Complexity Theory
Nondeterministic Polynomial Time

Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-11-11
The Class \textbf{NP}
Beyond PTime

- We have seen that the class PTime provides a useful model of “tractable” problems.
- This includes 2-Sat and 2-Colourability.
- But what about 3-Sat and 3-Colourability?
- No polynomial time algorithms for these problems are known.
- On the other hand . . .
Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a “solution” if given.

- **Satisfiability** – a satisfying assignment
- **k-Colourability** – a k-colouring
- **Sudoku** – a completed puzzle
Verifiers

Definition 7.1

A Turing machine M which halts on all inputs is called a **verifier for a language** L if

$$L = \{w \mid M \text{ accepts } (w\#c) \text{ for some string } c\}$$

The string c is called a **certificate** (or **witness**) for w.

M is a **polynomial-time verifier** for L if M is polynomially time bounded and

$$L = \{w \mid M \text{ accepts } (w\#c) \text{ for some string } c \text{ with } |c| \leq p(|w|)\}$$

for some fixed polynomial p.

Notation: $\#$ is a new separator symbol not used in words or certificates.
The Class **NP**

NP: “The class of dashed hopes and idle dreams.”\(^1\)

More formally:
the class of problems for which a possible solution can be verified in \(P\)

Definition 7.2
The class of languages that have polynomial-time verifiers is called **NP**.

In other words: **NP** is the class of all languages \(\mathcal{L}\) such that:

- for every \(w \in \mathcal{L}\), there is a **certificate** \(c_w \in \Sigma^*\), where
- the length of \(c_w\) is polynomial in the length of \(w\), and
- the language \(\{ (w \# c_w) | w \in \mathcal{L} \} \) is in \(P\)

\(^1\)https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np
More Examples of Problems in \textbf{NP}

\textbf{Hamiltonian Path}

\begin{itemize}
 \item \textit{Input:} An undirected graph G
 \item \textit{Problem:} Is there a path in G that contains each vertex exactly once?
\end{itemize}

\textbf{k-Clique}

\begin{itemize}
 \item \textit{Input:} An undirected graph G
 \item \textit{Problem:} Does G contain a fully connected graph (clique) with k vertices?
\end{itemize}
More Examples of Problems in \(\text{NP}\)

SUBSET SUM

Input: A collection of positive integers \(S = \{a_1, \ldots, a_k\}\) and a target integer \(t\).

Problem: Is there a subset \(T \subseteq S\) such that \(\sum_{a_i \in T} a_i = t\)?

TRAVELLING SALESPERSON

Input: A weighted graph \(G\) and a target number \(t\).

Problem: Is there a simple path in \(G\) with weight \(\leq t\)?
Complements of NP are often not known to be in NP

No Hamiltonian Path

Input: An undirected graph G

Problem: Is there no path in G that contains each vertex exactly once?

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.
More Examples

Composite (non-prime) Number

Input: A positive integer $n > 1$

Problem: Are there integers $u, v > 1$ such that $u \cdot v = n$?

Prime Number

Input: A positive integer $n > 1$

Problem: Is n a prime number?

Surprisingly: both are in \mathbb{NP} (see Wikipedia “Primality certificate”)

In fact: Composite Number (and thus Prime Number) was shown to be in \mathbb{P}
\(\mathbf{N} \) is for Nondeterministic
Reprise: Nondeterministic Turing Machines

A nondeterministic Turing Machine (NTM) \(\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}) \) consists of

- a finite set \(Q \) of states,
- an input alphabet \(\Sigma \) not containing \(\square \),
- a tape alphabet \(\Gamma \) such that \(\Gamma \supseteq \Sigma \cup \{ \square \} \),
- a transition function \(\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \),
- an initial state \(q_0 \in Q \),
- an accepting state \(q_{\text{accept}} \in Q \).

Note

An NTM can halt in any state if there are no options to continue \(\leadsto \) no need for a special rejecting state
Reprise: Runs of NTMs

An (N)TM configuration can be written as a word uqv where $q \in Q$ is a state and $uv \in \Gamma^*$ is the current tape contents.

NTMs produce configuration trees that contain all possible runs:

- **accept:**
 - $q_{\text{start}} \sigma_1 \cdots \sigma_n$
 - Non-deterministic choice
 - q_{acc}

- **reject:**
 - $q_{\text{start}} \sigma_1 \cdots \sigma_n$
 - Computation path
 - $\neq q_{\text{acc}}$

- **reject (not halting):**
 - $q_{\text{start}} \sigma_1 \cdots \sigma_n$
 - Infinite run
Example: Multi-Tape NTM

Consider the NTM \(M = (Q, \{0, 1\}, \{0, 1, \square\}, q_0, \Delta, q_{\text{accept}}) \) where

\[
\Delta = \left\{
\begin{array}{l}
(q_0, (_), q_0, (0), (N)) \\
(q_0, (_), q_0, (1), (N)) \\
(q_0, (_), q_{\text{check}}, (_), (N)) \\
\vdots \\
\text{transition rules for } M_{\text{check}} \\
\end{array}
\right\}
\]

and where \(M_{\text{check}} \) is a deterministic TM deciding whether number on second tape is \(> 1 \) and divides the number on the first.
Q: Which of the nondeterministic runs do time/space bounds apply to?
A: To all of them!

