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Die Turingmaschine

Eingabe-/Speicherband
a a a b b C D C C b D · · ·

Endliche
Steuerung

Lese-/Schreibkopf
(beweglich)

q Zustandsvariable

Eine (deterministische) Turingmaschine (DTM) ist ein Tupel M = ⟨Q,Σ,Γ, δ, q0, F⟩
bestehend aus Zustandsmenge Q, Eingabealphabet Σ, Arbeitsalphabet Γ ⊇ Σ ∪ {␣},
Startzustand q0 ⊆ Q, Endzuständen F ⊆ Q, und einer partiellen Übergangsfunktion

δ : Q × Γ→ Q × Γ × {L, R, N}
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Turing-Mächtigkeit

• Die Turingmaschine ist das
mächtigste bekannte Berechnungsmodell
{ was nicht Turing-berechenbar ist, gilt als unberechenbar

• Zahlreiche andere Modelle sind ebenso Turing-mächtig

– Turingmaschinen in vielen Varianten (deterministisch/nichtdeterministisch,
Einband/Mehrband, einseitig/zweiseitig unendlich, . . . )

– alle „echten“ Programmiersprachen (C, Java, PHP, Python, JavaScript, C++,
BASIC, Perl, C♯, Fortran, Pascal, Lua, Ruby, COBOL, Assembler, Lisp, Visual
Basic, MATLAB, Ada, Go, Prolog, R, Haskell, Rust, Scratch, ALGOL, Swift, Kotlin,
Scheme, Objective-C, TeX, Logo, ASP, APL, Visual Basic .NET, awk, Smalltalk,
Scala, Brainfuck, . . . ∗)

– theoretische Kalküle (Prädikatenlogik erster Stufe, λ-Kalkül, allgemeine
rekursive Funktionen, . . . )

– manch Unerwartetes (C++-Templates, SQL, Java Generics, TypeScript
Types, Magic: The Gathering, Microsoft Powerpoint, . . . )
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Entscheidbarkeit

Das Halteproblem ist das Wortproblem für die Sprache

{enc(M)##enc(w) | M hält bei Eingabe w}.

• Entscheidbar: Sprache wird von Turing-Entscheider erkannt

• Unentscheidbar: Sprache wird von keinem Turing-Entscheider erkannt

• Semi-entscheidbar: Sprache wird von einer TM erkannt, die aber eventuell kein
Entscheider ist

Beispiel:

• Die Sprache {ww | w ∈ {a, b}∗} ist entscheidbar (und damit auch
semi-entscheidbar)

• Das Halteproblem ist nicht entscheidbar aber semi-entscheidbar

• Das Komplement des Halteproblems ist nicht semi-entscheidbar (und damit auch
nicht entscheidbar)
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Der Satz von Rice

Ein interessantes Resultat von Henry Gordon Rice zeigt die Probleme Turing-mächtiger
Formalismen:

Satz von Rice (informelle Version): Jede nichttriviale Frage über die von einer TM
ausgeführte Berechnung ist unentscheidbar.

Satz von Rice (formell): Sei E eine Eigenschaft von Sprachen, die für manche
Turing-erkennbare Sprachen gilt und für manche Turing-erkennbare Sprachen nicht
gilt (=„nichttriviale Eigenschaft“). Dann ist das folgende Problem unentscheidbar:

• Eingabe: Turingmaschine M

• Ausgabe: Hat L(M) die Eigenschaft E?
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Typ-0-Sprachen
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Typ-0-Grammatiken und Turingmaschinen

Turingmaschinen charakterisieren die Typ-0-Sprachen:

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Sprachen, die von einer Tu-
ringmaschine erkannt werden können.

Direkte Konsequenzen:

• Typ-0-Grammatiken sind ein universelles (Turing-mächtiges) Berechnungsmodell

• Typ-0-Sprachen sind die größte Klasse von Sprachen, die wir mit einem
„implementierbaren“ Formalismus beschreiben können

• Die Typ-0-Sprachen sind genau die semi-entscheidbaren Sprachen

• Das Wortproblem für Typ-0-Sprachen ist unentscheidbar
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Typ 0⇔ TM

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Sprachen, die von einer Tu-
ringmaschine erkannt werden können.

