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Abstract

For a non-negative integkra language ik-piecewise testabl&{PT) if it is a finite boolean combination of languages
of the formXZ* g ¥* - - - £*a,2* for & € ¥ and 0< n < k. We study the following problem: Given a DFA recognizing
a piecewise testable language, decide whether the landgsi&geT. We provide a complexity bound and a detailed
analysis for smalk's. The result can be used to find the minirkdbr which the language ik-PT. We show that the
upper bound otk given by the depth of the minimal DFA can be exponentiallygeigthan the minimal possible
and provide a tight upper bound on the depth of the minimal Pé¥&ognizing &-PT language.

1. Introduction
A regular language ipiecewise testabl@PT) if it is a finite boolean combination of languages of tbimf
TraXtar - Xrapr”

wherea; € £ andn > 0. It is k-piecewise testablg-PT) if n < k. These languages were introduced by Simon in
his PhD thesis [38]. Simon proved that PT languages are lgxacise regular languages whose syntactic monoid is
J-trivial. He provided various characterizations of PT laages in terms of monoids, automata, etc.

In this paper, we study tHepiecewise testabilitgroblem, that is, to decide whether a PT languadeRs.

NAME: K-PiECEWISETESTABILITY
InpuT: @n automaton (minimal DFA or NFAR
Ourrur: YEs if and only if £L(A) is k-piecewise testable

Note that the problem is trivially decidable, since thereridy a finite number ok-PT languages over the input
alphabet ofA.

We investigate the complexity of the problem and the reteiop betweek and the depth of the input automaton.
The motivation to study this relationship comes from theiteshowing that a PT languageksPT for anyk bigger
than or equal to the depth of its minimal DFA [25].

Our motivation is twofold. The first motivation is theoreti@and comes from the investigation of various frag-
ments of first-order logic over words, namely the Straubiiérien and dot-depth hierarchies. For instance, the
languages of levels/2 and 1 of the dot-depth hierarchy are constructed as bocl@abinations of variants of lan-
guages of the fornt w,X* ... T*w,X*, wherew; € ¥*, cf. [27, Table 1]. The reader can notice a similarity to PT
languages. For these fragments, a problem simil&rg@cewise testability is also relevant.

The second, practical motivation comes from simplifying XML Schema specification language.
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Simplification of XML SchemaXML Schema is currently the only schema language that is hidecepted and
supported by industry. However, it is rather machine-reégthhan human-readable. It increases the expressivehess o
DTDs, but this increase goes hand in hand with loss of sintpli®oreover, its logical core does not seem to be well
understood by users [29]. Therefore, the BonXai schemailzgg has recently been proposed as an attempt to design
a human-readable schema language. It combines the sitpfdDTDs with the expressiveness of XML Schema.
Its aim is to simplify the development and analysis of XML 8ofa Definitions (XSDs). The BonXai schema is a set
of rules of the fornL; — R;, whereL; andR, are regular expressions. An XML document (unranked trelongs to

the language of the schema if, for every node of the tree athel$ of its children form a word that belongsRoand

its ancestors form a word that belongd.ipsee|[20] for more details.

When translating an XSD into an equivalent BonXai scherardigular expressions are obtained from a finite
automaton embedded in the XSD. However, the current teaksigf translating automata to regular expressions do
not yet generate human-readable results. Therefore, Wwet@sirselves to simpler classes of expressions thféitsu
in practice. Practical and theoretical studies show eaddimat expressions of the foha; >* - - - *a,, wherea; € X,
and their variations are suitable for this purpose [17, 30].

Any state of the DFA embedded in the XSD represents a languadjere need to compute an over-approximation
L; for each of them that is disjoint with the others. This redutethe language separation problem: Given two
languageX andL and a family of languageg, is there a languag® in ¥ such thatS includesK and is disjoint
with L? It is independently shown inl[9] and |33, 43] that the sefi@ngproblem for regular languages represented
by NFAs and the family of PT languages is decidable in polyiabtime. A simple method (in the meaning of
description) to compute a PT separator is described in j2@re its running time is investigated. Another technique
is described in [33].

Assume that we have computed a PT separator. Since the slamdarithms translating automata to regu-
lar expressions do not generate human-readable resultasidy use “only” the basic operations (concatenation,
Kleene star and union), we face the problem how to generatehtreadable expressions of the considered simple
forms. Note that the expressions we are interested in aqottiaioperations of intersection and complement (called
generalized regular expressions). These operations rhake non-elementary more succinct than classical regular
expressions [10, 40]. See also![18] for more details. Unfaately, not much is known about transformations to
generalized regular expressions|[12].

For a PT language it means to decompose it into a boolean oaiidn of expressions*a; X ax* - - - T*ax*. If
we knew that the languageksPT, this could be derived using a brute-force method@rttie~,-canonical DFA the
DFA whose states areg classes, cf. Fafl 1. Indeed, the lower khéhe lower the complexity. An upper bound bis
given by the depth of the minimal DFA [25]. However, we shotetahat the minimak can be exponentially smaller
than the depth of the DFA. Note that the number of states oftheanonical DFA has recently been investigated
in [23] and the literature therein.

Applications of PT Language®iecewise testable languages are of interest in many tdisespof mathematics and
computer science. For instance, in semigroup theory [12R,s3nce they possess interesting algebraic properties,
namely, the syntactic monoid of a PT languagefidrivial, where J is one of the Green relations; in logic over
words [11/) 34, 35] because of their close relation to firsteotogic—piecewise testable languages can be character-
ized by a (two-variable) fragment of first-order logic ovesnds, namely, they form level 1 of the Straubing-Thérien
hierarchy as already depicted above; in formal languagdsaatomata theory [8, 25, 33], since their automata are
of a special simple form (they are partially ordered and emmit) and PT languages form a strict subclass of the
class of star-free languages, that is, languages definghl€lbformulas; in natural language processing, since they
can describe some non-local patterns [14, 36]; in learrtiegty, since they are identifiable from positive data in
the limit [15,/26]; in XML databases[9], which is our origimaotivation described in detail above. The list is not
comprehensive and many other interesting results comggRil languages can be found in the literature. It is also
worth mentioning that PT languages and several results temently been generalized from word languages to tree
languages [6].

We now give a brief overview on the complexity of the problendécide whether a regular language is piecewise
testable. As mentioned above, decidability was shown by8irtn 1985, Stern showed that the problem is decidable
in polynomial time for DFAs|[39]. In 1991, Cho and Huynh [7]Jgwed NL-completeness of the problem for DFAs.
In 2001, Trahtman [42] improved Stern’s result to obtain adratic algorithm. Another quadratic algorithm can be
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found in [25]. The problem is PSPACE-complete if the langesagre represented as NFAs [21].

