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Abstract

For a non-negative integerk, a language isk-piecewise testable (k-PT) if it is a finite boolean combination of languages
of the formΣ∗a1Σ

∗ · · ·Σ∗anΣ
∗ for ai ∈ Σ and 0≤ n ≤ k. We study the following problem: Given a DFA recognizing

a piecewise testable language, decide whether the languageis k-PT. We provide a complexity bound and a detailed
analysis for smallk’s. The result can be used to find the minimalk for which the language isk-PT. We show that the
upper bound onk given by the depth of the minimal DFA can be exponentially bigger than the minimal possiblek,
and provide a tight upper bound on the depth of the minimal DFArecognizing ak-PT language.

1. Introduction

A regular language ispiecewise testable(PT) if it is a finite boolean combination of languages of the form

Σ∗a1Σ
∗a2Σ

∗ · · ·Σ∗anΣ
∗

whereai ∈ Σ andn ≥ 0. It is k-piecewise testable(k-PT) if n ≤ k. These languages were introduced by Simon in
his PhD thesis [38]. Simon proved that PT languages are exactly those regular languages whose syntactic monoid is
J-trivial. He provided various characterizations of PT languages in terms of monoids, automata, etc.

In this paper, we study thek-piecewise testabilityproblem, that is, to decide whether a PT language isk-PT.

Name: k-PiecewiseTestability

Input: an automaton (minimal DFA or NFA)A

Output: Yes if and only ifL(A) is k-piecewise testable

Note that the problem is trivially decidable, since there isonly a finite number ofk-PT languages over the input
alphabet ofA.

We investigate the complexity of the problem and the relationship betweenk and the depth of the input automaton.
The motivation to study this relationship comes from the result showing that a PT language isk-PT for anyk bigger
than or equal to the depth of its minimal DFA [25].

Our motivation is twofold. The first motivation is theoretical and comes from the investigation of various frag-
ments of first-order logic over words, namely the Straubing-Thérien and dot-depth hierarchies. For instance, the
languages of levels 1/2 and 1 of the dot-depth hierarchy are constructed as booleancombinations of variants of lan-
guages of the formΣ∗w1Σ

∗ . . .Σ∗wnΣ
∗, wherewi ∈ Σ

∗, cf. [27, Table 1]. The reader can notice a similarity to PT
languages. For these fragments, a problem similar tok-piecewise testability is also relevant.

The second, practical motivation comes from simplifying the XML Schema specification language.
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Simplification of XML Schema.XML Schema is currently the only schema language that is widely accepted and
supported by industry. However, it is rather machine-readable than human-readable. It increases the expressiveness of
DTDs, but this increase goes hand in hand with loss of simplicity. Moreover, its logical core does not seem to be well
understood by users [29]. Therefore, the BonXai schema language has recently been proposed as an attempt to design
a human-readable schema language. It combines the simplicity of DTDs with the expressiveness of XML Schema.
Its aim is to simplify the development and analysis of XML Schema Definitions (XSDs). The BonXai schema is a set
of rules of the formLi → Ri , whereLi andRi are regular expressions. An XML document (unranked tree) belongs to
the language of the schema if, for every node of the tree, the labels of its children form a word that belongs toRi and
its ancestors form a word that belongs toLi , see [29] for more details.

When translating an XSD into an equivalent BonXai schema, the regular expressionsLi are obtained from a finite
automaton embedded in the XSD. However, the current techniques of translating automata to regular expressions do
not yet generate human-readable results. Therefore, we restrict ourselves to simpler classes of expressions that suffice
in practice. Practical and theoretical studies show evidence that expressions of the formΣ∗a1Σ

∗ · · ·Σ∗an, whereai ∈ Σ,
and their variations are suitable for this purpose [17, 30].

Any state of the DFA embedded in the XSD represents a languageand we need to compute an over-approximation
Li for each of them that is disjoint with the others. This reduces to the language separation problem: Given two
languagesK andL and a family of languagesF , is there a languageS in F such thatS includesK and is disjoint
with L? It is independently shown in [9] and [33, 43] that the separation problem for regular languages represented
by NFAs and the family of PT languages is decidable in polynomial time. A simple method (in the meaning of
description) to compute a PT separator is described in [20],where its running time is investigated. Another technique
is described in [33].

Assume that we have computed a PT separator. Since the standard algorithms translating automata to regu-
lar expressions do not generate human-readable results andmostly use “only” the basic operations (concatenation,
Kleene star and union), we face the problem how to generate human-readable expressions of the considered simple
forms. Note that the expressions we are interested in contain the operations of intersection and complement (called
generalized regular expressions). These operations make them non-elementary more succinct than classical regular
expressions [10, 40]. See also [18] for more details. Unfortunately, not much is known about transformations to
generalized regular expressions [12].

For a PT language it means to decompose it into a boolean combination of expressionsΣ∗a1Σ
∗a2Σ

∗ · · ·Σ∗anΣ
∗. If

we knew that the language isk-PT, this could be derived using a brute-force method and/or the∼k-canonical DFA, the
DFA whose states are∼k classes, cf. Fact 1. Indeed, the lower thek, the lower the complexity. An upper bound onk is
given by the depth of the minimal DFA [25]. However, we show later that the minimalk can be exponentially smaller
than the depth of the DFA. Note that the number of states of the∼k-canonical DFA has recently been investigated
in [23] and the literature therein.

Applications of PT Languages.Piecewise testable languages are of interest in many disciplines of mathematics and
computer science. For instance, in semigroup theory [1, 2, 32], since they possess interesting algebraic properties,
namely, the syntactic monoid of a PT language isJ-trivial, whereJ is one of the Green relations; in logic over
words [11, 34, 35] because of their close relation to first-order logic—piecewise testable languages can be character-
ized by a (two-variable) fragment of first-order logic over words, namely, they form level 1 of the Straubing-Thérien
hierarchy as already depicted above; in formal languages and automata theory [8, 25, 33], since their automata are
of a special simple form (they are partially ordered and confluent) and PT languages form a strict subclass of the
class of star-free languages, that is, languages definable by LTL formulas; in natural language processing, since they
can describe some non-local patterns [14, 36]; in learning theory, since they are identifiable from positive data in
the limit [15, 26]; in XML databases [9], which is our original motivation described in detail above. The list is not
comprehensive and many other interesting results concerning PT languages can be found in the literature. It is also
worth mentioning that PT languages and several results haverecently been generalized from word languages to tree
languages [6].

We now give a brief overview on the complexity of the problem to decide whether a regular language is piecewise
testable. As mentioned above, decidability was shown by Simon. In 1985, Stern showed that the problem is decidable
in polynomial time for DFAs [39]. In 1991, Cho and Huynh [7] proved NL-completeness of the problem for DFAs.
In 2001, Trahtman [42] improved Stern’s result to obtain a quadratic algorithm. Another quadratic algorithm can be

2



found in [25]. The problem is PSPACE-complete if the languages are represented as NFAs [21].

Our Contribution. Thek-piecewise testability problemasks whether, given a finite automatonA, the languageL(A)
is k-PT. It is easy to see that if a language isk-PT, it is also (k + 1)-PT. Klı́ma and Polák [25] have shown that if the
depth of a minimal DFA recognizing a PT language isk, then the language isk-PT. However, the opposite implication
does not hold, that is, the depth of the minimal DFA is only an upper bound onk. To the best of our knowledge,
no efficient algorithm to find the minimalk for which a PT language isk-PT nor an algorithm to decide whether a
language isk-PT has been published so far.3

We first give a co-NP upper bound to decide whether a minimal DFA recognizes ak-PT language for a fixedk
(Theorem 1), which results in an algorithm to find the minimalk that runs in the time single exponential with respect
to the size of the DFA and double exponential with respect to the resultingk. We then provide a detailed complexity
analysis for smallk’s. In particular, the problem is trivial fork = 0, decidable in deterministic logarithmic space for
k = 1 (Theorem 4), and NL-complete fork = 2, 3 (Theorems 6 and 11). As a result, we obtain a PSPACE upper bound
to decide whether an NFA recognizes ak-PT language for a fixedk. Recall that it is PSPACE-complete to decide
whether an NFA recognizes a PT language, and it is actually PSPACE-complete to decide whether an NFA recognizes
a 0-PT language (Theorem 12).