Beweis: Die beiden Richtungen werden einzeln gezeigt:

(1) Wenn eine Sprache von einer Typ-0-Grammatik erzeugt wird, dann kann sie von
einer TM erkannt werden.

(2) Wenn eine Sprache von einer TM erkannt wird, dann kann sie durch eine
Typ-0-Grammatik erzeugt werden.
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Typ 0⇒ TM

Gegeben: Eine Grammatik G

Gesucht: Eine TMM mit L(M) = L(G)

Idee:

• Turingmaschinen können Ableitungsregeln anwenden

• Bandinhalt: Zwischenstand der Ableitung (aus Terminalen und Nichtterminalen)

• Ableitungsregel wird nichtdeterministisch gewählt

• TMs beginnen mit dem von der Grammatik erzeugten Wort
{ Ableitungsregeln werden rückwärts angewendet
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Typ 0⇒ TM (Details)

Die TM für Grammatik G = ⟨V,Σ, P, S⟩ arbeitet wie folgt:

• Eingabealphabet Σ

• Bandalphabet Γ = Σ ∪ V ∪ {␣}
• Arbeitsweise:

(1) Wähle (nichtdeterministisch) eine Regel u→ v ∈ P aus
(2) Finde (nichtdeterministisch) auf dem Band ein Vorkommen von v
(3) Ersetze das gewählte v durch u (dabei muss der restliche Bandinhalt

verschoben werden, wenn |u| , |v|)
(4) Wiederhole ab (1) bis entweder (a) das Band nur noch S enthält (Akzeptanz)

oder (b) kein Vorkommen von v gefunden wird (Ablehnung)

Offenbar gilt: Die TM bei Eingabe w hat genau dann einen erfolgreichen Lauf wenn die
Grammatik eine Ableitung von w zulässt. □
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Typ 0⇐ TM

Gegeben: Eine TMM

Gesucht: Eine Grammatik G mit L(G) = L(M)

Idee:

• Ein Wort kann die Konfiguration einer TM kodieren

• Berechnungsschritte können durch Ersetzungen von Teilwörtern simuliert werden

• Grammatiken müssen die Wörter erzeugen, welche die TM akzeptiert
{ Vorgehen einer Grammatik:
(1) wähle ein beliebiges Eingabewort (nichtdeterministisch)
(2) simuliere die TM auf dieser Eingabe
(3) Falls TM akzeptiert: ersetze die simulierte Endkonfiguration durch das

ursprüngliche Eingabewort
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Typ 0⇐ TM (Details 1)
Kodierungstrick:
• Variablen von G kodieren dreierlei Informationen:

(1) Ursprüngliches Eingabeband: ein Zeichen aus Σ ∪ {␣}
(2) Simuliertes Arbeitsband: ein Zeichen aus Γ
(3) Simulierte Position und Zustand: ein Zeichen aus Q ∪ {−}

Beispiel: Die Zeichenfolge

aX
−


aa
−


bXq

bb
−


␣X
−


␣␣
−

 kodiert:

(a) die Eingabe war aabb,
(b) die aktuell simulierte Konfiguration ist Xa q XbX␣

• Außerdem verwenden wir Variablen S (Start), A, B (Erzeugung der
Startkonfiguration), ␣ (entsteht beim Aufräumen nach akzeptierender
Endkonfiguration)

{ V = {S, A, B, ␣} ∪
(
(Σ ∪ ␣) × Γ × (Q ∪ {−})

)
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Typ 0⇐ TM (Details 2)

Phase 1: Initialisiere TM für eine beliebige Eingabe:

