

Finite Model Theory of the Triguarded Fragment and Related Logics

Emanuel Kieroński and Sebastian Rudolph

FO2 vs GF vs TGF – Examples

Sentence	FO ²	GF	TGF
$\forall xy. parent_of(x, y) \rightarrow person(x)$	√	√	√
$\forall x. person(x) \rightarrow \exists y. parent_of(y, x)$	√	√	√
$\forall xy. \text{ married } (x, y) \rightarrow \exists z. \text{ witness_of } (z, x, y)$	X	√	V
$\forall xy. \ elephant(x) \land mouse(y) \rightarrow bigger_than(x, y)$	√	×	V
$\forall xy. \ carb_acid(x) \land alcohol(y) \rightarrow \exists z. \ combines_into(x, y, z) \land ester(z)$	×	X	V
$\forall xyz. \ bigger_than (x, y) \land bigger_than (y, z) \rightarrow bigger_than (x, z)$	×	×	X

Enter: GFU

Borrowed from notion of "universal role" in description logics:

Let U be a distinguished binary predicate symbol.

We call a structure $\mathfrak A$ with domain A *U-biquitous*, if $U^{\mathfrak A} = A \times A$.

Definition: The logic *GFU*

Syntax: Every GF sentence is a GFU sentence.

Semantics (via Model Theory): $\mathfrak A$ is a GFU-model of φ if

lacktriangledown lac

2 At is U-biquitous.

Observation: For every TGF sentence φ (not using the symbol U), one can polynomially compute a GFU sentence φ' such that

 $\mathfrak A$ is a model of $\varphi \Leftrightarrow \mathfrak A[U \mapsto A \times A]$ is a GFU-model of φ' .

Example:

 $\forall xy. \ U(x,y) \rightarrow (\ carb_acid(x) \land alcohol(y) \rightarrow \exists z. \ combines_into(x, y, z) \land ester(z))$

→ We will work with GFU instead of the original TGF.

TGF and Finite Models

So far, proofs related to TGF / GFU required infinite models.

FMP proofs neither for FO² nor for GF generalize easily to TGF / GFU.

However, it turns out, we can use machinery for finite-model-construction for GF.

(For clarity, we focus on the case w/o constants.)

Given satisfiable GFU-sentence φ , assume infinite U-biquitous model \mathfrak{A} . Construct finite U-biquitous model \mathfrak{A}' of φ as follows:

- In Strengthen φ into φ^* (still guarded) s.t. $\mathfrak A$ remains model. φ^* enforces enough U-connections, even when interpreted non-U-biquitously.
- $oxed{2}$ Use FMP of GF to obtain finite (yet non-U-biquitous) model ${\mathfrak C}$ of ${oldsymbol{arphi}}^*$.
- 3 Obtain \mathfrak{A}_0 as $125 \cdot |C|^2$ -fold disjoint union of \mathfrak{C} with itself, (still model of φ^*).
- **U-saturation**: Obtain $\mathfrak{A}_{1,}$ \mathfrak{A}_{2} ... by iteratively picking a pair of yet U-unconnected elements and connecting them, using an appropriate pair of connected elements as template (hence maintaining φ^* -modelhood).
- **5** As the number of elements remains constant, the procedure terminates and yields a U-biquitous $\mathfrak{A}_n = \mathfrak{A}'$.

TGF and Finite Models

1 Strengthen φ into φ^* (still guarded) s.t. $\mathfrak A$ remains model. φ^* enforces enough U-connections, even when interpreted non-U-biquitously.

Construct GF-sentence φ^* by conjunctively adding to φ statements enforcing that

- exactly all 1-types from a are realized,
- for any two 1-types from $\mathfrak A$, there are U-connected representatives, and
- U holds between any two elements co-occurring in any other relation.

$$\bigwedge_{\alpha,\alpha'\in\boldsymbol{\alpha}} \exists xy (\alpha(x) \land \alpha'(y) \land \mathsf{U}(x,y) \land \mathsf{U}(y,x))$$

$$\bigwedge_{P\in\sigma} \forall \bar{x} (P(\bar{x}) \Rightarrow \bigwedge_{1\leq i,j\leq |\bar{x}|} \mathsf{U}(x_i,x_j))$$

 \square Use FMP of GF to obtain finite (yet non-U-biquitous) small model $\mathbb C$ of φ^* .