Since the depth of the minimal DFAs plays a role as an upper bound onk, we investigate the relationship between
the depth of an NFA andk-piecewise testability of its language. We show that, for every k ≥ 0, there exists ak-PT
language with an NFA of depthk − 1 and with the minimal DFA of depth 2k − 1 (Theorem 14). Although it is well
known that DFAs can be exponentially larger than NFAs, a by-product of our result is that all the exponential number
of states of the DFA form a simple path. Finally, we investigate the opposite implication and show that the tight
upper bound on the depth of the minimal DFA recognizing ak-PT language over ann-letter alphabet is

(
k+n

k

)

− 1
(Theorem 19). A relationship with Stirling cyclic numbers is also discussed.

For all missing proofs, the reader is referred to the appendix.

2. Preliminaries and Definitions

We assume that the reader is familiar with automata theory [28]. The cardinality of a setA is denoted by|A| and
the power set ofA by 2A. An alphabetΣ is a finite nonempty set. The free monoid generated byΣ is denoted byΣ∗. A
word overΣ is any element ofΣ∗; the empty word is denoted byε. For a wordw ∈ Σ∗, alph(w) ⊆ Σ denotes the set of
all letters occurring inw, and|w|a denotes the number of occurrences of lettera in w. A language overΣ is a subset of
Σ∗. For a languageL overΣ, let L = Σ∗ \ L denote the complement ofL.

A nondeterministic finite automaton(NFA) is a quintupleA = (Q,Σ, ·, I , F), whereQ is a finite nonempty set of
states,Σ is an input alphabet,I ⊆ Q is a set of initial states,F ⊆ Q is a set of accepting states, and· : Q × Σ → 2Q

is the transition function that can be extended to the domain2Q × Σ∗. The languageacceptedbyA is the setL(A) =
{w ∈ Σ∗ | I · w∩ F , ∅}. We usually omit· and write simplyIw instead ofI · w. A pathπ from a stateq0 to a state
qn under a worda1a2 · · ·an, for somen ≥ 0, is a sequence of states and input symbolsq0a1q1a2 . . .qn−1anqn such
that qi+1 ∈ qi · ai+1, for all i = 0, 1, . . . , n − 1. The pathπ is acceptingif q0 ∈ I andqn ∈ F. We use the notation

q0
a1a2···an
−−−−−−→ qn to denote that there exists a path fromq0 to qn under the worda1a2 · · ·an. A path issimpleif all states

of the path are pairwise different. The number of states on the longest simple path ofA decreased by one (i.e., the
number of transitions on that path) is called thedepthof the automatonA, denoted bydepth(A).

The NFAA is deterministic(DFA) if |I | = 1 and|q·a| = 1 for everyq in Q anda in Σ. Then the transition function
· is a map fromQ × Σ to Q that can be extended to the domainQ × Σ∗. Two states of a DFA aredistinguishableif
there exists a wordw that is accepted from one of them and rejected from the other.A DFA is minimal if all its states
are reachable and pairwise distinguishable.

LetA = (Q,Σ, ·, I , F) be an NFA. The reachability relation≤ on the set of states is defined byp ≤ q if there exists
a wordw in Σ∗ such thatq ∈ p ·w. The NFAA is partially orderedif the reachability relation≤ is a partial order. For
two statesp andq ofA, we writep < q if p ≤ q andp , q. A statep is maximalif there is no stateq such thatp < q.
Partially ordered automata are also calledacyclic automata, see, e.g., [25].

3Very recently, a co-NP upper bound appeared in [19] in terms of separability.
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The notion of confluent DFAs was introduced in [25]. LetA = (Q,Σ, ·, i, F) be a DFA andΓ ⊆ Σ be a subalphabet.
The DFAA is Γ-confluent if, for every stateq in Q and every pair of wordsu, v in Γ∗, there exists a wordw in Γ∗

such that (qu)w = (qv)w. The DFAA is confluentif it is Γ-confluent for every subalphabetΓ. The DFAA is
locally confluentif, for every stateq in Q and every pair of lettersa, b in Σ, there exists a wordw in {a, b}∗ such that
(qa)w = (qb)w.

An NFA A = (Q,Σ, ·, I , F) can be turned into a directed graphG(A) with the set of verticesQ, where a pair
(p, q) in Q× Q is an edge inG(A) if there is a transition fromp to q in A. ForΓ ⊆ Σ, we define the directed graph
G(A, Γ) with the set of verticesQ by considering all those transitions that correspond to letters inΓ. For a statep, let
Σ(p) = {a ∈ Σ | p ∈ p · a} denote the set of all letters under which the NFAA has a self-loop in the statep. LetA be
a partially ordered NFA. If for every statep ofA, statep is the unique maximal state of the connected component of
G(A,Σ(p)) containingp, then we say that the NFA satisfies theunique maximal state (UMS) property.

A regular language isk-piecewise testable, for a non-negative integerk, if it is a finite boolean combination of
languages of the formΣ∗a1Σ

∗a2Σ
∗ · · ·Σ∗anΣ

∗, where 0≤ n ≤ k andai ∈ Σ. A regular language ispiecewise testable
if it is k-piecewise testable for somek ≥ 0. We adopt the notationLa1a2···an = Σ

∗a1Σ
∗a2Σ

∗ · · ·Σ∗anΣ
∗ from [25]. For

two wordsv = a1a2 · · ·an andw ∈ Lv, we say thatv is asubsequenceof w or thatv can beembeddedinto w, denoted
by v 4 w. For k ≥ 0, let subk(v) = {u ∈ Σ∗ | u 4 v, |u| ≤ k}. For two wordsw1,w2, definew1 ∼k w2 if and only if
subk(w1) = subk(w2). If w1 ∼k w2, we say thatw1 andw2 arek-equivalent. Note that∼k is a congruence with finite
index.

Fact 1 ([38]). Let L be a regular language, and let∼L denote the Myhill congruence [31]. A language L is k-PT if
and only if∼k⊆∼L. Moreover, L is a finite union of∼k classes.

The theorem says that ifL is k-PT, then any twok-equivalent words either both belong toL or neither does. In
terms of minimal DFAs, twok-equivalent words lead the automaton to the same state.

Fact 2. Let L be a language recognized by the minimal DFAA. The following is equivalent.

1. The language L is PT.

2. The minimal DFAA is partially ordered and (locally) confluent [25].

3. The minimal DFAA is partially ordered and satisfies the UMS property [42].

3. Complexity of k-Piecewise Testability for DFAs

Thek-piecewise testability problem for DFAsasks whether, given a minimal DFAA, the languageL(A) is k-PT.
We show that it belongs to co-NP, which can be used to compute the minimalk for which the language isk-PT in the
time single exponential with respect to the size of the DFA and double exponential with respect to the resultingk. For
smallk’s we then provide precise complexity analyses.

We now prove the following theorem.