Our Contribution. Thek-piecewise testability probleasks whether, given a finite automat@inthe languagé.(A)

is k-PT. It is easy to see that if a languagéiPT, it is also k + 1)-PT. Klima and Polak [25] have shown that if the
depth of a minimal DFA recognizing a PT languagg,ithen the language isPT. However, the opposite implication

does not hold, that is, the depth of the minimal DFA is only @per bound ork. To the best of our knowledge,

no dficient algorithm to find the minimat for which a PT language i&-PT nor an algorithm to decide whether a
language i%-PT has been published so fFar.

We first give a co-NP upper bound to decide whether a minima&l B¥eognizes &-PT language for a fixeld
(Theoreni ), which results in an algorithm to find the minik#iat runs in the time single exponential with respect
to the size of the DFA and double exponential with respediéarésulting. We then provide a detailed complexity
analysis for smalk’s. In particular, the problem is trivial fat = 0, decidable in deterministic logarithmic space for
k = 1 (Theoreni ), and NL-complete far= 2, 3 (Theoremgl6 arild11). As a result, we obtain a PSPACE uppedbou
to decide whether an NFA recognize&-®T language for a fixed. Recall that it is PSPACE-complete to decide
whether an NFA recognizes a PT language, and it is actuaPARE-complete to decide whether an NFA recognizes
a 0-PT language (Theordm]12).

Since the depth of the minimal DFAs plays a role as an uppendbonk, we investigate the relationship between
the depth of an NFA anl-piecewise testability of its language. We show that, fargk > 0, there exists &PT
language with an NFA of deptk— 1 and with the minimal DFA of depth*2- 1 (Theoreni_I4). Although it is well
known that DFAs can be exponentially larger than NFAs, a lmdpct of our result is that all the exponential number
of states of the DFA form a simple path. Finally, we invediigtne opposite implication and show that the tight
upper bound on the depth of the minimal DFA recognizinktRT language over an-letter alphabet i%kf‘) -1
(Theoreni IB). A relationship with Stirling cyclic numbessalso discussed.

For all missing proofs, the reader is referred to the appendi

2. Preliminaries and Definitions

We assume that the reader is familiar with automata thed@}y [Phe cardinality of a sef is denoted byA| and
the power set oA by 2*. An alphabet is a finite nonempty set. The free monoid generatel sydenoted bg*. A
word overX is any element oE*; the empty word is denoted lay For a wordw € X*, alph{w) C X denotes the set of
all letters occurring inv, and|w|, denotes the number of occurrences of ledter w. A language ovek is a subset of
¥*. For alanguage overZ, letL = £* \ L denote the complement &f

A nondeterministic finite automatdNFA) is a quintupleA = (Q, %, -, I, F), whereQ is a finite nonempty set of
statesy is an input alphabet, € Q is a set of initial states; € Q is a set of accepting states, andQ x £ — 2°
is the transition function that can be extended to the do2ir X*. The languagacceptedy A is the setl (A) =
fwe Z* | | -wn F # 0}. We usually omit and write simplylw instead ofl - w. A pathx from a stateyp to a state
On under a wordaia; - - - @y, for somen > 0, is a sequence of states and input symlggé&g i@z . . . gn-18,gn SUch
thatqi,1 € Gi - @41, foralli = 0,1,...,n— 1. The pathr is acceptingif go € | andg, € F. We use the notation
Qo RN On to denote that there exists a path frggto g, under the wordy a; - - - ay. A path issimpleif all states
of the path are pairwise fierent. The number of states on the longest simple patfi décreased by one (i.e., the
number of transitions on that path) is called tlepthof the automatorA, denoted bydepti{A).

The NFAA is deterministigDFA) if ||| = 1 and|q-a| = 1 for everyqin Q andain X. Then the transition function
-is a map fromQ x X to Q that can be extended to the dom&rx X*. Two states of a DFA ardistinguishablaf
there exists a word that is accepted from one of them and rejected from the ofhBIFA is minimalif all its states
are reachable and pairwise distinguishable.

LetA =(Q,Z, - |, F) be an NFA. The reachability relatianon the set of states is defined py q if there exists
awordw in £* such thag € p-w. The NFAA is partially orderedif the reachability relatiorx is a partial order. For
two stategp andq of A, we writep < qif p < gandp # g. A statep is maximalif there is no statg such thap < q.
Partially ordered automata are also cabegclic automatasee, e.g.| [25].

SVery recently, a co-NP upper bound appeared._ih [19] in terhseparability.
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The notion of confluent DFAs was introduced|in/[25]. l&t= (Q, %, -,i, F) be a DFA and” C X be a subalphabet.
The DFA A is I'-confluent if, for every statg in Q and every pair of words, v in I'*, there exists a word in T'*
such that uw = (qyw. The DFA A is confluentif it is T'-confluent for every subalphabEt The DFA A is
locally confluentf, for every stateg in Q and every pair of letterg, b in X, there exists a wordr in {a, b}* such that
(ga)w = (gqb)w.

An NFA A = (Q,%,-,1,F) can be turned into a directed gra@{A) with the set of vertice®), where a pair
(p,g) in Q x Qis an edge iIrG(A) if there is a transition fronp to g in A. ForT C X, we define the directed graph
G(A,T) with the set of vertice® by considering all those transitions that correspond telgtinI’. For a statep, let
Y(p) ={acX|pe p-a} denote the set of all letters under which the NAthas a self-loop in the state Let A be
a partially ordered NFA. If for every stafeof (A, statep is the unique maximal state of the connected component of
G(A, 2(p)) containingp, then we say that the NFA satisfies tngique maximal state (UMS) property

A regular language ik-piecewise testabldor a non-negative integdy; if it is a finite boolean combination of
languages of the forB a; X*a,X* - - - T*apX*, where 0< n < kanda € X. A regular language ipiecewise testable
if it is k-piecewise testable for sonke> 0. We adopt the notatiob,,g,..q, = T*arX*aXx" - - - *apX* from [25]. For
two wordsv = aja; - - - &, andw € L, we say that is asubsequencef w or thatv can beembeddedhto w, denoted
byv < w. Fork > 0, letsuli(v) = {ue X* | u 5 v, |u| < k}. For two wordswy, w,, definew; ~, w, if and only if
suly(wy) = sulx(ws). If wy ~¢ Wp, we say thatv; andw, arek-equivalent Note that~y is a congruence with finite
index.

Fact 1 ([38]). Let L be a regular language, and lef denote the Myhill congruence [31]. A language L is k-PT if
and only if~cC~| . Moreover, L is a finite union ofy classes.

The theorem says that if is k-PT, then any twd-equivalent words either both belong ltoor neither does. In
terms of minimal DFAs, twd-equivalent words lead the automaton to the same state.

Fact 2. Let L be a language recognized by the minimal DRAThe following is equivalent.

1. The language L is PT.
2. The minimal DFAA is partially ordered and (locally) confluent [25].
3. The minimal DFAA is partially ordered and satisfies the UMS properity![42].