Definition 7.3
Let M be a nondeterministic Turing machine and let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

- M is f-time bounded if it halts on every input $w \in \Sigma^*$ and on every computation path after $\leq f(|w|)$ steps.
- M is f-space bounded if it halts on every input $w \in \Sigma^*$ and on every computation path using $\leq f(|w|)$ cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)
Nondeterministic Complexity Classes

Definition 7.4

Let \(f : \mathbb{N} \to \mathbb{R}^+ \) be a function.

- \(\text{NTime}(f(n)) \) is the class of all languages \(\mathcal{L} \) for which there is an \(O(f(n)) \)-time bounded nondeterministic Turing machine deciding \(\mathcal{L} \), for some \(k \geq 1 \).

- \(\text{NSpace}(f(n)) \) is the class of all languages \(\mathcal{L} \) for which there is an \(O(f(n)) \)-space bounded nondeterministic Turing machine deciding \(\mathcal{L} \).
All Complexity Classes Have a Nondeterministic Variant

\[
\text{NPTIME} = \bigcup_{d \geq 1} \text{NTIME}(n^d) \quad \text{nondet. polynomial time}
\]

\[
\text{NEXP} = \text{NEXPTime} = \bigcup_{d \geq 1} \text{NTIME}(2^{n^d}) \quad \text{nondet. exponential time}
\]

\[
\text{N2EXP} = \text{N2EXPTime} = \bigcup_{d \geq 1} \text{NTIME}(2^{2^{n^d}}) \quad \text{nondet. double-exponential time}
\]

\[
\text{NL} = \text{NLogSpace} = \text{NSpace}(\log n) \quad \text{nondet. logarithmic space}
\]

\[
\text{NPSPACE} = \bigcup_{d \geq 1} \text{NSpace}(n^d) \quad \text{nondet. polynomial space}
\]

\[
\text{NEXPSPACE} = \bigcup_{d \geq 1} \text{NSpace}(2^{n^d}) \quad \text{nondet. exponential space}
\]
Equivalence of NP and NPTIME

Theorem 7.5
$\text{NP} = \text{NPTIME}$.

Proof.
- Suppose $L \in \text{NPTIME}$.
- Then there is an NTM M such that
 \[w \in L \iff \text{there is an accepting run of } M \text{ of length } O(n^d) \]
 for some d.
- This path can be used as a certificate for w.
- A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore $\text{NP} \supseteq \text{NPTIME}$.
Equivalence of NP and NPTIME

Proof of the converse direction:

- Assume L has a polynomial-time verifier M with certificates of length at most $p(n)$ for a polynomial p.
- Then we can construct an NTM M^* deciding L as follows:
 1. M^* guesses a string of length $p(n)$
 2. M^* checks in deterministic polynomial time if this is a certificate.

Therefore $\text{NP} \subseteq \text{NPTIME}$. □
NP and coNP

Note: Definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or propositional logic unsatisfiability . . .
- converse of an NP problem is coNP
- similar for \(\text{NExpTime} \) and \(\text{N2ExpTime} \)

Other complexity classes are symmetric:

- Deterministic classes (\(\text{coP} = \text{P} \) etc.)
- Space classes mentioned above (esp. \(\text{coNL} = \text{NL} \))
Deterministic vs. Nondeterministic Time

Theorem 7.6

\[P \subseteq NP, \text{ and also } P \subseteq coNP. \]

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

- Put differently: “If it is easy to check a candidate solution to a problem, is it also easy to find one?”
- Unresolved since over 30 years of effort
- One of the major problems in computer science and math of our time
- 1,000,000 USD prize for resolving it (“Millenium Problem”); might not be much money at the time it is actually solved
Status of P vs. NP

- It is often said: “Most experts think $P \neq NP$”
 - Main argument: “If $NP = P$, someone ought to have found some polynomial algorithm by now.”
 - “This is, in my opinion, a very weak argument. The space of algorithms is very large and we are only at the beginning of its exploration.” (Moshe Vardi, 2002)

- Results of a poll among 100 experts [Gasarch 2002]:
 - $P \neq NP$: 61
 - $P = NP$: 9
 - No comment: 22
 - Other: independent (4), not independent (3), it depends (1)

- Over 100 “proofs” show $P = NP$ to be true/false/both/neither: https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

- Many solutions conceivable, e.g., $P = NP$ could be shown with a non-constructive proof
A Simple Proof for $P = NP$

Clearly

therefore

hence

that is

using $coP = P$

and hence

so by $P \subseteq NP$

$\mathcal{L} \in P$ implies $\mathcal{L} \in NP$

$\mathcal{L} \notin NP$ implies $\mathcal{L} \notin P$

$\mathcal{L} \in coNP$ implies $\mathcal{L} \in coP$

$coNP \subseteq coP$

$coNP \subseteq P$

$NP \subseteq P$

$NP = P$

q.e.d.?