Theorem 1. The following problem belongs to co-NP:

Name: k-PiecewiseTestability

Input: a minimal DFAA

Output: Yes if and only ifL(A) is k-PT

Let w1 andw2 be two words such thatw1 4 w2. Let ϕ : {1, 2, . . . , |w1|} → {1, 2, . . . , |w2|} be a monotonically
increasing mapping induced by one of the possible embeddings of w1 into w2, that is, the letter at thejth position in
w1 coincides with the letter at theϕ( j)th position inw2. Any suchϕ is called awitness (of the embedding) of w1 in w2.
If we speak abouta letter a of w2 that does not belong to the range ofϕ, we mean an occurrence ofa in w2 whose
position does not belong to the range ofϕ.
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Lemma 2. LetA be a minimal DFA recognizing a PT language. If there exist twowords w1 and w2 that are k-
equivalent and lead to two different states from the initial state, such that w1 is a subword of w2, then there exists a
w′2 that is k-equivalent to w1 leading to the same state as w2 such that w′2 contains at mostdepth(A) more letters than
w1.

Proof. Let us considerw1 andw2 as in the statement of the lemma. Letϕ be a witness ofw1 in w2. Let a be a letter
of w2 that does not belong to the range ofϕ. Let us denotew2 = waawc

a. If iwaa = iwa, theniwawc
a = iw2. Moreover,

sincea < range(ϕ), w1 is a subword ofwawc
a. Thus,subk(w1) ⊆ subk(wawc

a) ⊆ subk(w2), which proves thatw1 and
wawc

a arek-equivalent. By induction on the number of letters inw2 that do not belong to the range of the given witness
of w1 in w2 and that do not trigger a change of state inA, one can show that there exists a word equivalent tow1 and
leading to the same state asw2 that does not contain any such letter. Since in a run of an acyclic automaton there are
at mostdepth(A) changes of states, this concludes the proof. �

Lemma 3. LetA be a minimal DFA recognizing a PT language. IfL(A) is not k-PT, there exist two words w1 and
w2 such that:

• w1 and w2 are k-equivalent;

• the length of w1 is at most k|Σ|k;

• w1 is a subword of w2;

• w1 and w2 lead to two different states from the initial state.

Proof. If L(A) is notk-PT, then there existw1 andw2 that arek-equivalent and lead to two different states from the
initial state. Let us show that fori ∈ {1, 2}, there existsw′i such thatwi ∼k w′i and the length ofw′i is at mostk|Σ|k. Let
wk

i denote the prefix ofwi of lengthk. Assume that there existsj such thatsubk(w
j
i ) = subk(w

j+1
i ). Then the letter at

the (j + 1)th position ofwi can be removed while keeping the same set of subwords of length k. Thus there existsw′i
equivalent towi such that any two different prefixes ofw′i are notk-equivalent. Moreover, sincesubk(w

j
i ) ( subk(w

j+1
i ),

such aw′i contains at most
∑k

n=1 |Σ|
n ≤ k|Σ|k letters.

To complete the proof, there are two cases. Eitherw′1 andw′2 lead to the same state: then, without loss of generality,
w′1 andw1 lead to two different states, which proves the claim. Orw′1 andw′2 lead to two different states: then consider
w′ such thatw′ ∼k w′1, and bothw′1 andw′2 are subwords ofw′, which exists by [37, Theorem 6.2.6]. Without loss of
generality,w′1 andw′ fulfill the required conditions. �

Proof (of Theorem 1). One can first check that the automatonA overΣ recognizes a PT language. By Lemma 3, if
L(A) is notk-PT, there exist twok-equivalent wordsw1 andw2, with the length ofw1 being at mostk|Σ|k, w1 being
a subword ofw2, andw1 andw2 leading the automaton to two different states. By Lemma 2, one can choosew2 of
length at mostdepth(A) bigger than the length ofw1. A polynomial certificate for nonk-piecewise testability can thus
be given by providing suchw1 andw2, which are indeed of polynomial length in the size ofA andΣ. �

If we search for the minimalk for which the language isk-PT, we can first check whether it is 0-PT. If not, we
check whether it is 1-PT and so on until we find the requiredk. In this case, the boundsk|Σ|k andk|Σ|k + depth(A)
on the length of wordsw1 andw2 that need to be investigated are exponential with respect tok. To investigate all the
words up to these lengths then gives an algorithm that is exponential with respect to the size of the minimal DFA and
double exponential with respect to the desiredk.

Proposition 1. LetA be a minimal DFA that is partially ordered and confluent. To find the minimal k for which the
language L(A) is k-PT can be done it time exponential with respect to the size ofA and double exponential with
respect to the resulting k.

Theorem 1 gives an upper bound on the complexity to decide whether a language isk-PT for a fixedk. We now
show that fork ≤ 3, the complexity of the problem is much simpler.

0-Piecewise Testability.LetA be a minimal DFA over an alphabetΣ. The languageL(A) is 0-PT if and only if it
has a single state, that is, it recognizes eitherΣ∗ or ∅. Thus, given a minimal DFA, it is decidable inO(1) whether its
language is 0-PT.
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1-Piecewise Testability.

Theorem 4. The problem to decide whether a minimal DFA recognizes a 1-PTlanguage is in LOGSPACE.

The proof of Theorem 4 follows immediately from the following lemma.

Lemma 5. LetA = (Q,Σ, ·, i, F) be a minimal DFA. The language L(A) is 1-PT if and only if both of the following
holds:

1. for every p∈ Q and a∈ Σ, pa= q implies qa= q,

2. for every p∈ Q and a, b ∈ Σ, pab= pba.

Proof. We show successively both directions of the equivalence.
(⇒) Assume thatL(A) is 1-PT. SinceA is minimal, p is reachable. Thus, there existsw such thatiw = p. It

holds that alph(wa) = alph(waa), thuswa andwaa lead to the same state, that is,qa = q. Similarly, we notice that
alph(wab) = alph(wba), and thuspab= pba.

(⇐) We show that for any wordw, it holds thatiw = ia1a2 . . .an, where alph(w) = {a1, a2, . . . , an}. This then
proves that ifw1 ∼1 w2, then iw1 = iw2. Thus, since for any lettersa, b ∈ Σ and any stateq, qab = qba, we have
that iw = iak1

1 ak2
2 . . .a

kn
n , whereki is the number of appearances ofai in w. By assumption 1 and induction onk1 ≥ 1,

iak1

1 = ia1. By induction onn, we thus show thatiw = ia1a2 . . .an. This shows confluency ofA. To show thatA is

partially ordered, assume that there exists a cyclep
a
−→ q

w
−→ r

b
−→ p, for some statesp , q andr, and a wordw ∈ Σ∗.

By the previous argument, we have thatr = p · aw= p · awa, that is,r · a = r. But thenr · ab= p , q = r · ba, which
violates the second assumption. �

2-Piecewise Testability.We show that the problem to decide whether a minimal DFA recognizes a 2-PT language is
NL-complete. Note that this complexity coincides with the complexity to decide whether the language is PT, that is,
whether there exists ak for which the language isk-PT.

Theorem 6. The problem to decide whether a minimal DFA recognizes a 2-PTlanguage is NL-complete.

We first need the following lemma that states that for any twok-equivalent words that lead the automaton to two
different states, there exist other two equivalent words leading the automaton to two different states, such that one
word is a subword of the other and the words differ only by a single letter.

Lemma 7. LetA = (Q,Σ, ·, i, F) be a minimal DFA. For every k≥ 0, if w1 ∼k w2 and iw1 , iw2, then there exist two
words w and w′ such that w∼k w′, w′ is obtained from w by adding a single letter at some place, andiw , iw′.