3. Complexity of k-Piecewise Testability for DFAs

Thek-piecewise testability problem for DF&sks whether, given a minimal DFA, the languagé.(A) is k-PT.
We show that it belongs to co-NP, which can be used to compateinimalk for which the language ik-PT in the
time single exponential with respect to the size of the DFA double exponential with respect to the resultingor
smallk’s we then provide precise complexity analyses.

We now prove the following theorem.

Theorem 1. The following problem belongs to co-NP:

NaMmE: k-PiECEWISE TESTABILITY
INnpuT: @ Minimal DFAA
Ourrur: Yes if and only if L(A) is k-PT

Let w; andw, be two words such thaty, < w,. Lety : {1,2,...,|wi]} — {1,2,...,|w,|} be a monotonically
increasing mapping induced by one of the possible embeddifyg; into w,, that is, the letter at thg" position in
w; coincides with the letter at thg(j)™ position inw,. Any suchg is called awitness (of the embedding) of i ws.
If we speak aboua letter a of w that does not belong to the range gfwe mean an occurrence afin w, whose
position does not belong to the rangegof



Lemma 2. Let A be a minimal DFA recognizing a PT language. If there exist Wmayds w and w that are k-
equivalent and lead to two gierent states from the initial state, such that iwa subword of w, then there exists a
w, that is k-equivalent to wleading to the same state ag such that W contains at mostlepti{A) more letters than
Wi.

Proor. Let us considew; andw; as in the statement of the lemma. lebe a witness ofv; in w,. Leta be a letter

of w, that does not belong to the rangegflLet us denotev, = waaws. If iwaa = iw,, theniwawg = iw,. Moreover,
sincea ¢ rangéy), wy is a subword ofvawg. Thus,sulk(wi) € sul(WawWg) € sul(wz), which proves thatv; and
waWs arek-equivalent. By induction on the number of lettersinthat do not belong to the range of the given witness
of wy in w, and that do not trigger a change of statefinone can show that there exists a word equivalem;tand
leading to the same state w&s that does not contain any such letter. Since in a run of anlia@utomaton there are
at mostdeptl{A) changes of states, this concludes the proof. O

Lemma 3. Let A be a minimal DFA recognizing a PT language JfA) is not k-PT, there exist two words \and
W such that:

e w; and w are k-equivalent;

e the length of wis at most kE[¥;

e W is a subword of w,

e W; and w lead to two djiferent states from the initial state.

Proor. If L(A) is notk-PT, then there existy, andw, that arek-equivalent and lead to twofliérent states from the
initial state. Let us show that fore {1, 2}, there existsv such thaw ~¢ W/ and the length of is at mosk/Z|. Let
W:‘ denote the prefix ofy; of lengthk. Assume that there exisjssuch thatsub((wi') = sub((wi”l). Then the letter at
the (j + 1) position ofw; can be removed while keeping the same set of subwords ohéngthus there existe/
equivalenttay; such that any two dierent prefixes ofv are nok-equivalent. Moreover, sinc&utn(vv{) - sub<(wi”1),
such aw/ contains at mos{)ﬁ:l IZ" < k=X letters.

To complete the proof, there are two cases. Eiljeandw, lead to the same state: then, without loss of generality,
w; andw; lead to two diferent states, which proves the claim.\@randw, lead to two diferent states: then consider
w’ such thatv' ~, wy, and bothw; andw; are subwords ofv’, which exists byl[37, Theorem 6.2.6]. Without loss of
generalityw; andw fulfill the required conditions. O

Proor (or Tueorem[d]). One can first check that the automat@roverX recognizes a PT language. By Leminha 3, if
L(A) is notk-PT, there exist twd-equivalent wordsv; andw,, with the length ofw, being at mosk|Z[¥, w; being

a subword ofw,, andw; andw, leading the automaton to twoftérent states. By Lemnfia 2, one can choes®f
length at mostleptf{A) bigger than the length af;. A polynomial certificate for nok-piecewise testability can thus
be given by providing suctv; andw,, which are indeed of polynomial length in the sizeffandX. O

If we search for the minimai for which the language ik-PT, we can first check whether it is 0-PT. If not, we
check whether it is 1-PT and so on until we find the requketh this case, the bounde* andk|Z|¥ + deptl{A)
on the length of wordgs andw;, that need to be investigated are exponential with respdctTo investigate all the
words up to these lengths then gives an algorithm that isrequital with respect to the size of the minimal DFA and
double exponential with respect to the desiked

Proposition 1. LetA be a minimal DFA that is partially ordered and confluent. Talfthe minimal k for which the
language I(A) is k-PT can be done it time exponential with respect to the afzA and double exponential with
respect to the resulting k.

Theoren 1L gives an upper bound on the complexity to decid¢hgha language ik-PT for a fixedk. We now
show that foik < 3, the complexity of the problem is much simpler.

0-Piecewise TestabilityLet A be a minimal DFA over an alphabEt The languagé.(A) is 0-PT if and only if it
has a single state, that is, it recognizes eiffieor 0. Thus, given a minimal DFA, it is decidable (1) whether its
language is 0-PT.



1-Piecewise Testability.
Theorem 4. The problem to decide whether a minimal DFA recognizes a 1aRJuage is in LOGSPACE.
The proof of Theorerml4 follows immediately from the followifemma.

Lemmab. LetA = (Q,Z, -, i, F) be a minimal DFA. The languagd.#) is 1-PT if and only if both of the following
holds:

1. for every pe Q and ac X, pa= qimplies qa= q,
2. forevery pe Qand gb € X, pab= pba.

Proor. We show successively both directions of the equivalence.

(=) Assume that.(A) is 1-PT. Since#A is minimal, p is reachable. Thus, there existssuch thatw = p. It
holds that alphfa) = alphfvaa), thuswa andwaalead to the same state, thatig = g. Similarly, we notice that
alphfvab) = alphfvba), and thugpab= pba

(&) We show that for any word, it holds thatiw = ia;a;...a, where alph{) = {a1,a,...,a,}. This then
proves that ifw; ~3 Wp, theniw; = iw,. Thus, since for any letteig b € ¥ and any statg, gab = gba we have
thatiw = ia'fa;2 ...a%" wherek; is the number of appearancesapin w. By assumption 1 and induction &g > 1,

ia'f = iay. By induction onn, we thus show thatv = ia;a;...a,. This shows confluency ofi. To show thatA is

. . b
partially ordered, assume that there exists a cpcfe q L p, for some statep # g andr, and a wordv € X*.
By the previous argument, we have that p- aw= p-awa thatis,r -a=r. Butthenr -ab= p # q=r - ba, which
violates the second assumption. O

2-Piecewise TestabilityWe show that the problem to decide whether a minimal DFA ratas a 2-PT language is
NL-complete. Note that this complexity coincides with tteamplexity to decide whether the language is PT, that is,
whether there existslafor which the language iks-PT.

Theorem 6. The problem to decide whether a minimal DFA recognizes a 2aRguage is NL-complete.

We first need the following lemma that states that for any kvemuivalent words that lead the automaton to two
different states, there exist other two equivalent words Iggitiea automaton to two flerent states, such that one
word is a subword of the other and the wordfetionly by a single letter.