Based on:

Logical Methods in Computer Science Vol. 10(2:3)2014, pp. 1–35 www.lmcs-online.org

Submitted May 3, 2011 Published May 21, 2014

QUERYING THE GUARDED FRAGMENT*

VINCE BÁRÁNY a, GEORG GOTTLOB b, AND MARTIN OTTO c

- a,c Department of Mathematics, Technische Universität Darmstadt $e\text{-}mail\ address\colon$ {vbarany,otto}@mathematik.tu-darmstadt.de
- b Oxford University Computing Laboratory, Wolfson Building, Parks Rd., OX1 3QD Oxford, UK e-mail address: georg.gottlob@comlab.ox.ac.uk

Straightforward for finiteness, but not when it comes to size:

- small-model-property in above paper guarantees 2Exp upper bound of the model wrt. length of GF sentence.
- Yet: φ^* has exponential length wrt. φ .
- by careful analysis of φ^* 's structure and the proofs in above paper, we can still ensure: size of \mathfrak{C} is (only) double exponentially bounded by length of φ .

■ Let K=|C|. Get \mathfrak{A}_0 as 125· K^2 -fold disjoint union of \mathfrak{C} with itself, (still model of φ^*).

U-saturation: Obtain $\mathfrak{A}_{1,}$ \mathfrak{A}_{2} ... by iteratively picking a pair of yet U-unconnected elements and connecting them, using an appropriate pair of connected elements as template (hence maintaining φ^* -modelhood).

Note: φ^* ensures, for any two elements n_1 and n_2 existence of a "1-type-compatible representative U-connected pair":

This representative pair will be called "entry pair" for n₁ and n₂

5 As the number of elements remains constant, the procedure terminates and yields a U-biquitous $\mathfrak{A}_n = \mathfrak{A}'$.

"Small" model property:

- discussed before: size of $\mathfrak C$ doubly exponentially bounded by length of $\boldsymbol \varphi$
- only polynomial blowup from \mathfrak{C} to $\mathfrak{A}_0: |\mathfrak{A}_0| = 125 \cdot |\mathfrak{C}|^3$
- no change in size from \mathfrak{A}_0 to $\mathfrak{A}_n = \mathfrak{A}'$ (domain stays the same)
- thus: size of \mathfrak{A}' doubly exponentially bounded by length of φ

Adding constants requires slight adaptation, but nothing serious.

We obtain:

Theorem: Every satisfiable TGF sentence φ (with or without constants) has a finite model, the size of which is bounded doubly exponentially by the length of φ .

Consequently, satisfiability and finite satisfiability of TGF sentences coincide.

Transitivity?

Sentence	FO ²	GF	TGF
$\forall xy. parent_of(x, y) \rightarrow person(x)$	V	V	√
$\forall x. \ person (x) \rightarrow \exists y. \ parent_of (y, x)$	√	√	√
$\forall xy. \text{ married } (x, y) \rightarrow \exists z. \text{ witness_of } (z, x, y)$	X	V	√
$\forall xy. \ elephant(x) \land mouse(y) \rightarrow bigger_than(x, y)$	√	X	√
$\forall xy. \ carb_acid(x) \land alcohol(y) \rightarrow \exists z. \ combines_into(x, y, z) \land ester(z)$	X	X	V
$\forall xyz. \ bigger_than(x, y) \land bigger_than(y, z) \rightarrow bigger_than(x, z)$	X	X	X

But what about transitivity? Transitive relations are important for logical modelling!

- **Bad news:** Adding "built-in" transitive relations to FO² or GF turns SAT undecidable.
- Good news: "Built-in" transitive relations in GF or TGF are OK, when they only appear as guards: GF+TG, TGF+TG.
- So far, results only for constant-free case (SAT: 2EXPTIME).
- But: constructed models are generally infinite...

FINSAT of (T)GF + TG

Question: We know GF+TG and TGF+TG do not have FMP. What about FINSAT?

Using some similar and some different ideas regarding parameter analysis and model surgery yields:

Theorem: The finite satisfiability problem for (T)GF+TG without constants is 2ExpTime-complete. Every finitely satisfiable (T)GF+TG formula has a model of size bounded doubly exponentially in its length.

Note: GF+TG supports equality while TGF+TG doesn't.

Conclusion

Conclusion

Remark:

- results remain intact when allowing equality statements of the form x = c
- properly increases expressivity (allows expressing "nominals" known from DLs)

ToDo:

- adding constants to (T)GF + TG
- conjecture: resulting fragments still decidable
- lower bound for TGF+TG comes from TGF (N2ExpTime),
 i.e., harder than constant-free case (under standard assumptions)