S→

 aaq0

A (für beliebige a ∈ Σ) |

 ␣␣q0

B
A→

aa
−

A (für beliebige a ∈ Σ) | B

B→

␣␣
−

B | ϵ
{ erzeugt Eingabewort und einen beliebig langen (leeren) Arbeitsspeicher

{ Spur 1 speichert geratene Eingabe

{ Spuren 2 und 3 speichern TM-Startkonfiguration bei dieser Eingabe
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Typ 0⇐ TM (Details 3)
Phase 2: Simuliere TM-Berechnung auf Spuren 2 und 3:

• Für jeden TM-Übergang ⟨q′, y, R⟩ ∈ δ(q, x), beliebige a, b ∈ Σ ∪ {␣} und beliebige
z ∈ Σ ∪ Γ: axq


bz
−

→
ay
−


bzq′


• Für jeden TM-Übergang ⟨q′, y, L⟩ ∈ δ(q, x), beliebige a, b ∈ Σ ∪ {␣} und beliebige
z ∈ Σ ∪ Γ az

−


bxq
→
azq′

by
−


• Für jeden TM-Übergang ⟨q′, y, N⟩ ∈ δ(q, x) und a ∈ Σ ∪ {␣}:axq

→
ayq′

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Typ 0⇐ TM (Details 4)
Phase 3: Akzeptanz und Aufräumen:
• Für alle q ∈ F und x ∈ Σ ∪ Γ mit δ(q, x) = ∅ und beliebige a ∈ Σ ∪ {␣}:axq

→ a

• Für alle a, b ∈ Σ ∪ {␣} und beliebige x ∈ Σ ∪ Γ:

a

bx
−

→ ab

bx
−

 a→ ba

• Dabei erzeugte Blanks werden entfernt:

␣→ ϵ

Diese Grammatik erzeugt ein Wort w genau dann wenn die TM einen akzeptierenden
Lauf für w hat (unter Verwendung von beliebig viel Speicher). □
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Zusammenfassung Typ 0

Wir haben also gezeigt:

Satz: Die Typ-0-Grammatiken erzeugen genau diejenigen Sprachen, die von einer Tu-
ringmaschine erkannt werden können.

Der Satz von Rice ist daher auf Typ-0-Grammatiken übertragbar:

Satz (informell): Für eine gegebene Typ-0-Grammatik G und eine nichttriviale Eigen-
schaft E von Typ-0-Sprachen ist es unentscheidbar, ob L(G) die Eigenschaft E hat.

Probleme wie Leerheit, Universalität, Äquivalenz zu einer anderen Typ-0-Grammatik,
usw. sind daher für Typ-0-Grammatiken (wie auch für TMs) unentscheidbar
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Typ-1-Sprachen
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Automaten für Typ 1?

Welches Berechnungsmodell entspricht den Typ-1-Sprachen?

• Kellerautomat: zu schwach (Typ 2)

• Turingmaschine: zu stark (Typ 0)

Lösung: Beschränkung des Arbeitsspeichers einer TM:

Eine linear beschränkte Turingmaschine (linear-bounded automaton, LBA) ist eine
nichtdeterministische Turingmaschine, die den Lese-/Schreibkopf nicht über das letzte
Eingabezeichen hinaus bewegen kann. Versucht sie das, so bleibt der Kopf stattdes-
sen an der letzten Bandstelle stehen.

Ein LBA kann also nur die (lineare) Menge an Speicher nutzen, die durch die Eingabe
belegt wird
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Beispiel

Die TM zur Erkennung von {aibici | i ≥ 0} (Vorlesung 18) ist ein LBA.

Arbeitsweise:

(1) Ersetze, angefangen von links, Vorkommen von a durch â

(2) Immer wenn ein a ersetzt wurde, suche ein b und ersetze es durch b̂, suche anschließend
rechts davon ein c und ersetze es durch ĉ

(3) Gehe danach zurück zum ersten noch nicht ersetzten a und führe die Ersetzung (1) fort, bis
alle a ersetzt worden sind

(4) Akzeptiere, falls der Inhalt des Bandes die Form â∗b̂
∗
ĉ∗ hat

(5) Andernfalls oder falls eine der Ersetzungen in Schritt (2) fehlschlägt, weil es zu wenige b
oder c gibt, lehne die Eingabe ab
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Typ 1⇔ LBA

Anmerkung: Wir beschränken uns auf Typ-1-Spachen ohne das Wort ϵ. Diesen
Sonderfall müssten LBAs anders behandeln, da eine TM nicht mit 0 Speicherzellen
arbeiten kann. Das ist nicht schwer,1 aber auch nicht sehr interessant.