Lemma7. LetA = (Q,%,,i, F) be a minimal DFA. For every k 0, if w; ~x W, and iw; # iwp, then there exist two
words w and Wwsuch that w~¢ w', w' is obtained from w by adding a single letter at some place,iang iw’.

Proor. Letw; andw; be two words such that; ~¢ w, andiwy # iw,. Then, by[37, Theorem 6.2.6], there exists a
wordws such thatv, andw, are subwords ofvs, andw; ~¢ W»> ~¢ W3. Moreover, eithew; andws, or w, andws, do
not lead to the same state. het’ € {wy, Wo, Wz} be such that is a subword of” andiv # iv’. Letv=ug, Uy, ..., Uy =

V' be a sequence such that; is obtained fromy; by adding a letter at some place. Such a sequence existsvigice
a subword of/. If, for everyi, u; andu;,; lead to the same state, theandv' does as well. Thus, there must exist
i such that the words; andu;,; lead to two diferent states and is obtained fromu;,; by adding a letter at some
place. Settingv = u; andw’ = u;,; completes the proof, sinaifx(v) C sul(w) C su(w') € sul (V') = sul(v). O

Lemma8. Let A = (Q.Z, i, F) be a minimal partially ordered and confluent DFA. The langaidg#) is 2-PT if
and only if for every & X and every states p such that there exists w with> 1, pua= paua, for every & X*.

Proor. (=) By contraposition. Assume that there existg X* and a statep such thatw = p for somew € *
containinga and such thapua# paua By the assumptiornw = wjaw,, for somews, w, € ¥* such that ¢ alphfvi),
and we want to show that;aw,ua ~, wyaw,aua However, for anyc € alphfv,aw), if ca < wyawaua then
ca < wiawua. Similarly for d € alph(ua) andad < wiawaua Sincei - wua # i - waua the minimality of A
gives that there exists a wokdsuch thatwuav € L(A) if and only if wauav¢ L(A). Since~; is a congruence,
wuav~; wauay which violates Fadill, hendgA) is not 2-PT.
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(&) Letw; andw; be two words such that; ~, w,. We want to show thatv; = iw,. By LemmdY, it is sfficient
to show this direction of the theorem for two wondgndw’ such thaiv' is obtained fronw by adding a single letter
at some place. Thus, latbe the letter, and let

W=a2aj...881...anandw = a;...akadq1...an

forO <k <n. Letw; = aa,1...a;. We distinguish two cases.

(A) Assume that does not appear iw; k. Thena must appear inv.1,. Consider the first occurrence afin
Wi1n. Thenwy,1n = Uzalp, wherea does not appear imy. Let B = alphu;a). ThenB C alph,), because if there
is noain wy kU, any subwordax, for x € B, that appears i = wy xawaw, must also appear in the subwad, of
W = Wy gUialp.

Letuy = x(b1xoboxa . .. XebrXer1, whereB = {by, by, . . ., by} andb; does not appear ikbixz... xj, j =1,2,...,¢.
Letv = biby...b,. Letz e {i - wiku1a, i - wikawa). We prove (by induction on) that for everyj = 1,2,...,¢,
there exists a worglj such thatz- (bib;...bj)Ry; = z- x:b1XoboXs ... XjbjXj41. Sinceb; appears in;, we use the
assumption from the statement of the theorem to obtaixyb;) - X2 = (z- by xib1) - Xo. Assume that it holds foy < k.
We prove it forj + 1. Again,b;,1 appears in; implies that

Z- X1b1X2b2X3 e ijij+1bj+1Xj+2 = ((Z X1b1X2b2X3 < X bj Xj+1)bj+1)Xj+2
= ((z- by...bab1yj)bji1)Xj 2
=Z- bj+1bj C bzblyjbj+1Xj+2

where the second equality is by the induction hypothesiglaathird is by the assumption from the statement of the
theorem applied to the underlined part. Thus, in partigttere exists a worg such that - wy yu;ay = i - w and
i -wpaually =i -w.

Finally, letz; = i - wyxuja andz = i - wyawa. We prove that - VR = z - VR, which then concludes the proof
since it implies that - w = i - w. To prove this, we make use of the following claim.

Claim 1 (Commutativity). For every ab € X and every state p such that w = p and a and b appear in w,
p-ab=p-ba.

Proor. By the assumption of the theorem, sirecappears iw, p-ba= p-aba= q;. Similarly, sinceb appears irw,
we also haveg - ab= p-bab= q,. Theng,-a=(p-ab)a=q;andqg; - b = (p- bab = q.. Since the automaton is
partially orderedg; = qp. o

We can now finish the proof by induction on the lengthvBf= by ...b,b; by showing that the Statg = z -

b, ...bob; has self-loops undds, i = 1,2. Letz g_bzg Z = 0,¢+1000,¢be-10 ¢-1 - - - Gi 2b10;,1 denote the path defined

by the wordv® from the state;, i = 1, 2.
Claim 2. Both stateszand Z have self-loops under all letters of the alphabet B.

Proor. Indeed,q ;- bj = ¢ j+1 - bjb; = 0ij<1 - b; = 0 j, where the second equality is by the assumption from the
statement of the theorem, sinlsgappears iru;. Thus, there is a self-loop i j underb;.
Then, we have = q1 = ¢i.1b1 = Zb;. Now, for everyj = 2,...,¢, we havez = g1 = ¢ j-bj_1...b2by =
0ij - bjbj_1... bbby = g j - bj_1...bobibj = Zb;, where the third equality is because there is a self-loagp jrunder
bj, and the fourth is by several applications of commutatif@aim[l above). o

Thus, since no other states are reachable ffpamdz, underB, andz, andz, are reachable from wy x by words
overB, confluency of the automaton implies tizat= Z,, which completes the proof of part (A).

(B) If a = & for somei < k, we consider two cases. First, assume that for egery U {¢}, cais a subword of
w aimplies thatcais a subword ofv, . Thenaais a subword ofv, k. Letw;x = wsaws, wherea does not appear
inwy. Letq=i-wsa, and letB = alphfns). Note thatB C alphfws), since ifxais a subword ofvy ka, then it is also in
wsa. By the assumption of the theoreqi= i - wza = i - wzaa, hence we get that there is a self-loogjinndera. Now,
by the self-loop undes in g and commutativity (Clairall above), wy = - awy = - Waa. Thus,i - Wy = i - Wy ka.
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Second, assume that there exisis wix such thatca < wika is not a subword ofv; . Thena must appear
in wi.1n. Together, there exist< k < j such thatg; = a; = a. By the assumption of the theorem, we obtain that
i - WygaWe1j = 1 - Wi Wie1,j, SINCEW,1,j = X8, for somex € =¥, This implies that -w=1i-w'.

