
COMPLEXITY THEORY

Lecture 3: Undecidability

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 21th Oct 2024

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2024)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en


Decidability and Computability

Review: A language is

• recognisable (or semi-decidable, or recursively enumerable) if it is the language of
all words recognised by some Turing machine

• decidable (or recursive) if it is the language of a Turing machine that allways halts,
even on inputs that are not accepted

• undecidable if it is not decidable

Instead of acceptance of words, we can also consider other computations:

Definition 3.1: A TM M computes a partial function fM : Σ∗ → Σ∗ as follows. We
have fM(w) = v for a word w ∈ Σ∗ if M halts on input w with a tape that contains
only the word v ∈ Σ∗ (followed by blanks).
In this case, the function fM is called computable.
Total, computable functions are called recursive.

Functions may therefore be computable or uncomputable.

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 2 of 26



Undecidability is Real

A fundamental insight of computer science and mathematics is that there are
undecidable languages:

Theorem 3.2: There are undecidable languages over every alphabet Σ.

Proof: See exercise. □

Analogously, there are uncomputable functions.

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 3 of 26



Unknown , Undecidable

How do we find concrete undecidable problems?

It is not enough to not know how to solve a problem algorithmically!

Example 3.3: Let Lπ be the set of all finite number sequences that occur in the
decimal representation of π. For example, 14159265 ∈ Lπ and 41 ∈ Lπ.

We do not know if the language Lπ is decidable, but it might be (e.g., if every finite
sequence of digits occurred in π, which, however, is not known to be true today).

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 4 of 26



Unknown , Undecidable (2)

There are even cases, where we are sure that a problem is decidable without knowing
how to solve it.

Example 3.4 (after Uwe Schöning): Let Lπ7 be the set of all number sequences
of the form 7n that occur in the decimal representation of π.

Lπ7 is decidable:

• Option 1: π contains sequences of arbitrary many 7. Then Lπ7 is decided by
a TM that accepts all words of the form 7n.

• Option 2: π contains sequences of 7s only up to a certain maximal length ℓ.
Then Lπ7 is decided by a TM that accepts all words of the form 7n with n ≤ ℓ.

In each possible case, we have a practical algorithm – we just don’t know which
one is correct.

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 5 of 26



A First Undecidable Problem (1)

Question: If a TM halts, how long may this take in the worst case?

Answer: Arbitrarily long, since:

(a) the input might be arbitrarily long

(b) the TM can be arbitrarily large

Question: If a TM with n states and a two-element tape alphabet Γ = {x, ␣} halts on the
empty input tape, how long may this take in the worst case?

Answer: That depends on n . . .

Definition 3.5: We define S(n) as the largest number of steps that any DTM with
n states and tape alphabet Γ = {x, ␣} executes on the empty tape, before it even-
tually halts.

Observation: S is well defined.
• The number of TMs with at most n states is finite
• Among the relevant n-state TMs there must be a largest number of steps before halting

(TMs that do not halt are ignored)

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 6 of 26



Busy Beaver

A small variation of the step counter function leads
to the Busy-Beaver Problem:

Tibor Radó, BB inventor

Definition 3.6: The Busy-Beaver function Σ : N → N is a total function, where
Σ(n) is the maximal number of x that a DTM with at most n states and tape alpha-
bet Γ = {x, ␣} can write when starting on the empty tape and before it eventually
halts.

Note: The exact value of Σ(n) depends on details of the TM definition.

Most works in this area assume a two-sided infinite tape that can be extended to the left and to
the right if necessary. We (often) assume a partial transition function in the following; such a TM
halts if no transition is defined.
Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 7 of 26



Example

The Busy-Beaver number Σ(2) is 4 when using a two-way infinite tape.
The following TM (with partial transition function) implements this behaviour:

A B

␣ 7→ x, R
x 7→ x, L

␣ 7→ x, L

We obtain: A␣ ⊢ xB␣ ⊢ Axx ⊢ B␣xx ⊢ A␣xxx ⊢ xBxxx

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 8 of 26



Computing Busy-Beaver?

How hard could this possibly be?

Theorem 3.7: The Busy-Beaver function is not computable.

Proof sketch: Suppose for a contradiction that Σ is computable.

• Then we can define a TMMΣ with tape alphabet {x, ␣} that computes xn 7→ xΣ(n).

• LetM+1 be a TM that computes xn 7→ xn+1.

• LetM×2 be a TM that computes xn 7→ x2n.

• Let k be the total number of states inMΣ,M+1, andM×2. There is a TM Ik with
k + 1 states that writes the word xk to the empty tape.

• When executing Ik,M×2,MΣ, andM+1 after another, the result is a TM with ≤ 2k
states that writes Σ(2k) + 1 times x before halting.

• Hence Σ(2k) ≥ Σ(2k) + 1 – contradiction. □

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 9 of 26



Proof Notes

Note 1: The proof involves an interesting idea of using TMs as “sub-routines” in other
TMs. We will use this again later on.

Note 2: If a TM can compute f : N→ N in the usual binary encoding, it is not hard to get
a TM for xn 7→ xf (n) by just using unary encoding instead.

