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The Triguarded Fragment – Motivation

FO
SAT: undecidable 😞
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The Triguarded Fragment – Motivation

FO
SAT: undecidable 😞

FO2

uses only two variables
SAT: NExpTime
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uses only two variables
SAT: NExpTime
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guarded quan8fica8on

SAT: 2ExpTime
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The Triguarded Fragment – Motivation
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uses only two variables
SAT: NExpTime

GF
guarded quan8fica8on
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are 
here
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The Triguarded Fragment – Motivation

FO
SAT: undecidable 😞

FO2

uses only two variables
SAT: NExpTime

GF
guarded quantification

SAT: 2ExpTimemany
DLs
are 
here

TGF
quantification needs guarding only if ≥3 free variables

SAT: N2ExpTime (w/o constants: 2ExpTime)
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The Triguarded Fragment – Motivation

FO
SAT: undecidable 😞

FO2

uses only two variables
SAT: NExpTime

GF
guarded quantification

SAT: 2ExpTimemany
DLs
are 
here

TGF
quantification needs guarding only if ≥3 free variables

SAT: N2ExpTime (w/o constants: 2ExpTime)

Disclaimer: This only holds if equality is absent. 
Adding equality turns TGF undecidable.
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The Triguarded Fragment – Motivation
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SAT: undecidable 😞

FO2

uses only two variables
SAT: NExpTime

GF
guarded quan8fica8on

SAT: 2ExpTimemany
DLs
are 
here

TGF
quan8fica8on needs guarding only if ≥3 free variables

SAT: N2ExpTime (w/o constants: 2ExpTime)

FMP: yes
SAT = FINSAT

FMP: yes
SAT = FINSAT
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The Triguarded Fragment – Motivation

FO
SAT: undecidable 😞

FO2

uses only two variables
SAT: NExpTime

GF
guarded quan8fica8on

SAT: 2ExpTimemany
DLs
are 
here

TGF
quan8fica8on needs guarding only if ≥3 free variables

SAT: N2ExpTime (w/o constants: 2ExpTime)

FMP: yes
SAT = FINSAT

FMP: yes
SAT = FINSAT

FMP? FINSAT? …🤷
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FO2 vs GF vs TGF – Examples

Sentence FO2 GF TGF

∀xy. parent_of (x, y) → person (x) ✔ ✔ ✔

∀x. person (x) → ∃y. parent_of (y, x) ✔ ✔ ✔

∀xy. married (x, y) → ∃z. witness_of (z, x, y) ❌ ✔ ✔

∀xy. elephant (x) ∧ mouse(y) → bigger_than(x, y) ✔ ❌ ✔

∀xy. carb_acid (x) ∧ alcohol(y) → ∃z. combines_into (x, y, z) ∧ ester (z) ❌ ❌ ✔

∀xyz. bigger_than (x, y) ∧ bigger_than (y, z) → bigger_than (x, z) ❌ ❌ ❌
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Enter: GFU

Borrowed from notion of “universal role” in description logics:
Let U be a distinguished binary predicate symbol.
We call a structure 𝕬 with domain A U-biquitous, if U𝕬 = A×A.

Definition: The logic GFU
Syntax: Every GF sentence is a GFU sentence.
Semantics (via Model Theory): 𝕬 is a GFU-model of 𝝋 if

1⃣ 𝕬 is a GF-model of 𝝋 and
2⃣ 𝕬 is U-biquitous.

Observation: For every TGF sentence 𝝋 (not using the symbol U), one can 
polynomially compute a GFU sentence 𝝋’ such that

𝕬 is a model of 𝝋 ⟺ 𝕬[U↦A×A] is a GFU-model of 𝝋’.

Example:
∀xy. U(x,y) → ( carb_acid (x) ∧ alcohol (y) → ∃z. combines_into (x, y, z) ∧ ester (z) )

à We will work with GFU instead of the original TGF.
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TGF and Finite Models

So far, proofs related to TGF / GFU required infinite models.

FMP proofs neither for FO2 nor for GF generalize easily to TGF / GFU.

However, it turns out, we can use machinery for finite-model-construction 
for GF. 

(For clarity, we focus on the case w/o constants.)
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FMP for TGF – Roadmap

Given satisfiable GFU-sentence 𝝋, assume infinite U-biquitous model 𝕬. 
Construct finite U-biquitous model 𝕬’ of 𝝋 as follows:

1⃣ Strengthen 𝝋 into 𝝋* (still guarded) s.t. 𝕬 remains model.
𝝋* enforces enough U-connections, even when interpreted non-U-biquitously.

