated annealing can make uphill moves at any time
- Simulated annealing is stochastic, tabu search is deterministic
- Compared to classic algorithms, both work on complete solutions. One can halt them at any iteration and obtain a possible solution
- Both have many parameters to worry about
References

Zbigniew Michalewicz and David B. Fogel.