Satz: Die Typ-1-Grammatiken erzeugen genau diejenigen Sprachen, die von einem
LBA erkannt werden können.

Beweis: Wir können fast die gleichen Konstruktionen anwenden, wie bei Typ 0:

(1) Typ 1⇒ LBA: Eine TM kann wie zuvor Grammatikregeln rückwärts anwenden. Bei
Typ-1-Regeln ist sichergestellt, dass dabei niemals mehr Speicher benutzt wird als
am Anfang

(2) LBA⇒ Typ 1: Die Konstruktion liefert schon fast eine Typ-1-Grammatik . . .

1Z.B. durch Verwendung eines Endzeichens nach der Eingabe.
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Typ 1⇐ LBA (1)

Die zuvor verwendete TM-Grammatik auf einen Blick:

S→

 aaq0

A (für beliebige a ∈ Σ) |

 ␣␣q0

B
A→

aa
−

A (für beliebige a ∈ Σ) | B B→

␣␣
−

B | ϵ
axq

bz
−

→
ay
−


bzq′


az
−


bxq
→
azq′

by
−


axq
→
ayq′


axq
→ a a

bx
−

→ ab

bx
−

 a→ ba ␣→ ϵ

Problematisch für Typ 1 sind nur die beiden ϵ-Regeln, die aber nur wegen der
zusätzlichen Blanks nötig sind.
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Typ 1⇐ LBA (2)

Modifizierte Grammatik zur Simulation von LBAs:

S→

 aaq0

A (für beliebige a ∈ Σ) |

 aaq0

 (für beliebige a ∈ Σ)

A→

aa
−

A (für beliebige a ∈ Σ) |

aa
−

 (für beliebige a ∈ Σ)

axq

bz
−

→
ay
−


bzq′


az
−


bxq
→
azq′

by
−


axq
→
ayq′


axq
→ a a

bx
−

→ ab

bx
−

 a→ ba

Diese Grammatik simuliert wie zuvor beliebige (N)TMs, aber nur auf dem
Speicherbereich, der von der Eingabe belegt wird. □

Markus Krötzsch, 22. Januar 2026 Formale Systeme Folie 23 von 31



Konfigurationsgraphen

Das Wortproblem bei Typ 0 ist unentscheidbar. Und bei Typ 1?

Beobachtung:

• Auf einem beschränkten Speicher gibt es nur beschränkt viele Konfigurationen,
genauer gesagt:

Konfigurationszahl bei n Zellen: |Γ|n︸︷︷︸
Bandinhalt

· n︸︷︷︸
Kopfpositionen

· |Q|︸︷︷︸
Zustände

• Man kann entscheiden, ob eine TM von einer Konfiguration in eine andere
wechseln kann oder nicht

Für eine Eingabe w können wir also den kompletten Graphen aller möglichen
LBA-Konfigurationen und Übergänge berechnen.
{ Konfigurationsgraph
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Das Wortproblem für Typ 1

Wortproblem (anders ausgedrückt): Gibt es eine akzeptierende Endkonfiguration, die
im Konfigurationsgraphen von der Startkonfiguration aus erreichbar ist?

Daraus folgt:

Satz: Das Wortproblem für Typ-1-Sprachen ist entscheidbar.

Beweis: Man kann den folgenden Algorithmus anwenden: (1) Berechne den
(exponentiell großen) Konfigurationsgraph einer entsprechenden Turingmaschine für
das gegebene Wort; (2) prüfe, ob es in diesem Graphen einen Pfad von der
Startkonfiguration zu einer Endkonfiguration gibt. □

Unser Algorithmus benötigt (immer) exponentiell viel Zeit.

