

Hannes Strass Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Cooperative Games: Definition and the Core

Lecture 11, 1st Jul 2024 // Algorithmic Game Theory, SS 2024

Previously ...

- **General Game Playing** is concerned with computers learning to play previously unknown games without human intervention.
- The **game description language** (GDL) is used to declaratively specify (deterministic) games (with complete information about game states).
- The syntax of GDL game descriptions is that of **normal logic programs**; various restrictions apply to obtain a finite, unique interpretation.
- The semantics of GDL is given through a state transition system.
- GDL-II allows to represent moves by Nature and information sets.
- The semantics of GDL-II can be given through extensive-form games.
- Conversely, GDL-II can express any finite extensive-form game.

Written Exam

16th Aug 2024, 13:00-14:30 HSZ/E01/U

Cooperative Games with Transferable Utility

Solution Concept: The Core ε -Cores and the Least Core The Cost of Stability

Cooperative Games: Motivation

- In a noncooperative game, players cannot enter binding agreements.
- (Players can still cooperate if it pays off for them.)
- In a cooperative game, players form explicit coalitions.
- The coalition gets some (overall) payoff, which is then to be distributed among the coalition's members (transferable utility).
- Players are still assumed to be rationally maximising their individual payoffs.

Example: Hospitals and X-Ray Machines

- Three hospitals (in the same city) are planning to buy x-ray machines.
- However, not every hospital necessarily needs its own machine.
- The smallest machine costs \$5*m* and could cover the needs of any two hospitals.
- A larger machine costs \$9*m* and could cover the needs of all three hospitals.
- Hospitals forming a coalition C can jointly save the difference to each individual hospital $i \in C$ buying its own \$5m machine.
- It is in society's interest to save money while covering patients' needs.

What should the hospitals do?

Cooperative Games with Transferable Utility

Cooperative Games: Definition and the Core (Lecture 11) Computational Logic Group // Hannes Strass Algorithmic Game Theory, SS 2024

Slide 6 of 29

Cooperative Games with Transferable Utility

Definition

A cooperative game with transferable utility is a pair G = (P, v) where

- $P = \{1, 2, \dots, n\}$ is the set of players and
- $v: 2^{P} \to \mathbb{R}_{\geq 0}$ is the **characteristic function** of *G*.
- Intuition: Coalition $C \subseteq P$ earns v(C) by cooperating.
- Terminology: We will occasionally omit "with transferable utility".

Assumption

For any cooperative game G = (P, v), we have:

- 1. Normalisation: $v(\emptyset) = 0$.
- 2. Monotonicity: $C \subseteq D \subseteq P$ implies $v(C) \leq v(D)$.

Note that a cooperative game with *n* players requires a representation of a size that is exponential in *n*.

Cooperative Games: Example

Hospitals and X-Ray Machines

Three hospitals are planning to buy x-ray machines. However, not every hospital necessarily needs its own machine. A small machine costs 5m and could cover the needs of any two hospitals. A larger machine costs 9mand could cover the needs of all three hospitals. Hospitals forming a coalition *C* can jointly save the difference to each individual hospital $i \in C$ buying its own 5m machine.

- $P = \{1, 2, 3\},\$
- v(P) = 6,
- *v*(*C*) = 5 for |*C*| = 2,
- $v(\{i\}) = 0$ for $i \in P$.

Coalition Structure

Definition

Let G = (P, v) be a cooperative game (with transferable utility). A **coalition structure** for *G* is a partition $\mathbb{C} = \{C_1, \dots, C_k\}$ of *P*, that is,

- $C_1,\ldots,C_k\subseteq P$,
- $C_1 \cup \ldots \cup C_k = P$, and
- $C_i \cap C_j = \emptyset$ for all $1 \le i \ne j \le k$.
- The coalition structure $C = \{P\}$ is called the **grand coalition**.
- v(C) is the collective payoff of a coalition; it remains to be specified how to distribute the gains to the coalition's members.

Hospitals and X-Ray Machines

For $P = \{1, 2, 3\}$, some possible coalition structures are $C_1 = \{\{1, 2, 3\}\}, C_2 = \{\{1, 3\}, \{2\}\}, and C_3 = \{\{1\}, \{2\}, \{3\}\}.$

Outcome of a Cooperative Game

Definition

Let G = (P, v) be a cooperative game (with transferable utility). An **outcome** of G = (P, v) is a pair (C, **a**) where C is a coalition structure and

 $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$ is a payoff vector such that $a_i \ge 0$ for each $i \in P$ and

$$\sum_{i\in C} a_i = v(C)$$
 for each coalition $C \in \mathbb{C}$.

Efficiency: For each coalition $C \in C$, its payoff v(C) is distributed completely. Transferable Utility: Players within coalitions can transfer payoffs freely.

Hospitals and X-Ray Machines: Outcomes

 $C_1 = \{\{1, 2, 3\}\}$ with $\mathbf{a}_1 = (2, 2, 2), C_2 = \{\{1, 3\}, \{2\}\}$ with $\mathbf{a}_2 = (2.5, 0, 2.5), C_3 = \{\{1\}, \{2\}, \{3\}\}$ with $\mathbf{a}_3 = (0, 0, 0)$, but also C_2 with $\mathbf{a}_2' = (3, 0, 2)$. No outcome: C_2 with (2, 1, 2).

Superadditive Games (1)

Definition

Let G = (P, v) be a cooperative game (with transferable utility). *G* is called **superadditive** iff for all coalitions $C, D \subseteq P$

 $C \cap D = \emptyset$ implies $v(C \cup D) \ge v(C) + v(D)$.

Intuition: $C \cup D$ can achieve what C and D can achieve separately; there might be additional synergistic effects.