This completes the proof of part (B) and, hence, the wholefpro O

This result gives a PTIME algorithm to decide whether a madiBFA recognizes a 2-PT language. However, our
aim is to show that the problem is NL-complete. To show thatgfoblem is in NL, we need the following lemma,
which gives a characterization of 2-PT languages that careliied locally in nondeterministic logarithmic space,
and provides a quadratic-time algorithm.

Lemma9. LetA = (Q,%, -, i, F) be a DFA. Then the following conditions are equivalent:
1. For every a X and every state s such that iws for some we * with W, > 1, sua= saua, for every & X*.

2. For every ae X and every state s such that iw s for some we X* with w|; > 1, sba = saba for every
beXul{el

Proor. (1= 2) 2. is a special case of 1. whare- b.

(2 = 1) We prove this direction by induction on the lengthuofLet a € alphfw) such thaiw = s. If u = ¢, then
we takeb = £. Otherwise, we hava = u’b. By induction hypothesis, we hawla = sada. Thussua= suba =
(su)ba= (su)aba= (sua)ba= (sada)ba= (sau)ba= saua O

Proor (oF Treorem[B). The check of whether a minimal DFA it confluent or doesiot satisfy condition 2 of
Lemmd® can be done in NL; the reader is referred.to [7] for @finow to check confluency in NL. Since Nico-
NL [22,141], we have an NL algorithm to check 2-piecewiseab8ity of a minimal DFA. NL-hardness follows from
the following lemma. O

Lemma 10. For every k> 2, the k-PT problem is NL-hard.

Proor. To prove NL-hardness, we reduce an NL-complete prolofemotone graph accessibility (2MGAI?], which

is a special case of the graph reachability problem, ttpecewise testability problem. An instance of 2MGAP is
a graph G, s, g), whereG = (V, E) is a graph with the set of verticds = {1, 2, ..., n}, the source vertes = 1 and
the target verteg = n, the out-degree of each vertex is bounded by 2 and for all®e@lye), v is greater tham (the
vertices are linearly ordered).

We construct the automatafi = (V U {i, f1, fa,. .., fier, d}, 2, -, 0, { fk-1}) as follows. For every edgei(v), we
construct a transition - a,, = v over a fresh lettea,,. Moreover, we add the transitiomsa = s, g-a = f; and
fira= fi,1,i =1,2,..., k=2, over afresh lettesl. The automaton is deterministic, but not necessarily majsince
some of the states may not be reachable from the initial, siaBome states may be equivalent. To ensure minimality
of the constructed automaton, we add, for each stat¥ \ {s}, new transitions fromto v under fresh letters, and for
each stat® € V \ {g}, new transitions fronv to f,_; under fresh letters. All undefined transitions go to the sirzite
d.

Claim 3. The automatot# is deterministic and minimal, and(JA) is finite.

Proor. Note that, by construction, all states are reachable franirtitial state and can reach (except the sink state)
the unique accepting stafig_1. In addition, the automaton is deterministic and minimaice every transition is
labeled by a unique label (except for the transitioms= s andga“! = f,_; labeled with the same letter), which
makes the states non-equivalent. FindllfA) is finite because the monotonicity of the gra@) ¢ g) implies that
the automaton does not contain a cycle nor a self-loop (leusitlik stated). o

The following claim is needed to complete the proof.

Claim 4. Letw be a word oveE. If every a front appears at most once in w, that j&|, < 1, then the languaggw}
is 2-PT.



Proor. First, since the languadey} is PT, the minimal DFA is partially ordered and confluent. itiee condition of
Lemmd8 is trivially satisfied, since, after the second o@nre of the same letter, the minimal DFA accepfingis
in the unique maximal non-accepting state. o

We now show that the langua@éA) is k-PT if and only ifg is not reachable frors.

By contraposition, we assume thgis reachable frons. Letw be a sequence of labels of such a path froimg
in A. Then the wordawd~! belongs toL(A) andawa does not. Howevegwd~! ~, awd, which proves that the
languagéd._(A) is notk-PT.

If gis not reachable frorg, the language(A) = {aw, aly, . .., alp, Ugs1, . . ., Urss) Ufwi @t woak L, .. winak1},
whereu; andw; are words ovek \ {a} that do not contain any letter twice. Then the first part iST20 the previous
claim, as well as the second part foe 2. It remains to show that, for arky> 3, the second part df(A) is k-PT.
Assume that/v,-a"‘l ~k W, for some 1< j < mandw € ¥£*. Thenw = viawa...aw for somevy, vs, ...,V such
that|vy ... wla = 0. Sincelw;jl, = 0 and, for any lettec of v, - - - v (resp. ), the wordaca (resp. a“"*c) can be
embedded intovja“?, that is, intoa“, we have that, - - - v = &, i.e.,w = v;a“L. Sincew;a? ~ v;a*"1, we have
thatw;a = via— hencew;a“"! andw lead to the same state, concluding the proof. O

It was shown ini[4] that the syntactic monoids of 1-PT langsaare defined by equatiors- x? andxy = yx, and
those of 2-PT languages by equatiotygzx= xyxzxand (y)> = (yX)>. These equations can be used to achieve NL
algorithms. However, our characterizations improve thiesalts and show that, for 1-PT languages, it i§isient to
verify the equations = x> andxy = yxon letters (generators), and that, for 2-PT languages tiequayzx= XyXzx
can be verified on letters (generators) up to the elememhich is a general element of the monoid. It decreases the
complexity of the problems. Moreover, the partial order éndal) confluency properties can be checked instead of
the equationxy)? = (yX)>2.

3-Piecewise TestabilityThe equationsxy)® = (yX)3, Xzyxvxwy= Xzxyxvxwyandywxvxyzx= ywxvxyxzxharacter-
ize the variety of 3-PT languages [4]. Non-satisfiabilityaofy of these equations can be check in the DFA in NL by
guessing a finite number of states and the right sequencesnaftions between them (in parallel, when labeled with
the same labels). Thus, we have the following.

Theorem 11. The problem to decide whether a minimal DFA recognizes a BaRJuage is NL-complete.

k-Piecewise TestabilityEven thoughl[5] provides a finite sequence of equations toedfiek-PT languages over a
fixed alphabet for anit > 4, the equations are more involved and it is not clear wheliesrcan be used to obtain the
precise complexity. So far, tHepiecewise testability problem can be shown to be NL-hasdKf> 2) and in co-NP,
and it is open whether it tends rather to NL or to coENP.

4. Complexity of k-Piecewise Testability for NFAs

The k-piecewise testability problem for NFAsks whether, given an NF&, the languagé (A) is k-PT. A
language is 0-PT if and only if it is either empty or universaince the universality problem for NFAs is PSPACE-
complete[[16], the O-PT problem for NFAs is PSPACE-compléising the same argument aslinl[21] then gives us
the following result.

Proposition 2. For every integer k> 0, the problem to decide whether an NFA recognizes a k-PT kaggus
PSPACE-hard.