2⃣ Use FMP of GF to obtain finite (yet non-U-biquitous) model ℭ of 𝝋*.

3⃣ Obtain 𝕬0 as 125⋅|C|2-fold disjoint union of ℭ with itself, (still model of 𝝋*).

4⃣ U-saturation: Obtain 𝕬1, 𝕬2 … by iteratively picking a pair of yet U-unconnected 
elements and connecting them, using an appropriate pair of connected elements 
as template (hence maintaining 𝝋*-modelhood).

5⃣ As the number of elements remains constant, the procedure terminates and yields 
a U-biquitous 𝕬n = 𝕬’. 
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TGF and Finite Models

1⃣ Strengthen 𝝋 into 𝝋* (still guarded) s.t. 𝕬 remains model.
𝝋* enforces enough U-connections, even when interpreted non-U-biquitously.

Construct GF-sentence 𝝋* by conjunctively adding to 𝝋 statements enforcing that 
• exactly all 1-types from 𝕬 are realized,
• for any two 1-types from 𝕬, there are U-connected representatives, and  
• U holds between any two elements co-occurring in any other relation.

Some comments concerning these estimations can be found in
the appendix.

Theorem 4 ([2]). GF (with constants and equalities) has
the finite model property. Every satisfiable formula has a
model of size bounded doubly exponentially in its length.
More specifically, the size of minimal models of normal form
sentences is bounded exponentially in the size of the signature
and doubly exponentially in its width.

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More specif-
ically, there is a procedure that, given a normal form sentence,
works in time bounded polynomially in the length of the
input, exponentially in the size of the signature, and doubly
exponentially in its width.

Theorem 6 ([10]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of size
bounded doubly exponentially in its length. More specifically,
for normal form sentences, the size of their minimal finite
models is bounded exponentially in the number of the 89-
conjuncts of the input and doubly exponentially in the size of
the signature.

Theorem 7 ([10]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-complete.
More specifically, there is a procedure that, given a normal
form sentence, works in time bounded polynomially in the
length of its input, exponentially in the number of its 89-
conjuncts and doubly exponentially in the size of the signature.

III. FINITE MODEL CONSTRUCTION FOR TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality, over a purely relational signature � (we will explain
how to cover the case of signatures containing constants later)
and let A be a U-biquitous model of '. Our goal is to build
a finite U-biquitous model A0 of '.

A. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct a
GF �-sentence '⇤ by appending to ' the following conjuncts:

8x
� _

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by U.
We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-sentence, is satisfiable.
In fact, A is its model. Thus, by the finite model property for
GF, it also has a finite (not necessarily U-biquitous) model. We
take such a finite model C� |= '⇤, and let C be its doubling.

1 K

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0

2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵, ↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . , mK + K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . , Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K} ⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 � B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

1 K
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of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . , mK + K} is
isomorphic to C.
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We now build a finite sequence of finite structures A0,
A1, . . . , Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K} ⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 � B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

Fig. 1. An example structure C. Different colours of nodes represent different
1-types. The black bidirectional edges depict U-connections; the orange
connection represents a ternary atom; the violet connection – a binary one.
While C needs not be U-biquitous, for any pair of node colours there is a pair
of distinct nodes connected by U. Every element also carries a black looping
arrow, these were omitted for better readability.

As '⇤ does not use equality (or, to be strict, needs it only for
trivial guards x = x, omitted from (2)), we have by Lemma
3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0

2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained
from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |= P [ā2].
Then the following holds (see Fig. 1):

Claim 8. For any pair of 1-types ↵, ↵0
2 ↵ there is a

pair of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even find
indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corresponding
conjunct from subsentence (3) of '⇤ in C�. If ↵ 6= ↵0 then b
and b0 are distinct and we can take a = (b, 0) and a0 = (b0, 0).
If ↵ = ↵0 then we take a = (b, 0) and a0 = (b, 1). By the
construction of C, a and a0 have the required property. Note
in particular that all 1-types in C� contain U(x, x) as they
are realized in a U-biquitous model of '. This implies that
C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any role.
However, it will be convenient to build, using Lemma 2, yet
another model B |= '⇤, this time as the disjoint union of five
copies of C. Letting K = |C|, we assume that the domain
of B is B := {1, . . . , 5K}; and that for m = 0, . . . , 4 the
structure on {mK + 1, . . . , mK + K} is isomorphic to C.

B. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . , Af , each of them being a model of '⇤ and the last of
them being a desired U-biquitous model A0 of '⇤ (and thus
also of '). The domains these structures will all be identical:

Ai = B ⇥ {1, . . . , 5K} ⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0�B ⇥ {k} ⇥ {`} isomorphic to B (via the natural
projection (b, k, `) 7! b). By Lemma 2 we have that A0 |= '⇤.

It is helpful to think that each of the Ai is organized in a
square table of size 5K ⇥ 5K. In particular every cell of A0

contains a copy of B (which itself is a 5-fold copy of C), and
in A0, there are no connections whatsoever between elements
from different cells.



29.06.2021  |  LICS2021  |  Emanuel Kieronski, Sebastian Rudolph: Finite Model Theory of the Triguarded Fragment and Related Logics 15

FMP for TGF – Roadmap

2⃣ Use FMP of GF to obtain finite (yet non-U-biquitous) small model ℭ of 𝝋*.

Based on:

Straightforward for finiteness, but not when it comes to size: 
• small-model-property in above paper guarantees 2Exp upper bound of the model 

wrt. length of GF sentence. 
• Yet: 𝝋* has exponential length wrt. 𝝋.
• by careful analysis of 𝝋*’s structure and the proofs in above paper, we can still 

ensure: size of ℭ is (only) double exponentially bounded by length of 𝝋.
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QUERYING THE GUARDED FRAGMENT ∗
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Abstract. Evaluating a Boolean conjunctive query q against a guarded first-order theory
ϕ is equivalent to checking whether ϕ ∧ ¬q is unsatisfiable. This problem is relevant to
the areas of database theory and description logic. Since q may not be guarded, well
known results about the decidability, complexity, and finite-model property of the guarded
fragment do not obviously carry over to conjunctive query answering over guarded theories,
and had been left open in general. By investigating finite guarded bisimilar covers of
hypergraphs and relational structures, and by substantially generalising Rosati’s finite
chase, we prove for guarded theories ϕ and (unions of) conjunctive queries q that (i) ϕ |= q
iff ϕ |=fin q, that is, iff q is true in every finite model of ϕ and (ii) determining whether
ϕ |= q is 2EXPTIME-complete. We further show the following results: (iii) the existence
of polynomial-size conformal covers of arbitrary hypergraphs; (iv) a new proof of the
finite model property of the clique-guarded fragment; (v) the small model property of the
guarded fragment with optimal bounds; (vi) a polynomial-time solution to the canonisation
problem modulo guarded bisimulation, which yields (vii) a capturing result for guarded
bisimulation invariant PTIME.

1. Introduction

The guarded fragment of first-order logic (GF), defined through the relativisation of quanti-
fiers by atomic formulas, was introduced by Andréka, van Benthem, and Németi [1], who
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Some comments concerning these estimations can be found in
the appendix.

Theorem 4 ([2]). GF (with constants and equalities) has
the finite model property. Every satisfiable formula has a
model of size bounded doubly exponentially in its length.
More specifically, the size of minimal models of normal form
sentences is bounded exponentially in the size of the signature
and doubly exponentially in its width.

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More specif-
ically, there is a procedure that, given a normal form sentence,
works in time bounded polynomially in the length of the
input, exponentially in the size of the signature, and doubly
exponentially in its width.

Theorem 6 ([10]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of size
bounded doubly exponentially in its length. More specifically,
for normal form sentences, the size of their minimal finite
models is bounded exponentially in the number of the 89-
conjuncts of the input and doubly exponentially in the size of
the signature.

Theorem 7 ([10]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-complete.
More specifically, there is a procedure that, given a normal
form sentence, works in time bounded polynomially in the
length of its input, exponentially in the number of its 89-
conjuncts and doubly exponentially in the size of the signature.

III. FINITE MODEL CONSTRUCTION FOR TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality, over a purely relational signature � (we will explain
how to cover the case of signatures containing constants later)
and let A be a U-biquitous model of '. Our goal is to build
a finite U-biquitous model A0 of '.

A. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct a
GF �-sentence '⇤ by appending to ' the following conjuncts:

8x
� _

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by U.
We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-sentence, is satisfiable.
In fact, A is its model. Thus, by the finite model property for
GF, it also has a finite (not necessarily U-biquitous) model. We
take such a finite model C� |= '⇤, and let C be its doubling.
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
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↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0

2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵, ↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . , mK + K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . , Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K} ⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 � B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.
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(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
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saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0

2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵, ↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . , mK + K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . , Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K} ⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 � B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

Fig. 1. An example structure C. Different colours of nodes represent different
1-types. The black bidirectional edges depict U-connections; the orange
connection represents a ternary atom; the violet connection – a binary one.
While C needs not be U-biquitous, for any pair of node colours there is a pair
of distinct nodes connected by U. Every element also carries a black looping
arrow, these were omitted for better readability.

As '⇤ does not use equality (or, to be strict, needs it only for
trivial guards x = x, omitted from (2)), we have by Lemma
3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0

2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained
from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |= P [ā2].
Then the following holds (see Fig. 1):

Claim 8. For any pair of 1-types ↵, ↵0
2 ↵ there is a

pair of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even find
indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corresponding
conjunct from subsentence (3) of '⇤ in C�. If ↵ 6= ↵0 then b
and b0 are distinct and we can take a = (b, 0) and a0 = (b0, 0).
If ↵ = ↵0 then we take a = (b, 0) and a0 = (b, 1). By the
construction of C, a and a0 have the required property. Note
in particular that all 1-types in C� contain U(x, x) as they
are realized in a U-biquitous model of '. This implies that
C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any role.
However, it will be convenient to build, using Lemma 2, yet
another model B |= '⇤, this time as the disjoint union of five
copies of C. Letting K = |C|, we assume that the domain
of B is B := {1, . . . , 5K}; and that for m = 0, . . . , 4 the
structure on {mK + 1, . . . , mK + K} is isomorphic to C.

B. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . , Af , each of them being a model of '⇤ and the last of
them being a desired U-biquitous model A0 of '⇤ (and thus
also of '). The domains these structures will all be identical:

Ai = B ⇥ {1, . . . , 5K} ⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0�B ⇥ {k} ⇥ {`} isomorphic to B (via the natural
projection (b, k, `) 7! b). By Lemma 2 we have that A0 |= '⇤.

It is helpful to think that each of the Ai is organized in a
square table of size 5K ⇥ 5K. In particular every cell of A0

contains a copy of B (which itself is a 5-fold copy of C), and
in A0, there are no connections whatsoever between elements
from different cells.
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3⃣ Let K=|C|. Get 𝕬0 as 125⋅K2-fold disjoint union of ℭ with itself, (still model of 𝝋*).

Some comments concerning these estimations can be found in
the appendix.

Theorem 4 ([2]). GF (with constants and equalities) has
the finite model property. Every satisfiable formula has a
model of size bounded doubly exponentially in its length.
More specifically, the size of minimal models of normal form
sentences is bounded exponentially in the size of the signature
and doubly exponentially in its width.

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More specif-
ically, there is a procedure that, given a normal form sentence,
works in time bounded polynomially in the length of the
input, exponentially in the size of the signature, and doubly
exponentially in its width.

Theorem 6 ([10]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of size
bounded doubly exponentially in its length. More specifically,
for normal form sentences, the size of their minimal finite
models is bounded exponentially in the number of the 89-
conjuncts of the input and doubly exponentially in the size of
the signature.

Theorem 7 ([10]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-complete.
More specifically, there is a procedure that, given a normal
form sentence, works in time bounded polynomially in the
length of its input, exponentially in the number of its 89-
conjuncts and doubly exponentially in the size of the signature.

III. FINITE MODEL CONSTRUCTION FOR TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality, over a purely relational signature � (we will explain
how to cover the case of signatures containing constants later)
and let A be a U-biquitous model of '. Our goal is to build
a finite U-biquitous model A0 of '.

A. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct a
GF �-sentence '⇤ by appending to ' the following conjuncts:

8x
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↵2↵
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�
(2)
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↵,↵02↵
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↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)
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8x̄
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1i,j|x̄|
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(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by U.
We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-sentence, is satisfiable.
In fact, A is its model. Thus, by the finite model property for
GF, it also has a finite (not necessarily U-biquitous) model. We
take such a finite model C� |= '⇤, and let C be its doubling.
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its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0

2 C indistinguishable in C if for any relation
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C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

1 K

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0

2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵, ↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . , mK + K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . , Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K} ⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 � B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

Fig. 1. An example structure C. Different colours of nodes represent different
1-types. The black bidirectional edges depict U-connections; the orange
connection represents a ternary atom; the violet connection – a binary one.
While C needs not be U-biquitous, for any pair of node colours there is a pair
of distinct nodes connected by U. Every element also carries a black looping
arrow, these were omitted for better readability.