Proof. Let w1 andw2 be two words such thatw1 ∼k w2 andiw1 , iw2. Then, by [37, Theorem 6.2.6], there exists a
wordw3 such thatw1 andw2 are subwords ofw3, andw1 ∼k w2 ∼k w3. Moreover, eitherw1 andw3, or w2 andw3, do
not lead to the same state. Letv, v′ ∈ {w1,w2,w3} be such thatv is a subword ofv′ andiv , iv′. Letv = u0, u1, . . . , un =

v′ be a sequence such thatui+1 is obtained fromui by adding a letter at some place. Such a sequence exists sincev is
a subword ofv′. If, for every i, ui andui+1 lead to the same state, thenv andv′ does as well. Thus, there must exist
i such that the wordsui andui+1 lead to two different states andui is obtained fromui+1 by adding a letter at some
place. Settingw = ui andw′ = ui+1 completes the proof, sincesubk(v) ⊆ subk(w) ⊆ subk(w′) ⊆ subk(v′) = subk(v). �

Lemma 8. LetA = (Q,Σ, ·, i, F) be a minimal partially ordered and confluent DFA. The language L(A) is 2-PT if
and only if for every a∈ Σ and every states p such that there exists w with|w|a ≥ 1, pua= paua, for every u∈ Σ∗.

Proof. (⇒) By contraposition. Assume that there existsu ∈ Σ∗ and a statep such thatiw = p for somew ∈ Σ∗

containinga and such thatpua, paua. By the assumption,w = w1aw2, for somew1,w2 ∈ Σ
∗ such thata < alph(w1),

and we want to show thatw1aw2ua ∼2 w1aw2aua. However, for anyc ∈ alph(w1aw2), if ca 4 w1aw2aua, then
ca 4 w1aw2ua. Similarly for d ∈ alph(ua) andad 4 w1aw2aua. Sincei · wua , i · waua, the minimality ofA
gives that there exists a wordv such thatwuav ∈ L(A) if and only if wauav < L(A). Since∼2 is a congruence,
wuav∼2 wauav, which violates Fact 1, henceL(A) is not 2-PT.
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(⇐) Let w1 andw2 be two words such thatw1 ∼2 w2. We want to show thatiw1 = iw2. By Lemma 7, it is sufficient
to show this direction of the theorem for two wordsw andw′ such thatw′ is obtained fromw by adding a single letter
at some place. Thus, leta be the letter, and let

w = a1 . . .akak+1 . . .an andw′ = a1 . . .akaak+1 . . .an

for 0 ≤ k ≤ n. Let wi, j = aiai+1 . . .a j . We distinguish two cases.
(A) Assume thata does not appear inw1,k. Thena must appear inwk+1,n. Consider the first occurrence ofa in

wk+1,n. Thenwk+1,n = u1au2, wherea does not appear inu1. Let B = alph(u1a). ThenB ⊆ alph(u2), because if there
is noa in w1,ku1, any subwordax, for x ∈ B, that appears inw′ = w1,kau1au2 must also appear in the subwordau2 of
w = w1,ku1au2.

Let u2 = x1b1x2b2x3 . . . xℓbℓxℓ+1, whereB = {b1, b2, . . . , bℓ} andb j does not appear inx1b1x2 . . . x j , j = 1, 2, . . . , ℓ.
Let v = b1b2 . . .bℓ. Let z ∈ {i · w1,ku1a, i · w1,kau1a}. We prove (by induction onj) that for everyj = 1, 2, . . . , ℓ,
there exists a wordy j such thatz · (b1b2 . . .b j)Ry j = z · x1b1x2b2x3 . . . x jb j x j+1. Sinceb1 appears inu1, we use the
assumption from the statement of the theorem to obtain (z· x1b1) · x2 = (z·b1x1b1) · x2. Assume that it holds forj < k.
We prove it for j + 1. Again,b j+1 appears inu1 implies that

z · x1b1x2b2x3 . . . x jb j x j+1b j+1x j+2 = ((z · x1b1x2b2x3 . . . x jb j x j+1)b j+1)x j+2

= ((z · b j . . .b2b1y j)b j+1)x j+2

= z · b j+1b j . . .b2b1y jb j+1x j+2

where the second equality is by the induction hypothesis andthe third is by the assumption from the statement of the
theorem applied to the underlined part. Thus, in particular, there exists a wordy such thati · w1,ku1avRy = i · w and
i · w1,kau1avRy = i · w′.

Finally, let z1 = i · w1,ku1a andz2 = i · w1,kau1a. We prove thatz1 · vR = z2 · vR, which then concludes the proof
since it implies thati · w = i · w′. To prove this, we make use of the following claim.

Claim 1 (Commutativity). For every a, b ∈ Σ and every state p such that i· w = p and a and b appear in w,
p · ab= p · ba.

Proof. By the assumption of the theorem, sincea appears inw, p · ba= p · aba= q1. Similarly, sinceb appears inw,
we also havep · ab = p · bab= q2. Thenq2 · a = (p · ab)a = q1 andq1 · b = (p · ba)b = q2. Since the automaton is
partially ordered,q1 = q2. ⋄

We can now finish the proof by induction on the length ofvR = bℓ . . .b2b1 by showing that the statez′i = zi ·

bℓ . . .b2b1 has self-loops underB, i = 1, 2. Letzi
bℓ ...b2b1
−−−−−−→ z′i = qi,ℓ+1bℓqi,ℓbℓ−1qi,ℓ−1 . . .qi,2b1qi,1 denote the path defined

by the wordvR from the statezi , i = 1, 2.

Claim 2. Both states z′1 and z′2 have self-loops under all letters of the alphabet B.

Proof. Indeed,qi, j · b j = qi, j+1 · b jb j = qi, j+1 · b j = qi, j, where the second equality is by the assumption from the
statement of the theorem, sinceb j appears inu1. Thus, there is a self-loop inqi, j underb j.

Then, we havez′i = qi,1 = qi,1b1 = z′i b1. Now, for every j = 2, . . . , ℓ, we havez′i = qi,1 = qi, j · b j−1 . . .b2b1 =

qi, j · b jb j−1 . . .b2b1 = qi, j · b j−1 . . .b2b1b j = z′i b j, where the third equality is because there is a self-loop inqi, j under
b j, and the fourth is by several applications of commutativity(Claim 1 above). ⋄

Thus, since no other states are reachable fromz′1 andz′2 underB, andz′1 andz′2 are reachable fromi ·w1,k by words
overB, confluency of the automaton implies thatz′1 = z′2, which completes the proof of part (A).

(B) If a = ai for somei ≤ k, we consider two cases. First, assume that for everyc ∈ Σ ∪ {ε}, ca is a subword of
w1,ka implies thatca is a subword ofw1,k. Thenaa is a subword ofw1,k. Let w1,k = w3aw4, wherea does not appear
in w4. Let q = i ·w3a, and letB = alph(w4). Note thatB ⊆ alph(w3), since ifxa is a subword ofw1,ka, then it is also in
w3a. By the assumption of the theorem,q = i ·w3a = i ·w3aa, hence we get that there is a self-loop inq undera. Now,
by the self-loop undera in q and commutativity (Claim 1 above),q · w4 = q · aw4 = q · w4a. Thus,i · w1,k = i · w1,ka.

7



Second, assume that there existsc in w1,k such thatca 4 w1,ka is not a subword ofw1,k. Thena must appear
in wk+1,n. Together, there existi ≤ k < j such thatai = a j = a. By the assumption of the theorem, we obtain that
i · w1,kawk+1, j = i · w1,kwk+1, j , sincewk+1, j = xa, for somex ∈ Σ∗. This implies thati · w = i · w′.

This completes the proof of part (B) and, hence, the whole proof. �

This result gives a PTIME algorithm to decide whether a minimal DFA recognizes a 2-PT language. However, our
aim is to show that the problem is NL-complete. To show that the problem is in NL, we need the following lemma,
which gives a characterization of 2-PT languages that can beverified locally in nondeterministic logarithmic space,
and provides a quadratic-time algorithm.