Note 3: Transforming an arbitrary TM into one that uses only symbols {x, ␣} on its tape
is slightly more involved, but doable.

Note 4: To execute TMs after one another, we can assume w.l.o.g. that they terminate in
a unique state that has no possible transitions. Then one can combine TMs by
identifying this unique final state with the starting state of the next TM, which decreases
the total number of states by merging states.

Note 5: Busy Beaver is increasing with its input, i.e., Σ(m) ≤ Σ(2k) for any m < 2k, so the
proof works even if the composed machine has less than 2k states.

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 10 of 26



Busy Beaver in Practice

“Maybe the theoretical uncomputability is not really relevant after all – in practice, we
surely can find values for practically relevant sizes of TMs, no?”

Well, progress since the 1960s has been rather modest:

n: 1 2 3 4 5 6 7 8

Σ(n): 1 4 6 13 4098 ≥ 3, 5 × 1018267 gigantic insane

For n = 10, one has found a lower bound of the form Σ(10) > 333.
.

.

3

, where the complete
expression has more than 7.6 × 1012 occurrences of the number 3.

The value for Σ(5) is obtained by a TM that runs for 47, 176, 870 steps, as proven in July
2024 [Reference].

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 11 of 26

https://discuss.bbchallenge.org/t/july-2nd-2024-we-have-proved-bb-5-47-176-870/237


Universality

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 12 of 26



The Universal Machine

A first important observation of Turing was that TMs are powerful enough to simulate
other TMs:

Step 1: Encode Turing MachinesM as words ⟨M⟩

Step 2: Construct a universal Turing MachineU, which gets ⟨M⟩ as input and then
simulatesM

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 13 of 26



Step 1: encoding Turing Machines

Any reasonable encoding of a TMM = ⟨Q,Σ,Γ, δ, q0, qaccept, qreject⟩ is usable, e.g., the
following (for DTMs):

• We use an alphabet {0, 1, #}

• States are enumerated in any order (beginning with q0), and encoded in binary:
Q = {q0, . . . , qn} { ⟨Q⟩ = bin(0)# · · · #bin(n)

• We also encode Γ and the directions {R, L} in binary

• A transition δ(qi,σn) = ⟨qj,σm, D⟩ is encoded as 5-tuple:
enc(qi,σn) = bin(i)#bin(n)#bin(j)#bin(m)#bin(D)

• The transition function is encoded as a list of all these tuples, separated with #:
⟨δ⟩ =

(
enc(qi,σn)#

)
qi∈Q,σi∈Γ

• Combining everything, we set ⟨M⟩ = ⟨Q⟩##⟨Σ⟩##⟨Γ⟩##⟨δ⟩##⟨qaccept⟩##⟨qreject⟩

We can also encode arbitrary words to match this encoding:

• For a word w = a1 · · · aℓ we define ⟨w⟩ = bin(a1)# · · · #bin(aℓ)

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 14 of 26



Step 2: The Universal Turing Machine
We define the universal TMU as multi-tape TM:

Tape 1: Input tape ofU: contains ⟨M⟩##⟨w⟩

Tape 2: Working tape ofU

Tape 3: Stores the state of the simulated TM

Tape 4: Working tape of the simulated TM

The working principle ofU is easily sketched:

• U validates the input, copies ⟨w⟩ to Tape 4, moves the head on Tape 4 to the start
and initialises Tape 3 with bin(0) (i.e., ⟨q0⟩).

• In each step U reads an (encoded) symbol from the head position on Tape 4, and
searches for the simulated state (Tape 3) a matching transition in ⟨M⟩ on Tape 1
(w.l.o.g. assume that the final states of the encoded TM have no transitions):

– Transition found: update state on Tape 3; replace the encoded symbol on
Tape 4 by the new symbol; move the head on Tape 4 accordingly

– Transition not found: if the state on Tape 3 is qaccept, then go to the final
accepting state; else go to the final rejecting state

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 15 of 26



The Theory of Software

Theorem 3.8: There is a universal Turing Machine U, that, when given an input
⟨M⟩##⟨w⟩, simulates the behaviour of a DTM M on w:

• If M halts on w, then U halts on ⟨M⟩##⟨w⟩ with the same result

• If M does not halt on w, then U does not halt on ⟨M⟩##⟨w⟩ either

Our construction is for DTMs that recognise languages (“Turing acceptors”) – DTMs that
compute partial functions can be simulated in a similar fashion.

Practical consequences:

• Universal computers are possible

• We don’t have to buy a new computer for every application

• Software exists

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 16 of 26



Undecidable Problems and Reductions

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 17 of 26



The Halting Problem

A classical undecidable problem:

Definition 3.9: The Halting Problem consists in the following question:
Given a TM M and a word w,
will M ever halt on input w?

We can formulate the Halting Problem as a word problem by encodingM and w:

Definition 3.10: The Halting Problem is the word problem for the language

PHalt = {⟨M⟩##⟨w⟩ | M halts on input w},

where ⟨M⟩ and ⟨w⟩ are suitable encodings of M and w, for which ## can be used
as separator.

Remark: Wrongly encoded inputs are rejected.