As '⇤ does not use equality (or, to be strict, needs it only for
trivial guards x = x, omitted from (2)), we have by Lemma
3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0

2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained
from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |= P [ā2].
Then the following holds (see Fig. 1):

Claim 8. For any pair of 1-types ↵, ↵0
2 ↵ there is a

pair of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even find
indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corresponding
conjunct from subsentence (3) of '⇤ in C�. If ↵ 6= ↵0 then b
and b0 are distinct and we can take a = (b, 0) and a0 = (b0, 0).
If ↵ = ↵0 then we take a = (b, 0) and a0 = (b, 1). By the
construction of C, a and a0 have the required property. Note
in particular that all 1-types in C� contain U(x, x) as they
are realized in a U-biquitous model of '. This implies that
C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any role.
However, it will be convenient to build, using Lemma 2, yet
another model B |= '⇤, this time as the disjoint union of five
copies of C. Letting K = |C|, we assume that the domain
of B is B := {1, . . . , 5K}; and that for m = 0, . . . , 4 the
structure on {mK + 1, . . . , mK + K} is isomorphic to C.

B. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . , Af , each of them being a model of '⇤ and the last of
them being a desired U-biquitous model A0 of '⇤ (and thus
also of '). The domains these structures will all be identical:

Ai = B ⇥ {1, . . . , 5K} ⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0�B ⇥ {k} ⇥ {`} isomorphic to B (via the natural
projection (b, k, `) 7! b). By Lemma 2 we have that A0 |= '⇤.

It is helpful to think that each of the Ai is organized in a
square table of size 5K ⇥ 5K. In particular every cell of A0

contains a copy of B (which itself is a 5-fold copy of C), and
in A0, there are no connections whatsoever between elements
from different cells.

⋅5

⋅(5K × 5K)
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4⃣ U-saturation: Obtain 𝕬1, 𝕬2 … by iteratively picking a pair of yet U-unconnected 
elements and connecting them, using an appropriate pair of connected elements 
as template (hence maintaining 𝝋*-modelhood).

Note: 𝝋* ensures, for any two elements n1 and n2 existence of 
a “1-type-compatible representative U-connected pair”:

This representative pair will be called “entry pair” for n1 and n2

Some comments concerning these estimations can be found in
the appendix.

Theorem 4 ([2]). GF (with constants and equalities) has
the finite model property. Every satisfiable formula has a
model of size bounded doubly exponentially in its length.
More specifically, the size of minimal models of normal form
sentences is bounded exponentially in the size of the signature
and doubly exponentially in its width.

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More specif-
ically, there is a procedure that, given a normal form sentence,
works in time bounded polynomially in the length of the
input, exponentially in the size of the signature, and doubly
exponentially in its width.

Theorem 6 ([10]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of size
bounded doubly exponentially in its length. More specifically,
for normal form sentences, the size of their minimal finite
models is bounded exponentially in the number of the 89-
conjuncts of the input and doubly exponentially in the size of
the signature.

Theorem 7 ([10]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-complete.
More specifically, there is a procedure that, given a normal
form sentence, works in time bounded polynomially in the
length of its input, exponentially in the number of its 89-
conjuncts and doubly exponentially in the size of the signature.

III. FINITE MODEL CONSTRUCTION FOR TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality, over a purely relational signature � (we will explain
how to cover the case of signatures containing constants later)
and let A be a U-biquitous model of '. Our goal is to build
a finite U-biquitous model A0 of '.

A. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct a
GF �-sentence '⇤ by appending to ' the following conjuncts:

8x
� _

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by U.
We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-sentence, is satisfiable.
In fact, A is its model. Thus, by the finite model property for
GF, it also has a finite (not necessarily U-biquitous) model. We
take such a finite model C� |= '⇤, and let C be its doubling.

1 K

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0

2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵, ↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . , mK + K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . , Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K} ⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 � B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

1 K

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0

2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵, ↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . , mK + K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . , Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K} ⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 � B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

Fig. 1. An example structure C. Different colours of nodes represent different
1-types. The black bidirectional edges depict U-connections; the orange
connection represents a ternary atom; the violet connection – a binary one.
While C needs not be U-biquitous, for any pair of node colours there is a pair
of distinct nodes connected by U. Every element also carries a black looping
arrow, these were omitted for better readability.