Lemma 9. LetA = (Q,Σ, ·, i, F) be a DFA. Then the following conditions are equivalent:

1. For every a∈ Σ and every state s such that iw= s for some w∈ Σ∗ with |w|a ≥ 1, sua= saua, for every u∈ Σ∗.

2. For every a∈ Σ and every state s such that iw= s for some w∈ Σ∗ with |w|a ≥ 1, sba = saba for every
b ∈ Σ ∪ {ε}.

Proof. (1⇒ 2) 2. is a special case of 1. whereu = b.
(2⇒ 1) We prove this direction by induction on the length ofu. Let a ∈ alph(w) such thatiw = s. If u = ε, then

we takeb = ε. Otherwise, we haveu = u′b. By induction hypothesis, we havesu′a = sau′a. Thussua= su′ba =
(su′)ba= (su′)aba= (su′a)ba= (sau′a)ba= (sau′)ba= saua. �

Proof (of Theorem 6). The check of whether a minimal DFA isnot confluent or doesnot satisfy condition 2 of
Lemma 9 can be done in NL; the reader is referred to [7] for a proof how to check confluency in NL. Since NL=co-
NL [22, 41], we have an NL algorithm to check 2-piecewise testability of a minimal DFA. NL-hardness follows from
the following lemma. �

Lemma 10. For every k≥ 2, the k-PT problem is NL-hard.

Proof. To prove NL-hardness, we reduce an NL-complete problemmonotone graph accessibility (2MGAP)[7], which
is a special case of the graph reachability problem, to thek-piecewise testability problem. An instance of 2MGAP is
a graph (G, s, g), whereG = (V,E) is a graph with the set of verticesV = {1, 2, . . . , n}, the source vertexs = 1 and
the target vertexg = n, the out-degree of each vertex is bounded by 2 and for all edges (u, v), v is greater thanu (the
vertices are linearly ordered).

We construct the automatonA = (V ∪ {i, f1, f2, . . . , fk−1, d},Σ, ·, i, { fk−1}) as follows. For every edge (u, v), we
construct a transitionu · auv = v over a fresh letterauv. Moreover, we add the transitionsi · a = s, g · a = f1 and
fi ·a = fi+1, i = 1, 2, . . . , k−2, over a fresh lettera. The automaton is deterministic, but not necessarily minimal, since
some of the states may not be reachable from the initial state, or some states may be equivalent. To ensure minimality
of the constructed automaton, we add, for each statev ∈ V \ {s}, new transitions fromi to v under fresh letters, and for
each statev ∈ V \ {g}, new transitions fromv to fk−1 under fresh letters. All undefined transitions go to the sinkstate
d.

Claim 3. The automatonA is deterministic and minimal, and L(A) is finite.

Proof. Note that, by construction, all states are reachable from the initial statei and can reach (except the sink state)
the unique accepting statefk−1. In addition, the automaton is deterministic and minimal, since every transition is
labeled by a unique label (except for the transitionsia = s andgak−1 = fk−1 labeled with the same letter), which
makes the states non-equivalent. Finally,L(A) is finite because the monotonicity of the graph (G, s, g) implies that
the automaton does not contain a cycle nor a self-loop (but the sink stated). ⋄

The following claim is needed to complete the proof.

Claim 4. Let w be a word overΣ. If every a fromΣ appears at most once in w, that is,|w|a ≤ 1, then the language{w}
is 2-PT.
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Proof. First, since the language{w} is PT, the minimal DFA is partially ordered and confluent. Then the condition of
Lemma 8 is trivially satisfied, since, after the second occurrence of the same letter, the minimal DFA accepting{w} is
in the unique maximal non-accepting state. ⋄

We now show that the languageL(A) is k-PT if and only ifg is not reachable froms.
By contraposition, we assume thatg is reachable froms. Let w be a sequence of labels of such a path froms to g

in A. Then the wordawak−1 belongs toL(A) andawak does not. However,awak−1 ∼k awak, which proves that the
languageL(A) is notk-PT.

If g is not reachable froms, the languageL(A) = {au1, au2, . . . , auℓ, uℓ+1, . . . , uℓ+s}∪{w1ak−1,w2ak−1, . . . ,wmak−1},
whereui andwi are words overΣ \ {a} that do not contain any letter twice. Then the first part is 2-PT by the previous
claim, as well as the second part fork = 2. It remains to show that, for anyk ≥ 3, the second part ofL(A) is k-PT.
Assume thatw jak−1 ∼k w, for some 1≤ j ≤ m andw ∈ Σ∗. Thenw = v1av2a . . .avk for somev1, v2, . . . , vk such
that |v1 . . . vk|a = 0. Since|w j |a = 0 and, for any letterc of v2 · · · vk−1 (resp. vk), the wordaca (resp. ak−1c) can be
embedded intow jak−1, that is, intoak−1, we have thatv2 · · ·vk = ε, i.e.,w = v1ak−1. Sincew jak−1 ∼k v1ak−1, we have
thatw ja = v1a – hencew jak−1 andw lead to the same state, concluding the proof. �

It was shown in [4] that the syntactic monoids of 1-PT languages are defined by equationsx = x2 andxy= yx, and
those of 2-PT languages by equationsxyzx= xyxzxand (xy)2 = (yx)2. These equations can be used to achieve NL
algorithms. However, our characterizations improve theseresults and show that, for 1-PT languages, it is sufficient to
verify the equationsx = x2 andxy = yx on letters (generators), and that, for 2-PT languages, equation xyzx= xyxzx
can be verified on letters (generators) up to the elementy, which is a general element of the monoid. It decreases the
complexity of the problems. Moreover, the partial order and(local) confluency properties can be checked instead of
the equation (xy)2 = (yx)2.

3-Piecewise Testability.The equations (xy)3 = (yx)3, xzyxvxwy= xzxyxvxwyandywxvxyzx= ywxvxyxzxcharacter-
ize the variety of 3-PT languages [4]. Non-satisfiability ofany of these equations can be check in the DFA in NL by
guessing a finite number of states and the right sequences of transitions between them (in parallel, when labeled with
the same labels). Thus, we have the following.

Theorem 11. The problem to decide whether a minimal DFA recognizes a 3-PTlanguage is NL-complete.

k-Piecewise Testability.Even though [5] provides a finite sequence of equations to define thek-PT languages over a
fixed alphabet for anyk ≥ 4, the equations are more involved and it is not clear whetherthey can be used to obtain the
precise complexity. So far, thek-piecewise testability problem can be shown to be NL-hard (for k ≥ 2) and in co-NP,
and it is open whether it tends rather to NL or to co-NP.4

4. Complexity of k-Piecewise Testability for NFAs

The k-piecewise testability problem for NFAsasks whether, given an NFAA, the languageL(A) is k-PT. A
language is 0-PT if and only if it is either empty or universal. Since the universality problem for NFAs is PSPACE-
complete [16], the 0-PT problem for NFAs is PSPACE-complete. Using the same argument as in [21] then gives us
the following result.

Proposition 2. For every integer k≥ 0, the problem to decide whether an NFA recognizes a k-PT language is
PSPACE-hard.

Sincek is fixed, we can make use of the idea of Theorem 1 to decide whether an NFA recognizes ak-PT language.
The length of the wordw2 is now bounded by 2n, wheren is the number of states of the NFA. Guessing the wordw2

on-the-fly then gives that thek-piecewise testability problem for NFAs is in PSPACE.