Sincek is fixed, we can make use of the idea of Theorém 1 to decide whathNFA recognizeslaPT language.
The length of the wordv, is now bounded by'2 wheren is the number of states of the NFA. Guessing the ward
on-the-fly then gives that tHepiecewise testability problem for NFAs is in PSPACE.

Theorem 12. The following problem is PSPACE-complete:

4See the acknowledgement for the recent development.



Name: k-Piecewise TEsTaBILITYNFA
InpuT: an NFAA
Ourrur: YEs if and only if L(A) is k-PT

Proor. Let A be an NFA over the alphabgt Let A’ denote the minimal DFA obtained frorfi by the standard subset
construction and minimization. By Theoré&in 1, and sincevtedl known that NPSPACEPSPACE-co-PSPACE, we
can guess and store a wokg of length at mosk|Z|¥ and to enumerate and store all words of length at eohere
areYX , [Z| such words, which is polynomial, sinkds a constant. First, we mark all of these words that appear as
subwords ofv;. Then we guess (letter by letter) a wawg such thatv, is a subword ofv, (which can be checked by
keeping a pointer ta;;) and such that the length o is at mostw;| + 2" = O(2"), wheren is the number of states of
the NFA. With each guess of the next lettemaf we correspondingly move all the pointers to all the stordaords
to keep track of all subwords ef,. We accept ifn; andw, have the same subwordg; is a subword ofv,, andw;
andw, lead the minimal DFAA’ to two different states. Note that because of the space limits the @lifFA A’
cannot be stored in the memory, but must be simulated ofitivéiile the wordws; is being guessed. The statesf
defined by the wordv, can then be compared with the stateffdefined by the wordv;, which is either computed
at the end or stored from the beginning. O

The problem to find the minimé for which the language recognized by an NFAIRT is PSPACE-hard, since
alanguage is PT if and only if there exists a minirkal 0 for which it is PT.

5. Piecewise Testability and the Depth of NFAs

In this section, we generalize a result valid for DFAs to N&hsl investigate the relationship between the depth
of an NFA and the minimak for which its language i&-PT. We show that the upper bound kgiven by the depth
of the minimal DFA can be exponentially far from such a minitaViore specifically, we show that for eveky> 0,
there exists &PT languagé. recognized by an NFAA of depthk — 1 and by the minimal DFAD of depth ¥ — 1.
Recall that a regular language is PT if and only if its miniD&A satisfies some properties that can be tested in a
quadratic time, cf. Fa€l 2. We now show that this characéion generalizes to NFAs. We say that an NAfover
an alphabek is completdf for every stateq of A and every lettea in X, the sefg - a is nonempty, that is, in every
state, a transition under every letter is defined.

Theorem 13. Aregular language is PT if and only if there exists a compMftA that is partially ordered and satisfies
the UMS property.

Proor. (=) If a regular language is PT, then its minimal DFA is partiadkdered and satisfies the UMS property
by [42].

(<) To prove the other direction, 1A = (Q, X, -, |, F) be a complete partially ordered NFA such that it satisfies th
UMS property. LetD be the minimal DFA computed frotl by the standard subset construction and minimization.
We represent every state &by a set of states ofl.

Claim 5. The minimal DFAD is partially ordered.

Proor. Let X = {py, p2,..., pn} With p; < pj fori < j be a state of), and letw € £* be such thaX - w = X. By
induction onk = 1,2,...,n, we show thapw = p;. Assume that for all < k, it holds thatpjw = p;. We prove
it for k. SinceX = {p1, p2,..., P} = Xw = UL piw, px < pw andpiw = p; for i < k, we have thapx € pew.
Thus, alph@) € X(px) and the UMS property ofl implies thatpyw = px. Therefore, for everpa € alphfw) and
i=12...,n pa= p. If, for any stateY of D, Xwy = Y andYw, = X, the previous argument gives thét=Y,
henceD is partially ordered. o

Claim 6. The minimal DFAD satisfies the UMS property.
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Proor. Assume, for the sake of contradiction, that there existdifi@rent stateX andY in the same component of
D that are maximal with respect to the alphabgX). That is, there exist a staiin O and two wordsi andv over
¥(X) such thatX = ZuandY = Zv. Without loss of generality, we may assume that there egistatex in X \ VY.
Letzin Z be such thak = zu Sincex does not belong t¥, zv # x. Note thatzvis defined, sinceA is complete.
By the proof of the previous claint(X) € Z(zv) andX(X) € X(x). If xis not reachable fromv by Z(x), we have a
contradiction with the UMS property off. Thus, assume thaw reaches underz(x), that is,zv < x. If x does not
reachzvunderX(z\v), thenzvand a maximal state of- £(z\)* are two diferent maximal states ifl, a contradiction.
If x reachegvunderX(zv), thenx < zv, which implies, since the NFA is partially ordered, tkat= x, which is again
a contradiction. o

Thus, we have shown that the minimal DA is partially ordered and satisfies the UMS property. [Eact ® no
completes the proof. O

As it is PSPACE-complete to decide whether an NFA defines aaRguage, it is PSPACE-complete to decide
whether, given an NFA, there is an equivalent complete NRAithpartially ordered and satisfies the UMS property.

5.1. Exponential Gap between k and the Depth of DFAs

It was shown inl[25] that the depth of minimal DFAs does notespond to the minimé for which the language
is k-PT. Namely, an example of {4- 1)-PT languages with the minimal DFA of deptii’4for £ > 1, has been
presented. We now show that there is an exponential gap eetthe minimak for which the language ik-PT and
the depth of a minimal DFA.

Theorem 14. For every n> 2, there exists an n-PT language that is rfpt- 1)-PT, it is recognized by an NFA of
depth n— 1, and the minimal DFA recognizing it has de@h- 1.

Proor. For evenk > 0, we define the NFA

A= ({0,1,...,k}, {ag, a1, ..., &}, Ik {0})

with I, = {0,1,..., Kk} and the transition functiorconsisting of the self-loops undarin all statesj > i and transitions
undera; from the state to all states) < i. Formally,i-a; =iifk>i>j>0andi-a ={0,1,...,i-1}ifk>i>1.
Automata#, and.As are shown in Fid.J1. Note thady is an extension afy_3, in particular,L(Ax-1) € L(Ay).

2, N o, a1, & o, & )
—)% T a »@ — a3 »%Zé_))f a »@
a / T ~ /T
ag

Figure 1: AutomataA; andAs.

We define the wordy, inductively bywy = ao andw, = w,_1a,w,_1, for 0 < £ < k. Note thatiw,| = 2/+1 — 1.
In [21], we have shown that every prefix wf of odd length ends witlgy and, thus, does not belongitg#y), while
every prefix of even length belongs k§Ay). For convenience, we briefly recall the proof here. The gmird
belongs td_(Ag) C L(Ax). Letv be a prefix ofm, of even length. Ifv] < 2K — 1, thenvis a prefix ofw,_; and, by the
induction hypothesisj € L(Ax_1) € L(Aw). If V| > 2K — 1, thenv = wi_aV'. The definition ofA, and the induction

hypothesis then yield that there is a pktﬁv—kli k2 (k-1) Y o. Thus,v belongs toL(Ay).
We now discuss the depth of the minimal DFA recognizing tinglegel (Ay).