As '⇤ does not use equality (or, to be strict, needs it only for
trivial guards x = x, omitted from (2)), we have by Lemma
3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0

2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained
from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |= P [ā2].
Then the following holds (see Fig. 1):

Claim 8. For any pair of 1-types ↵, ↵0
2 ↵ there is a

pair of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even find
indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corresponding
conjunct from subsentence (3) of '⇤ in C�. If ↵ 6= ↵0 then b
and b0 are distinct and we can take a = (b, 0) and a0 = (b0, 0).
If ↵ = ↵0 then we take a = (b, 0) and a0 = (b, 1). By the
construction of C, a and a0 have the required property. Note
in particular that all 1-types in C� contain U(x, x) as they
are realized in a U-biquitous model of '. This implies that
C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any role.
However, it will be convenient to build, using Lemma 2, yet
another model B |= '⇤, this time as the disjoint union of five
copies of C. Letting K = |C|, we assume that the domain
of B is B := {1, . . . , 5K}; and that for m = 0, . . . , 4 the
structure on {mK + 1, . . . , mK + K} is isomorphic to C.

B. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . , Af , each of them being a model of '⇤ and the last of
them being a desired U-biquitous model A0 of '⇤ (and thus
also of '). The domains these structures will all be identical:

Ai = B ⇥ {1, . . . , 5K} ⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0�B ⇥ {k} ⇥ {`} isomorphic to B (via the natural
projection (b, k, `) 7! b). By Lemma 2 we have that A0 |= '⇤.

It is helpful to think that each of the Ai is organized in a
square table of size 5K ⇥ 5K. In particular every cell of A0

contains a copy of B (which itself is a 5-fold copy of C), and
in A0, there are no connections whatsoever between elements
from different cells.

n1 n2

4⃣ U-saturation: Obtain 𝕬1, 𝕬2 … by iteratively picking a pair of yet U-unconnected 
elements and connecting them, using an appropriate pair of connected elements 
as template (hence maintaining 𝝋*-modelhood).
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5K

1

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

k2,ℓ2

n2

i

5K

1

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

k1,ℓ1

n1

i

FMP for TGF – Roadmap

4⃣ U-saturation: Obtain 𝕬1, 𝕬2 … by iteratively picking a pair of yet U-unconnected 
elements and connecting them, using an appropriate pair of connected elements 
as template (hence maintaining 𝝋*-modelhood).
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5K

1

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

k2,ℓ2

n2

i

5K

1

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

k1,ℓ1

n1
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,3
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,1
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,2
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,4
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2
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1 K

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,0
i

FMP for TGF – Roadmap

4⃣ U-saturation: Obtain 𝕬1, 𝕬2 … by iteratively picking a pair of yet U-unconnected 
elements and connecting them, using an appropriate pair of connected elements 
as template (hence maintaining 𝝋*-modelhood).
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1

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

k2,ℓ2

n2
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5K

1

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

k1,ℓ1

n1

i

5K

4K

3K

2K

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,3
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,1
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,4
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,0
i
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4⃣ U-saturation: Obtain 𝕬1, 𝕬2 … by iteratively picking a pair of yet U-unconnected 
elements and connecting them, using an appropriate pair of connected elements 
as template (hence maintaining 𝝋*-modelhood).
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5K

1

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

k2,ℓ2

n2
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5K

1

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

k1,ℓ1

n1
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5K

4K

3K

2K

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,3
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,1
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,2
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without
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4⃣ U-saturation: Obtain 𝕬1, 𝕬2 … by iteratively picking a pair of yet U-unconnected 
elements and connecting them, using an appropriate pair of connected elements 
as template (hence maintaining 𝝋*-modelhood).
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

k1,ℓ1

n1

i

5K

4K

3K

2K

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,3
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,1
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,2
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,4
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,0
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FMP for TGF – Roadmap
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k1

ℓ2

4⃣ U-saturation: Obtain 𝕬1, 𝕬2 … by iteratively picking a pair of yet U-unconnected 
elements and connecting them, using an appropriate pair of connected elements 
as template (hence maintaining 𝝋*-modelhood).
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without
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1

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without
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Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,3
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,1
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,2
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,4
i

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2

i

1 K

Theorem 5 ([6]). The satisfiability problem for GF (with
constants and equalities) is 2EXPTIME-complete. More
specifically, there is a procedure that, given a normal
form formula, works in time bounded polynomially in
the length of the input, exponentially in the size of the
signature, and doubly exponentially in its width.