Theorem 12. The following problem is PSPACE-complete:

4See the acknowledgement for the recent development.
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Name: k-PiecewiseTestabilityNFA

Input: an NFAA

Output: Yes if and only ifL(A) is k-PT

Proof. LetA be an NFA over the alphabetΣ. LetA′ denote the minimal DFA obtained fromA by the standard subset
construction and minimization. By Theorem 1, and since it iswell known that NPSPACE=PSPACE=co-PSPACE, we
can guess and store a wordw1 of length at mostk|Σ|k and to enumerate and store all words of length at mostk. There
are

∑k
i=1 |Σ|

i such words, which is polynomial, sincek is a constant. First, we mark all of these words that appear as
subwords ofw1. Then we guess (letter by letter) a wordw2 such thatw1 is a subword ofw2 (which can be checked by
keeping a pointer tow1) and such that the length ofw2 is at most|w1| + 2n = O(2n), wheren is the number of states of
the NFA. With each guess of the next letter ofw2, we correspondingly move all the pointers to all the stored subwords
to keep track of all subwords ofw2. We accept ifw1 andw2 have the same subwords,w1 is a subword ofw2, andw1

andw2 lead the minimal DFAA′ to two different states. Note that because of the space limits the minimal DFAA′

cannot be stored in the memory, but must be simulated on-the-fly while the wordw2 is being guessed. The state ofA′

defined by the wordw2 can then be compared with the state ofA′ defined by the wordw1, which is either computed
at the end or stored from the beginning. �

The problem to find the minimalk for which the language recognized by an NFA isk-PT is PSPACE-hard, since
a language is PT if and only if there exists a minimalk ≥ 0 for which it is PT.

5. Piecewise Testability and the Depth of NFAs

In this section, we generalize a result valid for DFAs to NFAsand investigate the relationship between the depth
of an NFA and the minimalk for which its language isk-PT. We show that the upper bound onk given by the depth
of the minimal DFA can be exponentially far from such a minimal k. More specifically, we show that for everyk ≥ 0,
there exists ak-PT languageL recognized by an NFAA of depthk− 1 and by the minimal DFAD of depth 2k − 1.

Recall that a regular language is PT if and only if its minimalDFA satisfies some properties that can be tested in a
quadratic time, cf. Fact 2. We now show that this characterization generalizes to NFAs. We say that an NFAA over
an alphabetΣ is completeif for every stateq of A and every lettera in Σ, the setq · a is nonempty, that is, in every
state, a transition under every letter is defined.

Theorem 13. A regular language is PT if and only if there exists a completeNFA that is partially ordered and satisfies
the UMS property.

Proof. (⇒) If a regular language is PT, then its minimal DFA is partially ordered and satisfies the UMS property
by [42].

(⇐) To prove the other direction, letA = (Q,Σ, ·, I , F) be a complete partially ordered NFA such that it satisfies the
UMS property. LetD be the minimal DFA computed fromA by the standard subset construction and minimization.
We represent every state ofD by a set of states ofA.

Claim 5. The minimal DFAD is partially ordered.

Proof. Let X = {p1, p2, . . . , pn} with pi < p j for i < j be a state ofD, and letw ∈ Σ∗ be such thatX · w = X. By
induction onk = 1, 2, . . . , n, we show thatpiw = pi . Assume that for alli < k, it holds thatpiw = pi . We prove
it for k. SinceX = {p1, p2, . . . , pn} = Xw = ∪n

i=1piw, pk ≤ pkw and piw = pi for i < k, we have thatpk ∈ pkw.
Thus, alph(w) ⊆ Σ(pk) and the UMS property ofA implies thatpkw = pk. Therefore, for everya ∈ alph(w) and
i = 1, 2, . . . , n, pia = pi . If, for any stateY of D, Xw1 = Y andYw2 = X, the previous argument gives thatX = Y,
henceD is partially ordered. ⋄

Claim 6. The minimal DFAD satisfies the UMS property.

10



Proof. Assume, for the sake of contradiction, that there exist twodifferent statesX andY in the same component of
D that are maximal with respect to the alphabetΣ(X). That is, there exist a stateZ in D and two wordsu andv over
Σ(X) such thatX = Zu andY = Zv. Without loss of generality, we may assume that there existsa statex in X \ Y.
Let z in Z be such thatx = zu. Sincex does not belong toY, zv , x. Note thatzv is defined, sinceA is complete.
By the proof of the previous claim,Σ(X) ⊆ Σ(zv) andΣ(X) ⊆ Σ(x). If x is not reachable fromzvby Σ(x), we have a
contradiction with the UMS property ofA. Thus, assume thatzv reachesx underΣ(x), that is,zv≤ x. If x does not
reachzvunderΣ(zv), thenzvand a maximal state ofx · Σ(zv)∗ are two different maximal states inA, a contradiction.
If x reacheszvunderΣ(zv), thenx ≤ zv, which implies, since the NFA is partially ordered, thatzv= x, which is again
a contradiction. ⋄

Thus, we have shown that the minimal DFAD is partially ordered and satisfies the UMS property. Fact 2 now
completes the proof. �

As it is PSPACE-complete to decide whether an NFA defines a PT language, it is PSPACE-complete to decide
whether, given an NFA, there is an equivalent complete NFA that is partially ordered and satisfies the UMS property.

5.1. Exponential Gap between k and the Depth of DFAs

It was shown in [25] that the depth of minimal DFAs does not correspond to the minimalk for which the language
is k-PT. Namely, an example of (4ℓ − 1)-PT languages with the minimal DFA of depth 4ℓ2, for ℓ > 1, has been
presented. We now show that there is an exponential gap between the minimalk for which the language isk-PT and
the depth of a minimal DFA.

Theorem 14. For every n≥ 2, there exists an n-PT language that is not(n − 1)-PT, it is recognized by an NFA of
depth n− 1, and the minimal DFA recognizing it has depth2n − 1.

Proof. For everyk ≥ 0, we define the NFA

Ak = ({0, 1, . . . , k}, {a0, a1, . . . , ak}, ·, Ik, {0})

with Ik = {0, 1, . . . , k} and the transition function· consisting of the self-loops underai in all statesj > i and transitions
underai from the statei to all statesj < i. Formally,i · a j = i if k ≥ i > j ≥ 0 andi · ai = {0, 1, . . . , i − 1} if k ≥ i ≥ 1.
AutomataA2 andA3 are shown in Fig. 1. Note thatAk is an extension ofAk−1, in particular,L(Ak−1) ⊆ L(Ak).

012 a1

a0a0,a1

a2

a2 0123 a3 a2 a1

a3

a3

a2

a0,a1,a2 a0,a1 a0

Figure 1: AutomataA2 andA3.

We define the wordwk inductively byw0 = a0 andwℓ = wℓ−1aℓwℓ−1, for 0 < ℓ ≤ k. Note that|wℓ | = 2ℓ+1 − 1.
In [21], we have shown that every prefix ofwk of odd length ends witha0 and, thus, does not belong toL(Ak), while
every prefix of even length belongs toL(Ak). For convenience, we briefly recall the proof here. The empty word
belongs toL(A0) ⊆ L(Ak). Let v be a prefix ofwk of even length. If|v| < 2k − 1, thenv is a prefix ofwk−1 and, by the
induction hypothesis,v ∈ L(Ak−1) ⊆ L(Ak). If |v| > 2k − 1, thenv = wk−1akv′. The definition ofAk and the induction

hypothesis then yield that there is a pathk
wk−1
−−−→ k

ak
−→ (k− 1)

v′
−→ 0. Thus,v belongs toL(Ak).

We now discuss the depth of the minimal DFA recognizing the languageL(Ak).