Aber: Es ist bis heute nicht bekannt, ob es einen Algorithmus gibt, der im Worst-Case
weniger als exponentiell viel Zeit benötigt!

Beispiel: Das Halteproblem ist keine Typ-1-Sprache, da es nicht entscheidbar ist.
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Abschlusseigenschaften
Typ 0 und Typ 1

Markus Krötzsch, 22. Januar 2026 Formale Systeme Folie 26 von 31



Bekannte Abschlusseigenschaften

Wir wissen bereits:

Satz (siehe Vorlesung 14): Sowohl die Klasse der Typ-1-Sprachen als auch die Klas-
se der Typ-0-Sprachen ist unter Vereinigung abgeschlossen.

Satz: Die Klasse der Typ-0-Sprachen ist nicht unter Komplement abgeschlossen.

Beweis: Das Komplement des Halteproblems ist nicht semi-entscheidbar (siehe
Vorlesung 24). □
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Schnitt, Konkatenation und Kleene-Stern

Weitere Abschlusseigenschaften sind nicht schwer zu finden:

• Schnitt: Simuliere erst die erste TM, dann (bei Akzeptanz) die zweite; verwende ein
„mehrspuriges“ Alphabet, um die Eingabe für die zweite Simulation zu speichern

• Konkatenation: Rate und markiere die Trennstelle der beiden Wörter; teste dann
jedes der Wörter einzeln

• Kleene-Stern: Rate und teste einen ersten nichtleeren Teilabschnitt; wiederhole
dies bis das gesamte Wort erkannt wurde

Diese Konstruktionen funktionieren auch bei linear beschränktem Speicher, also:

Satz: Sowohl die Klasse der Typ-1-Sprachen als auch die Klasse der Typ-0-Sprachen
ist unter Schnitt, Konkatenation und Kleene-Stern abgeschlossen.

Markus Krötzsch, 22. Januar 2026 Formale Systeme Folie 28 von 31



Die LBA-Probleme

Zwei Probleme sind schon seit Erfindung der LBAs bekannt (Kuroda, 1964):

(1) Erkennen LBA dieselben Sprachen wie deterministische LBA?

(2) Sind die von LBA erkennbaren Sprachen unter Komplement abgeschlossen?

Das zweite Problem lösten überraschend nach über 20 Jahren unabhängig voneinander
Robert Szelepcsényi (1987) und Neil Immerman (1988):

Satz von Immerman und Szelepcsényi: Die Typ-1-Sprachen sind unter Komplement
abgeschlossen.

Beweis: siehe Sipser (Abschnitt 8.6) oder Schöning (Abschnitt 1.4) oder Kurs
Complexity Theory der TU Dresden; kein Stoff dieses Kurses.

Das erste LBA-Problem ist bis heute ungelöst.
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Übersicht Abschlusseigenschaften

Abschluss unter . . .

Sprache ∩ ∪ ◦ ∗ Automat

Typ 0 ✓ ✓ × ✓ ✓ TM (DTM/NTM)

Typ 1 ✓ ✓ ✓ ✓ ✓ LBA ( ?
= det. LBA)

Typ 2 × ✓ × ✓ ✓ PDA

Det. Typ 2 × × ✓ × × DPDA

Typ 3 ✓ ✓ ✓ ✓ ✓ DFA/NFA
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Zusammenfassung und Ausblick

Turingmaschinen charakterisieren Typ-0-Sprachen.

Linear beschränkte Turingmaschinen charakterisieren Typ-1-Sprachen.

Das Wortproblem für Typ-1-Sprachen ist entscheidbar aber kompliziert

Was erwartet uns als nächstes?

• Unberechenbare Probleme formaler Sprachen

• Abschließende Bemerkungen und Zusammenfassung

• Prüfungsvorbereitung und Prüfung
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