Theorem 6 ([11]). Every finitely satisfiable GF2+TG for-
mula (without constants, with equalities) has a model of
size bounded doubly exponentially in its length. More
specifically, for normal form formulas, the size of their
minimal finite models is bounded exponentially in the
number of the 89-conjuncts of the input and doubly
exponentially in the size of the signature.

Theorem 7 ([11]). The satisfiability problem for GF2+TG
(without constants, with equalities) is 2EXPTIME-
complete. More specifically, there is a procedure that,
given a normal form formula, works in time bounded
polynomially in the length of its input, exponentially in
the number of its 89-conjuncts and doubly exponentially
in the size of the signature.

3. Finite model construction for TGF (GFU)

Let us fix a GFU sentence ' in normal form, without
equality over a purely relational signature � (we will explain
how to cover the case of signatures containing constants
later) and let A be a U-biquitous model of '. Our goal is
to build a finite U-biquitous model A0 of '.

3.1. Preparing building blocks

Let ↵ be the set of 1-types realized in A. We construct
a GF �-sentence '⇤ by appending to ' the following
conjuncts:

8x
_

↵2↵
↵(x)

�
(2)

^

↵,↵02↵

9xy
�
↵(x) ^ ↵0(y) ^ U(x, y) ^ U(y, x)

�
(3)

^

P2�

8x̄
⇣
P (x̄) )

^

1i,j|x̄|

U(xi, xj)
⌘

(4)

saying, respectively, that only 1-types from ↵ are realized,
every pair of 1-types has a realization both-ways connected
by U and every guarded pair of elements is connected by
U. We can treat (2)–(4) as normal form conjuncts.

It is clear that '⇤, treated as a GF-formula, is satisfiable.
In fact, A is its model. Thus, by the finite model property
for GF, it also has a finite (not necessarily U-biquitous)
model. We take such a finite model C� |= '⇤, and let C be
its doubling. As '⇤ does not use equality (or, to be strict,
needs it only for trivial guards x = x, omitted from (2)),
we have by Lemma 3 that C |= '⇤.

Moreover, C has another convenient property. Let us call
elements a, a0 2 C indistinguishable in C if for any relation
symbol P 2 �, any tuple ā1 ✓ C and any tuple ā2 obtained

from ā1 by replacing some occurrences of a by a0 and some
occurrences of a0 by a we have that C |= P [ā1] iff C |=
P [ā2]. Then the following holds:
Claim 8. For any pair of 1-types ↵,↵0

2 ↵ there is a pair
of their distinct realizations a, a0 in C such that C |=
U[a, a0] ^ U[a0, a]. Moreover, if ↵ = ↵0, then we even
find indistinguishable a, a0 with that property.

Proof: Let b, b0 be elements witnessing the corre-
sponding conjunct from subsentence (3) of '⇤ in C�. If
↵ 6= ↵0 then b and b0 are distinct and we can take a = (b, 0)
and a0 = (b0, 0). If ↵ = ↵0 then we take a = (b, 0) and
a0 = (b, 1). By the construction of C, a and a0 have the
required property. Note in particular that all 1-types in C�

contain U(x, x) as they are realized in a U-biquitous model
of '. This implies that C |= U[a, a0] ^ U[a0, a].

From this point on, the model C� will not play any
role. However, it will be convenient to build, using Lemma
2, yet another model B |= '⇤, this time as the disjoint
union of five copies of C. Letting K = |C|, we assume
that the domain of B is B := {1, . . . , 5K}; and that for
m = 0, . . . , 4 the structure on {mK + 1, . . . ,mK +K} is
isomorphic to C.

3.2. U-saturation

We now build a finite sequence of finite structures A0,
A1, . . . ,Af , each of them being a model of '⇤ and the last
of them being a desired U-biquitous model A0 of '⇤ (and
thus also of ').

The domains of all these structures will be identical.

Ai = B ⇥ {1, . . . , 5K}⇥ {1, . . . , 5K}.