Claim 7. For every k≥ 0, the depth of the minimal DFA recognizing the language L(Ak) is 2k+1 − 1.
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Proof. We prove the claim by induction onk. Fork = 0, the minimal DFAdet(A0) = ({{0}, ∅}, {a0}, ·, {0}, {0}) obtained
fromA0 by the standard subset construction and minimization has two states, accepts the single wordε, anda0 goes
from the initial stateI0 = {0} to the sink state∅. Thus, it has depth 1 as required. Consider the wordwk = wk−1akwk−1

for k > 0. By the induction hypothesis, there exists a simple path oflength 2k−1 in det(Ak−1) defined by the wordwk−1

starting from the initial stateIk = {0, 1, . . . , k− 1} and ending in the state∅. Let Q0,Q1, . . . ,Q2k−1 denote the states of
that simple path in the order they appear on the path, that is,Q0 = Ik, Q2k−1 = ∅, andQi ⊆ Q0 for i = 1, 2, . . . , 2k − 1.
Note that the states are pairwise non-equivalent by the induction hypothesis. Letwk−1,i denote thei-th letter of the
wordwk−1. Then the path

(Q0 ∪ {k})
wk−1,1
−−−−→ (Q1 ∪ {k})

wk−1,2
−−−−→ (Q2 ∪ {k})

...
−−→ (Q2k−1 ∪ {k})

︸                                                                              ︷︷                                                                              ︸

wk−1

ak
−→ Q0

wk−1,1
−−−−→ Q1

wk−1,2
−−−−→ Q2

...
−−→ Q2k−1

︸                                      ︷︷                                      ︸

wk−1

consists of 2k+1 different states. We show that these states are pairwise non-equivalent. Since the letterak is accepted
from every stateQ j ∪ {k}, but from no stateQi , for 0 ≤ i, j ≤ 2k − 1, the stateQ j ∪ {k} is distinguishable from the state
Qi . Moreover,Q∪ {k} andQ′ ∪ {k} are distinguished by the same word as the statesQ andQ′, that are distinguishable
by the induction hypothesis. Thus, we have a simple path of length 2k+1 − 1 as required. ⋄

We now show thatAk defines a (k+ 1)-PT language that is notk-PT.

Claim 8. For every k≥ 0, the language L(Ak) is (k+ 1)-PT.

Proof. By induction onk. For k = 0, the languageL(A0) = {ε} = ∩a∈ΣLa is indeed 1-PT. Consider the automaton
Ak and letu andv be two words such thatu ∼k+1 v. Assume thatu ∈ L(Ak). We show thatv ∈ L(Ak) as well. If
u does not contain the letterak, thenu ∈ L(Ak−1) and, sinceu ∼k+1 v implies thatu ∼k v, the induction hypothesis
gives thatv ∈ L(Ak−1) ⊆ L(Ak). If u contains the letterak, the definition ofAk gives thatu is of the formu = u1aku2,
whereu1u2 does not contain the letterak. Sinceu ∼k+1 v, the wordv is also of a formv = v1akv2, wherev1v2 does
not contain the letterak. However,u2 ∼k v2, sincew ∈ subk(u2) if and only if akw ∈ subk+1(u1aku2) = subk+1(v1akv2),
which is if and only ifw ∈ subk(v2). Since, by the induction hypothesis,u2 ∈ L(Ak−1) implies thatv2 ∈ L(Ak−1), we
obtain thatv ∈ L(Ak). ⋄

Claim 9. For every k≥ 0, the language L(Ak) is not k-PT.

Proof. Let wk = wk−1akwk−1 be the word defined above. Letw′k denote the prefix ofwk without the last letter (which
is a0), that is,wk = w′ka0. We now show, by induction onk, that wk ∼k w′k. This then implies that the language
L(Ak) is not k-PT, becausew′k belongs toL(Ak) while wk does not belong toL(Ak). Indeed, fork = 0, we have
w0 = a0 ∼0 ε = w′0. Thus, assume thatwk ∼k w′k for somek ≥ 0, and consider a wordw ∈ subk+1(wkak+1wk). Then
the wordw can be decomposed tow = w′w′′, wherew′ is the maximal prefix ofw that can be embedded into the
word wkak+1. Note thatw′′ is a suffix of w that can be embedded intowk. Since|w′| > 0, we have that|w′′| ≤ k.
By the induction hypothesis,w′′ ∈ subk(wk) = subk(w′k). Thus,w = w′w′′ ∈ subk+1(wkak+1w′k), which proves that
wk+1 ∼k+1 w′k+1. ⋄

To finish the proof of Theorem 14, note that every NFAAk has depthk, accepts a (k+ 1)-PT language that is not
k-PT and its minimal DFA has depth 2k+1 − 1. This completes the proof. �

Although it is well known that DFAs can be exponentially larger than NFAs, an interesting by-product of this
result is that there are NFAs such that all the exponential number of states of their minimal DFAs form a simple path.

It could seem that NFAs are more convenient to provide upper bounds on thek. However, the following simple
example demonstrates that even for 1-PT languages, the depth of an NFA depends on the size of the input alphabet.
Specifically, for any alphabetΣ, the languageL =

⋂

a∈Σ La of all words containing all letters ofΣ is a 1-PT language
such that any NFA recognizing it requires at least 2|Σ| states and has depth|Σ|. A deeper investigation in this direction
is provided in the next section.
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Example 15. Let L =
⋂

a∈Σ La be a language of all words that contain all letters of the alphabet. Then 2|Σ| states are
sufficient for an NFA to recognizeL. Indeed, the automatonA = (2Σ,Σ, ·, {∅}, {Σ}) with the transition function defined
by X · a = X∪ {a}, for X ⊆ Σ anda ∈ Σ, recognizesL. The depth ofA is |Σ|, since every non-self-loop transition goes
to a strict superset of the current state.

To prove that every NFA requires at least 2|Σ| states, we use a fooling set lower-bound technique [3]. A setof pairs
of words{(x1, y1), (x2, y2), . . . , (xn, yn)} is a fooling set forL if, for all i, the wordsxiyi belong toL and, fori , j, at
least one of the wordsxiy j andx jyi does not belong toL. To construct such a fooling set, for anyX ⊆ Σ, we fix a word
wX such that alph(wX) = X. Let S = {(wX,wΣ\X) | X ⊆ Σ}. Then alph(wXwΣ\X) = Σ andwXwΣ\X belongs toL. On the
other hand, forX , Y, eitherX ∪ (Σ \ Y) or Y ∪ (Σ \ X) is different fromΣ, which implies thatS is a fooling set of
size 2|Σ|. The main result of [3] now implies the claim. It remains to prove that the depth is at least|Σ|. However, the
shortest words ofL are of length|Σ|, which completes the proof.

Note that if we consider union instead of intersection, the resulting minimal DFA has only 2 states and depth 1.

6. Tight Bounds on the Depth of Minimal DFAs

If a PT language is recognized by a minimal DFA of depthℓ, then it isℓ-PT. However, the opposite implication
does not hold and the analysis of Section 5 shows that the language can be (ℓ − i)-PT for exponentially largei’s.
Therefore, we study the opposite implication of the relationship betweenk-piecewise testability and the depth of the
minimal DFA in this section. Specifically, given ak-PT language over ann-letter alphabet, we show that the depth of
the minimal DFA recognizing it is at most

(
k+n

k

)

− 1.
To this end, we first investigate the following problem.

Problem 16. Let Σ be an alphabet of cardinalityn ≥ 1 and letk ≥ 1. What is the length of a longest word,w, such
thatsubk(w) = Σ≤k = {v ∈ Σ∗ | |v| ≤ k} and, for any two distinct prefixesw1 andw2 of w, subk(w1) , subk(w2)?

The answer to this question is formulated in the following proposition proved below by two lemmas.

Proposition 3. LetΣ be an alphabet of cardinality n. The length of a longest word,w, satisfying the requirements of
Problem 16 is given by the recursive formula|w| = Pk,n = Pk−1,n + Pk,n−1 + 1, where P1,m = m= Pm,1, for m≥ 1.