Claim 7. For every k> 0, the depth of the minimal DFA recognizing the languag@j) is 2+ — 1.
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Proor. We prove the claim by induction da Fork = 0, the minimal DFAde{Ap) = ({{0}, 0}, {av}, -, {0}, {0}) obtained
from Ay by the standard subset construction and minimization hastates, accepts the single werdindag goes
from the initial statdy = {0} to the sink stat@®. Thus, it has depth 1 as required. Consider the ware Wi_jacWi_1
fork > 0. By the induction hypothesis, there exists a simple palérafth *—1 in de{Ax_,) defined by the woreh_;
starting from the initial staté = {0, 1, ...,k — 1} and ending in the state Let Qp, Q1, . .., Qx_1 denote the states of
that simple path in the order they appear on the path, th@is; I, Qx_; = 0, andQ; € Qp fori =1,2,...,2¢~ 1.
Note that the states are pairwise non-equivalent by thectimuhypothesis. Letv._1; denote the-th letter of the
wordwi_;. Then the path

(Qo U (k) = (Qu U {KI) = (Qa U {KY) = (Qay U K1) 25 Qo —5 Q —25 Q, =5 Qay

Wi-1 Wic-1

consists of &1 different states. We show that these states are pairwise nivalemqd. Since the lettea is accepted
from every stat&; U {k}, but from no stat&), for0<i, j < 2k—1, the state; U {k} is distinguishable from the state
Qi. MoreoverQU {k} andQ’ U {k} are distinguished by the same word as the st@tasdQ’, that are distinguishable
by the induction hypothesis. Thus, we have a simple pathngjtte2+* — 1 as required. o

We now show thatAy defines ak + 1)-PT language that is n&tPT.
Claim 8. For every k> 0, the language (Ay) is (k + 1)-PT.

Proor. By induction onk. Fork = 0, the languagé&(Ap) = {&} = NacsLa is indeed 1-PT. Consider the automaton
Ay and letu andv be two words such that ~,1 v. Assume thati € L(Ay). We show that € L(Ay) as well. If

u does not contain the letteg, thenu € L(Ax-1) and, sincau ~,1 v implies thatu ~ v, the induction hypothesis
gives thatv € L(Ak-1) C L(Ay). If u contains the letteay, the definition ofAy gives thatu is of the formu = uzacuy,
whereu; U, does not contain the lettek. Sinceu ~x,1 Vv, the wordv is also of a fornv = vyaxVv,, wherev,v, does
not contain the lettea,. However,u, ~ vz, sincew € sulk(up) if and only if axw € suly.1(Urakly) = Sublx,1(ViakVa),
which is if and only ifw € sul(v2). Since, by the induction hypothesis, € L(Ax_1) implies thatv, € L(Ak_1), we
obtain thatv € L(Ay). o

Claim 9. For every k> 0, the language (Ay) is not k-PT.

Proor. Letwy = wi_1axWk-1 be the word defined above. Lef denote the prefix ofi without the last letter (which
is ap), that is,wk = w,a,. We now show, by induction ok, thatwy ~¢ w,. This then implies that the language
L(Ay) is notk-PT, becausev, belongs toL(Ax) while wi does not belong th.(Ay). Indeed, fork = 0, we have
Wo = @ ~o & = Wp. Thus, assume tha, ~x w; for somek > 0, and consider a wordl € Suly,1(Wxak:1Wk). Then
the wordw can be decomposed @ = ww”’, wherew’' is the maximal prefix ofv that can be embedded into the
word wiak,1. Note thatw” is a sufix of w that can be embedded intq. Sincelw| > 0, we have thaw’| < k.
By the induction hypothesisy” € sulk(w) = suk(w;). Thus,w = Ww”’ € suly,1(Wkak.1W,), which proves that
Wic+1 ~k+1 VV|,(+1- ©

To finish the proof of Theorefn 14, note that every NfAR has depttk, accepts ak + 1)-PT language that is not
k-PT and its minimal DFA has depttf2 — 1. This completes the proof. O

Although it is well known that DFAs can be exponentially larghan NFAs, an interesting by-product of this
result is that there are NFAs such that all the exponentiailrer of states of their minimal DFAs form a simple path.

It could seem that NFAs are more convenient to provide uppants on th&. However, the following simple
example demonstrates that even for 1-PT languages, thk deph NFA depends on the size of the input alphabet.
Specifically, for any alphabét, the languagé = (), La Of all words containing all letters & is a 1-PT language
such that any NFA recognizing it requires at ledSt2ates and has depij. A deeper investigation in this direction
is provided in the next section.
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Example 15. Let L = (,cx La be a language of all words that contain all letters of the alfgh. Then 2! states are
sufficient for an NFA to recognizk. Indeed, the automataf = (2%, %, -, {0}, {Z}) with the transition function defined
by X-a = XuU{a}, for X C ¥ anda € X, recognize4. The depth ofA is |Z|, since every non-self-loop transition goes
to a strict superset of the current state.

To prove that every NFA requires at lea$t &tates, we use a fooling set lower-bound technigue [3]. Afgairs
of words{(x, y1), (X2, ¥2), - - ., (Xn, Yn)} is @ fooling set foIL if, for all i, the wordsxy; belong toL and, fori # j, at
least one of the wordsy; andx;y; does not belong th. To construct such a fooling set, for akyc %, we fix a word
wyx such that alphix) = X. LetS = {(wx, ws\x) | X € Z}. Then alphxws\x) = £ andwxws,x belongs tal. On the
other hand, foiX # Y, eitherX U (£ \ Y) or Y U (2 \ X) is different fromZ, which implies thatS is a fooling set of
size 2*I. The main result of [3] now implies the claim. It remains toye that the depth is at leg&{. However, the
shortest words of are of lengthZ|, which completes the proof.

Note that if we consider union instead of intersection, #sitting minimal DFA has only 2 states and depth 1.

6. Tight Bounds on the Depth of Minimal DFAs

If a PT language is recognized by a minimal DFA of deftithen it is¢-PT. However, the opposite implication
does not hold and the analysis of Secfidn 5 shows that theidmegcan bef(— i)-PT for exponentially largé's.
Therefore, we study the opposite implication of the reladiup betweek-piecewise testability and the depth of the
minimal DFA in this section. Specifically, givenkaPT language over amletter alphabet, we show that the depth of
the minimal DFA recognizing it is at moéti” -1

To this end, we first investigate the following problem.

Problem 16. Let X be an alphabet of cardinality> 1 and letk > 1. What is the length of a longest wona, such
thatsug(w) = 2= = {v e * | M| < k} and, for any two distinct prefixes; andw, of w, sulg(w;) # Sulx(w,)?

The answer to this question is formulated in the followinggwsition proved below by two lemmas.