The initial structure A0 is defined as the disjoint union of
(5K)2 copies of B. Namely, for each k, ` 2 {1, . . . , 5K}

we make A0 �B ⇥ {k} ⇥ {`} isomorphic to B (via the
natural projection (b, k, `) 7! b). By Lemma 2 we have that
A0 |= '⇤.

It is helpful to think that each of the Ai is organized in
a square table of size 5K ⇥ 5K. In particular every cell of
A0 contains a copy of B (which itself is a 5-fold copy of
C), and in A0, there are no connections whatsoever between
elements from different cells.

Outline of the construction. The whole process may be
seen as a careful saturation of the initial model A0 with
U-connections. In the passage from Ai to Ai+1 we take a
pair of distinct domain elements b1, b2 not connected by
U yet. By Claim 8, we can find in C a pair of distinct
elements a1, a2 that have the same 1-types as b1, b2, but,
in addition, are connected by U. We want to make the
connection between b1 and b2 isomorphic to the connection
between a1 and a2, but after this, b1, b2 may start to satisfy
some of the guards �i in one of the 89-conjuncts and thus
require witnesses. To provide such witnesses we connect
the pair b1, b2 to one substructure located in one of the
cells in Ai+1. Thereby, the challenge is to design a strategy
which will allow us to perform a process of this kind without

n1,n2,0
i

FMP for TGF – Roadmap

4⃣ U-saturation: Obtain 𝕬1, 𝕬2 … by iteratively picking a pair of yet U-unconnected 
elements and connecting them, using an appropriate pair of connected elements 
as template (hence maintaining 𝝋*-modelhood).

k2

ℓ1

k1

ℓ2
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FMP for TGF – Roadmap

5⃣ As the number of elements remains constant, the procedure terminates and yields 
a U-biquitous 𝕬n = 𝕬’.

“Small” model property:
• discussed before: size of ℭ doubly exponentially bounded by length of 𝝋
• only polynomial blowup from ℭ to 𝕬0 : |𝕬0| = 125⋅|ℭ|3

• no change in size from 𝕬0 to 𝕬n = 𝕬’ (domain stays the same)
• thus: size of 𝕬’ doubly exponentially bounded by length of 𝝋

Adding constants requires slight adaptation, but nothing serious.

We obtain:

Theorem: Every satisfiable TGF sentence 𝝋 (with or without constants) has a finite 
model, the size of which is bounded doubly exponentially by the length of 𝝋. 
Consequently, satisfiability and finite satisfiability of TGF sentences coincide.
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Transitivity?

Sentence FO2 GF TGF

∀xy. parent_of (x, y) → person (x) ✔ ✔ ✔

∀x. person (x) → ∃y. parent_of (y, x) ✔ ✔ ✔

∀xy. married (x, y) → ∃z. witness_of (z, x, y) ❌ ✔ ✔

∀xy. elephant (x) ∧ mouse(y) → bigger_than(x, y) ✔ ❌ ✔

∀xy. carb_acid (x) ∧ alcohol(y) → ∃z. combines_into (x, y, z) ∧ ester (z) ❌ ❌ ✔

∀xyz. bigger_than (x, y) ∧ bigger_than (y, z) → bigger_than (x, z) ❌ ❌ ❌

But what about transitivity? Transitive relations are important for logical modelling!

• Bad news: Adding “built-in” transitive relations to FO2 or GF turns SAT 
undecidable. 

• Good news: “Built-in” transitive relations in GF or TGF are OK, when they only 
appear as guards: GF+TG, TGF+TG. 

• So far, results only for constant-free case (SAT: 2ExpTime). 
• But: constructed models are generally infinite…
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FINSAT of (T)GF + TG

Question: We know GF+TG and TGF+TG do not have FMP. What about FINSAT?

Using some similar and some different ideas regarding parameter analysis and model 
surgery yields:

Theorem: The finite satisfiability problem for (T)GF+TG without constants is 
2ExpTime-complete. Every finitely satisfiable (T)GF+TG formula has a model of 
size bounded doubly exponentially in its length.

Note: GF+TG supports equality while TGF+TG doesn’t.
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Conclusion
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Conclusion

Remark: 
• results remain intact when allowing equality statements of the form x = c
• properly increases expressivity (allows expressing “nominals” known from DLs)

ToDo:
• adding constants to (T)GF + TG
• conjecture: resulting fragments still decidable
• lower bound for TGF+TG comes from TGF (N2ExpTime), 

i.e., harder than constant-free case (under standard assumptions)

guarded Frag

FMP