Equivalently stated, Problem 16 asks what is the depth of the∼k-canonical DFA, whose states correspond to∼k

classes, that is, of a DFAA = (Q,Σ, ·, [ε], F), whereQ =
{

[w] | w ∈ Σ≤k
}

, [w] = {w′ | w′ ∼k w}, and the transition
function· is defined so that, for a state [w] and a lettera, [w] · a = [wa]. The set of accepting statesF is not important
here, but will be used later.

We show below that the solution to this problem is given by thefollowing recursive formula:

|w| = Pk,n = Pk−1,n + Pk,n−1 + 1 ,

whereP1,m = m= Pm,1, for anym≥ 1.
The following lemma shows thatw is not longer thanPk,n.

Lemma 17. Let k and n be given, and let w′ be any word over an n-letter alphabet satisfying the requirements of
Problem 16. Then|w′| ≤ Pk,n.

Proof. Let w′ be a word overΣ = {a1, a2, . . . , an} with the orderai < a j if i < j induced by the occurrence ofa in w′.
For instance,abadcainduces the ordera < b < d < c. Let zdenote the first occurrence ofan in w′. Thenw′ = w1zw2,
wherew1 is a word over{a1, a2, . . . , an−1} satisfying the second requirement of Problem 16, hence|w1| ≤ Pk,n−1. On
the other hand, since alph(w1z) = Σ, any prefix ofw2 extends the set of subwords with a subword of length at least 2.
Thus,w2 cannot be longer than the longest word overΣ containing all subwords up to lengthk−1, that is,|w2| ≤ Pk−1,n.
This completes the proof. �

We now show that there exists a word of lengthPk,n.

Lemma 18. For any positive integers k and n, there exists a word w of length Pk,n satisfying the requirements of
Problem 16.
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Proof. Let Σn denote the alphabet{a1, a2, . . . , an} with the orderai < a j if i < j. For n = 1 andk ≥ 1, the word
Wk,1 = ak is of lengthPk,1 and satisfies the requirements, as well as the wordW1,n = a1a2 . . .an of lengthP1,n for k = 1
andn ≥ 1. Assume that we have constructed the wordsWi, j of lengthPi, j for all i < k and j < n, Wi,n of lengthPi,n for
all i < k, andWk, j of lengthPk, j for all j < n. We construct the wordWk,n of lengthPk,n overΣn as follows:

Wk,n =Wk,n−1 an Wk−1,n .

It remains to show thatWk,n satisfies the requirements of Problem 16. However, the set ofsubwords ofWk−1,n is
Σ≤k−1

n . Since alph(Wk,n−1an) = Σ, we obtain that the set of subwords ofWk,n is Σ≤k
n .

Let w1 andw2 be two different prefixes ofWk,n. Without loss of generality, we may assume thatw1 is a prefix of
w2. If they are both prefixes ofWk,n−1, the second requirement of Problem 16 follows by induction.If w1 is a prefix
of Wk,n−1 andw2 containsan, then the second requirement of Problem 16 is satisfied, becausew1 does not containan.
Thus, assume that bothw1 andw2 containan, that is, they both containWk,n−1an as a prefix. Letw1 = Wk,n−1anw′1
andw2 =Wk,n−1anw′1w′2. Since, by induction,subk−1(w′1) ( subk−1(w′1w′2), there existsv ∈ subk−1(w′1w′2) \ subk−1(w′1).
Thenanv belongs tosubk(w2), but not tosubk(w1), which completes the proof. �

It follows by induction that for any positive integersk andn

Pk,n =

(

k+ n
k

)

− 1 . (1)

We now use this result to show that the depth of the minimal DFArecognizing ak-PT language over ann-letter
alphabet isPk,n in the worst case.

Theorem 19. For any natural numbers k and n, the depth of the minimal DFA recognizing a k-PT language over an
n-letter alphabet is at most Pk,n. Moreover, the bound is tight for any k and n.

Proof. Let Lk,n be ak-PT language over ann-letter alphabet. SinceLk,n is a finite union of∼k classes [38], there exists
F such that the∼k-canonical DFAA = (Q,Σ, ·, [ε], F) recognizesLk,n. The depth ofA is Pk,n. Let min(A) denote the
minimal DFA obtained fromA by a standard minimization procedure. Since the minimization does not increase the
depth, the depth ofmin(A) is at mostPk,n.

To show that the bound is tight, letw denote a fixed word of lengthPk,n, which exists by Lemma 18. Consider
the∼k-canonical DFAA′ = (Q,Σ, ·, [ε], F), whereF = {[w′] | w′ is a prefix ofw of even length}. Thenw defines a

pathπw = [ε]
w1
−−→ [w1]

w2
−−→ [w2] . . .

w
−→ [w] in A′ of lengthPk,n, wherewi denotes the prefix ofw of length i and

accepting and non-accepting states alternate. Again, letmin(A′) denote the minimal DFA obtained fromA′. If there
were two equivalent states inπw, then they must be of the same acceptance status. However, between any two states
with the same acceptance status, there exists a state with the opposite acceptance status. Therefore, joining the two
states creates a cycle inmin(A′), which is a contradiction with Fact 2, since the DFAA′ recognizes a PT language.�

A few of these numbers are listed in Table 1. We now present several consequences of these results.

k
n

n=1 n=2 n=3 n=4 n=5 n=6

k=1 1 2 3 4 5 6
k=2 2 5 9 14 20 27
k=3 3 9 19 34 55 83
k=4 4 14 34 69 125 209
k=5 5 20 55 125 251 461
k=6 6 27 83 209 461 923

Table 1: The table of a few first numbersPk,n
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1. Note that it follows from the formula thatPk,n = Pn,k. This gives and interesting observation that increasing the
length of the considered subwords has exactly the same effect as increasing the size of the alphabet.

2. Equivalently stated, Problem 16 asks what is the depth of the∼k-canonical DFA, whose states are∼k classes.
The number of equivalence classes of∼k, i.e., the number of states, has recently been investigatedin [23].

3. It provides a precise bound on the length ofw1 of Theorem 1. However, it does not improve the statement of
the theorem.

To provide a relationship ofPk,n with Stirling cyclic numbers, the following can be shown.

Proposition 4. For positive integers k and n, Pk,n = 1
k!

∑k
i=1

[
k+1
i+1

]

ni, where
[
k
n

]

denotes the Stirling cyclic numbers.

Proof. To prove this, we first recall the following well-known properties of Stirling cyclic numbers.

[

k+ 1
1

]

= k! and
k∑

i=0

[

k
i

]

xi = x(x+ 1) · · · (x+ k− 1) =
(x+ k− 1)!

(x− 1)!
(2)

Now we prove the claim.

1
k!

k∑

i=1

[

k+ 1
i + 1

]

ni =
1

nk!

k∑

i=1

[

k+ 1
i + 1

]

ni+1

(multiplication byn/n)

=
1

nk!

k+1∑

i=2

[

k+ 1
i

]

ni

(changing indexes)

=
1

nk!





k+1∑

i=0

[

k+ 1
i

]

ni −

[

k+ 1
1

]

n





(adding the casesi = 0, 1 into the sum)

=
1

nk!

(

(k+ n)!
(n− 1)!

− k!n

)

(by Equation 2)

=
(k+ n)!

n!k!
− 1

= Pk,n

(by Equation 1)

This completes the proof. �

Finally, note that one could also see a noticeable relation between the columns (resp. rows) of Table 1 and the
generalized Catalan numbers of [13]. We leave the details ofthis correspondence for a future investigation.
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its authors for providing it. It shows that thek-PT problem is co-NP-complete fork ≥ 4. It also provides a smaller
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