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 18 of 26



“Proof” by Intuition

Theorem 3.11: The Halting Problem PHalt is undecidable.

“Proof:” The opposite would be too good to be true. Many unsolved problems could
then be solved immediately.

Example 3.12: Goldbach’s Conjecture (Christian Goldbach, 1742) states that ev-
ery even number n ≥ 4 is the sum of two primes. For instance, 4 = 2 + 2 and
100 = 47 + 53.

One can easily give an algorithmA that verifies Goldbach’s conjecture systematically by
testing it for every even number starting with 4:
• Success: Test the next even number
• Failure: Terminate with output “Goldbach was wrong!”

The question “Will A halt?” therefore is equivalent ot the question
“Is Goldbach’s conjecture wrong?”

Many other important open problems could be solved in this way.
Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 19 of 26



Proof by “Diagonalisation”

Theorem 3.11: The Halting Problem PHalt is undecidable.

Proof: By contradiction: Suppose there is a decider H for the Halting Problem.

Then one can construct a TM D that does the following:

(1) Check if the given input is a TM encoding ⟨M⟩

(2) Simulate H on input ⟨M⟩##⟨⟨M⟩⟩, that is, check ifM halts on ⟨M⟩

(3) If yes, enter an infinite loop;
if no, halt and accept

Will D accept the input ⟨D⟩?

D halts and accepts if and only if D does not halt

Contradiction. □

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 20 of 26



Proof by Reduction

Theorem 3.11: The Halting Problem PHalt is undecidable.

Proof: Suppose that the Halting Problem is decidable.

An algorithm:

• Input: natural number k (in binary)
• Iterate over all Turing machinesM that have k states and tape alphabet {x, ␣}:

– Decide ifM halts on the empty input ε
(possible if the Halting problem is decidable)

– If yes, then simulateM on the empty input and, whenM has halted, count
the number of x on the tape
(possible, since there are universal TMs)

• Output: the maximal number of x written.

This algorithm would compute the Busy-Beaver function Σ : N→ N.

We have already shown that this is impossible – contradiction. □

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 21 of 26



Turing Reductions

Our previous proof constructs an algorithm for one task (Busy Beaver) by calling
subroutines for another task (the Halting Problem)

This idea can be generalised:

Informal Definition 3.13: A problem P is Turing reducible to a problem Q (in
Symbols: P ≤T Q), if P can be solved by a program that may call Q as a sub-
program.

Example 3.14: Our proof uses a reduction of the Busy-Beaver computation to
the Halting problem. Note that the subroutine might be called exponentially many
times here.

To make this more formal, we need oracles.

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 22 of 26



Oracles

Definition 3.15: An Oracle Turing Machine (OTM) is a Turing machine M with a
special tape, called the oracle tape, and distinguished states q?, qyes, and qno. For
a language O, the oracle machine MO can, in addition to the normal TM opera-
tions, do the following:

Whenever MO reaches q?, its next state is qyes if the content of the oracle tape is
in O, and qno otherwise.

• The word problem for O might be very hard or even undecidable

• Nevertheless, asking the oracle always takes just one step

• For dramatic effect, we might assert that the contents of the oracle tape is
consumed (emptied) during this mysterious operation. However, this does not
usually make a difference to our results.

Definition 3.16: A problem P is Turing reducible to a problem Q (in symbols:
P ≤T Q), if P is decided by an OTM MQ with oracle Q.

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 23 of 26



Undecidability via Turing Reductions

One can use Turing reductions to show undecidability:

Theorem 3.17: If P is undecidable and P ≤T Q, then Q is undecidable.

Proof: Via contrapositive: If P ≤T Q and Q is decidable, then we can implement the
OTM that shows P ≤T Q as a regular TM, which shows that P is decidable. □

Here is a small application:

Theorem 3.18: The language PHalt = {⟨M⟩##⟨w⟩ | M does not halt on w} (the
“Non-Halting Problem”) is undecidable.

Proof sketch: Decide Halting by using PHalt as an oracle and inverting the result. Check
TM encoding first (wrong encodings are rejected by Halting and Non-Halting). □

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 24 of 26



ε-Halting

Special cases of the Halting Problem are usually not simpler:

Definition 3.19: The ε-Halting Problem consists in the following question:
Given a TM M,
will M ever halt on the empty input ε?

Theorem 3.20: The ε-Halting Problem is undecidable.

Proof: We define an oracle machine for deciding Halting:

• Input: A Turing machineM and a word w.
• Construct a TMMw that runs in two phases:

(1) Delete the input tape and write the word w instead
(2) Process the input likeM

• Solve the ε-Halting problem forMw (oracle).

• Output: output of the ε-Halting Problem

This Turing-reduces Halting to ε-halting, so the latter is also undecidable. □

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 25 of 26



Summary and Outlook

Busy Beaver is uncomputable

Halting is undecidable (for many reasons)

Oracles and Turing reductions formalise the notion of a “subroutine” and help us to
transfer our insights from one problem to another

What’s next?

• Some more undecidability

• Recursion and self-referentiality

• Actual complexity classes

Markus Krötzsch; 21th Oct 2024 Complexity Theory slide 26 of 26