Proposition 3. LetX be an alphabet of cardinality n. The length of a longest wardsatisfying the requirements of
Problent16 is given by the recursive formi = Py, = Px_1n + Pkn-1 + 1, where Ry = m= P, form> 1.

Equivalently stated, Problem116 asks what is the depth oftheanonical DFA whose states correspond-tQ
classes, that is, of a DFA = (Q,Z, -, [£], F), whereQ = {[W] |we ES"}, W] = {w | W ~¢ w}, and the transition
function- is defined so that, for a stat@][and a lettei, [w] - a = [wa]. The set of accepting statésis not important
here, but will be used later.

We show below that the solution to this problem is given byfatlewing recursive formula:

|w| = Pk,n = Pk—l,n + Pk,n—l +1,

whereP; m, = m= Py, foranym > 1.
The following lemma shows that is not longer tharPy .

Lemma 17. Let k and n be given, and let'vbe any word over an n-letter alphabet satisfying the requiats of
ProblenT1®6. Thetw'| < Pyp.

Proor. Letw be a word oveE = {ay, ay, ..., an} with the orders; < a; if i < j induced by the occurrence afin w'.
For instanceabadcainduces the ordea < b < d < ¢. Letzdenote the first occurrence af in w. Thenw = w;zw,,
wherew; is a word overa, ay, . . ., a,-1} satisfying the second requirement of Problerth 16, hémge< Py,;. On
the other hand, since alpkz) = X, any prefix ofw, extends the set of subwords with a subword of length at least 2
Thus,w, cannot be longer than the longest word aveontaining all subwords up to lengith- 1, that is Jw,| < Py_1n.
This completes the proof. O

We now show that there exists a word of lengih.

Lemma 18. For any positive integers k and n, there exists a word w of leriy , satisfying the requirements of

Problenl16.
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Proor. Let X, denote the alphabghy, a, ..., a,} with the orderg; < a; if i < j. Forn = 1 andk > 1, the word
W1 = akis of lengthPy ; and satisfies the requirements, as well as the Warg= a;a; . . . a, of lengthPy, fork = 1
andn > 1. Assume that we have constructed the wakdsof lengthP; ; for alli < kandj < n, Wi , of lengthP; , for
alli <k, andW; of lengthPy ; for all j < n. We construct the wortd , of lengthPy , overZ, as follows:

Wk,n = Wk,n—l an Wk—l,n .

It remains to show that , satisfies the requirements of Problenh 16. However, the saitofords of\k_; , is
¥sk-1 Since alph{Vk,_1an) = X, we obtain that the set of subwordsWf , is X%,

Letw; andw; be two diferent prefixes ofMn. Without loss of generality, we may assume thvatis a prefix of
w,. If they are both prefixes i -1, the second requirement of Problem 16 follows by inductibmv, is a prefix
of Wi n-1 andw;, containsa,, then the second requirement of Problerh 16 is satisfied uiseea does not contaiay,.
Thus, assume that botly andw, containa,, that is, they both contait,-1a, as a prefix. Letv; = Win-1a,w;
andw, = Wi n_1a,w;W,,. Since, by inductionsuly_1(w;) C suly_1(w;w,), there exists € suly_y(W,w;) \ suly_1(w;).
Thena,v belongs tasulx(w.), but not tosukk(wz), which completes the proof. O

It follows by induction that for any positive integekaandn

Pin = (kl n) _1. )

We now use this result to show that the depth of the minimal D&#ognizing &-PT language over am-letter
alphabet iy , in the worst case.

Theorem 19. For any natural numbers k and n, the depth of the minimal DR&ognizing a k-PT language over an
n-letter alphabet is at mostR. Moreover, the bound is tight for any k and n.

Proor. LetLyn be ak-PT language over amletter alphabet. Sinde,, is a finite union ot~ classes [38], there exists
F such that the- -canonical DFAA = (Q, %, -, [£], F) recognized.x n. The depth ofA is Py . Let min(A) denote the
minimal DFA obtained fromA by a standard minimization procedure. Since the minimizetioes not increase the
depth, the depth ahin(A) is at mostPy .

To show that the bound is tight, let denote a fixed word of lengtBy ,, which exists by Lemm@aZ18. Consider
the ~¢-canonical DFAA’ = (Q,Z, -, [¢], F), whereF = {[w] | w is a prefix ofw of even length Thenw defines a
pathmy, = [£] o, [wa] N [wao] ... 5 [w] in A’ of length Py ,, wherew; denotes the prefix oiv of lengthi and
accepting and non-accepting states alternate. Agaimil&tA’) denote the minimal DFA obtained froit’. If there
were two equivalent states i, then they must be of the same acceptance status. Howetigedreany two states
with the same acceptance status, there exists a state withpghosite acceptance status. Therefore, joining the two
states creates a cyclemin(A’), which is a contradiction with Falt 2, since the DPA recognizes a PT languagde.

A few of these numbers are listed in Table 1. We now presemiratgonsequences of these results.

K "l n=1|n=2|n=3 | n=4 | n=5| n=6
k=1 1 2 3 4 5 6
k=2 2 5 9| 14| 20| 27
k=3 3 9| 19| 34| 55| 83
k=4 4| 14| 34| 69| 125 209
k=5 5| 20| 55| 125| 251 461
k=6 6| 27| 83| 209]| 461 | 923

Table 1: The table of a few first numberg,
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1. Note that it follows from the formula th& , = Pnx. This gives and interesting observation that increasieg th
length of the considered subwords has exactly the sd@faetas increasing the size of the alphabet.

2. Equivalently stated, Probldml16 asks what is the deptheoft-canonical DFA, whose states arg classes.
The number of equivalence classesfi.e., the number of states, has recently been investiga{2d].

3. It provides a precise bound on the lengthwgfof Theoreni L. However, it does not improve the statement of
the theorem.
To provide a relationship d®x, with Stirling cyclic numbers, the following can be shown.

Proposition 4. For positive integers k and nR = & X, [¥77|n', where| | denotes the Stirling cyclic numbers.

Proor. To prove this, we first recall the following well-known prenies of Stirling cyclic numbers.

k
=Kkl and meizx(x+1)~-~(x+k—1)=

i=0

k+1
1

(x+k—1)!

(x-=1)! @)

Now we prove the claim.

k+1] ;1 O[k+1]

i+1]" _m;>i+l_n

(multiplication byn/n)
k+1

1 [k+1] ;
‘ng i |

(changing indexes)
k+1
1 k+1]| ;
~ K [Z[ i }”' B
i=0
(adding the casdas= 0, 1 into the sum)

1 ((k+n)!
- m((n_m _k!n)

(by EquationiR)
_ (k+n)!
n'kl
= Pk,n
(by Equatiorill)

k+1n
1

This completes the proof. O

Finally, note that one could also see a noticeable relat@wéen the columns (resp. rows) of Table 1 and the
generalized Catalan numbers|of|[13]. We leave the detatlsi®torrespondence for a future investigation.
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