Non-Example

- A group C of emacs-using programmers achieves a part of a task T in 8h.
- A (disjoint) group *D* of vi-using programmers achieves the rest of *T* in 8*h*.
- The group $C \cup D$, attempting to work together, might not achieve T in 8h.

We will only consider superadditive games unless specified otherwise.

Superadditive Games (2)

Observation

Let G = (P, v) be a superadditive (cooperative) game. For every coalition structure $C = \{C_1, \dots, C_k\}$, we have

 $v(P) \geq v(C_1) + \ldots + v(C_k)$

→ In superadditive games, we can expect the grand coalition to form. However, it does not automatically mean that the grand coalition is "stable":

Example

- The "Hospitals and X-Ray Machines" game is superadditive.
- In outcome ({{1, 2, 3}}, (2, 2, 2)), e.g. {1, 2} have an incentive to deviate:
- In ({{1,2}, {3}}, (2.5, 2.5, 0)), they would increase their individual payoff.

→ It remains to analyse how to distribute the grand coalition's payoff.

Solution Concept: The Core

Cooperative Games: Definition and the Core (Lecture 11) Computational Logic Group // Hannes Strass Algorithmic Game Theory, SS 2024

Slide 13 of 29

Imputations

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

• A payoff vector $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$ is **individually rational** iff

 $a_i \ge v(\{i\})$ for all $i \in P$.

• A payoff vector **a** is **efficient** (w.r.t. the grand coalition) iff

 $\sum_{i=1}^n a_i = v(P)$

• An **imputation** for *G* is a payoff vector **a** that is efficient and individually rational. The set of all imputations of *G* is denoted *Imp*(*G*).

Observations

1. $Imp(G) \neq \emptyset$ iff $v(P) \ge \sum_{i \in P} v(\{i\})$.

2. If G is superadditive, then $Imp(G) \neq \emptyset$.

Imputations: Visualisation

Consider the game G = (P, v) with:

- $P = \{A, B, C\},\$
- $v(P) = 100 \text{ and } v(\{i\}) = 0 \text{ for } i \in P$,
- $v({A, B}) = v({A, C}) = 50$, and $v({B, C}) = 30$.

Cooperative Games: Definition and the Core (Lecture 11) Computational Logic Group // Hannes Strass Algorithmic Game Theory, SS 2024

The Core of a Cooperative Game

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

1. An imputation $(a_1, \ldots, a_n) \in Imp(G)$ is **coalitionally rational** iff

 $\sum_{i \in C} a_i \ge v(C)$ for all coalitions $C \subseteq P$.

2. The **core** of *G* is the set of all coalitionally rational imputations for *G*.

Intuition: No group *C* has an incentive to break off the grand coalition.

Example

In "Hospitals and X-Ray Machines", the core is empty:

- If $(a_1, a_2, a_3) \in Core(G)$, then $a_1 + a_2 + a_3 = 6$ by being an imputation.
- But for any $i, j \in \{1, 2, 3\}$ with $i \neq j$ we also have $a_i + a_j \ge v(\{a_i, a_j\}) = 5$.
- Let $a_i \le a_j \le a_k$, then $a_i + a_j \ge 5$, but $a_k \le 1$ and $a_i + a_j \le 2$, contradiction.

The Core: Visualisation

Consider the game G = (P, v) with:

- $P = \{A, B, C\},\$
- $v(P) = 100 \text{ and } v(\{i\}) = 0 \text{ for } i \in P$,
- $v({A, B}) = v({A, C}) = 50$, and $v({B, C}) = 30$.

Cooperative Games: Definition and the Core (Lecture 11) Computational Logic Group // Hannes Strass Algorithmic Game Theory, SS 2024

Cores of Cooperative Games: Example (1)

Chess Pairings

A group of $n \ge 3$ people want to play chess. Every pair of players appointed to play against each other receives \$1.

$$P = \{1, \dots, n\}$$

$$P(C) = \begin{cases} \frac{|C|}{2} & \text{if } |C| \text{ is even,} \\ \frac{|C|-1}{2} & \text{otherwise} \end{cases}$$

- For $n \ge 4$ even, the payoff vector $\mathbf{a}_n := \left(\frac{1}{2}, \dots, \frac{1}{2}\right)$ is in the core:
 - deviation by an odd group $C \subseteq P$ would yield $v(C) = \frac{|C|-1}{2} < \frac{1}{2} \cdot |C|$;
 - deviation by an even group $C \subseteq P$ would yield $v(C) = \frac{|C|}{2} = \frac{1}{2} \cdot |C|$.
- In fact, for $n \ge 4$ even, we have $Core(G) = \{a_n\}$:
 - Assume $\mathbf{a} \in Core(G)$, then for any $\{a_i, a_j\} \subseteq P$, it follows that $a_i + a_j \ge v(C) = 1$.
 - From $\mathbf{a} \in Imp(G)$, we get $a_1 + \ldots + a_n = \frac{n}{2}$, and we obtain $a_i = \frac{1}{2}$ for all $i \in P$.
- For $n \ge 3$ odd, the core is empty: (One player remains without a partner.)
 - For n = 3 and **a** \in *Core*(*G*), we get $a_1 + a_2 + a_3 = 1$, so e.g. $a_1 > 0$.
 - But then $a_2 + a_3 = 1 a_1 < 1$ although $v(\{a_2, a_3\}) = 1$, contradicting $\mathbf{a} \in Core(G)$.

Cores of Cooperative Games: Example (2)

Shoe Makers

Of 201 shoe makers, (the first) 100 have made one left shoe each, (the remaining) 101 have made one right shoe each. A pair of shoes consists of one left and one right shoe (ignoring sizes), and can be sold for \$10.

 $P = \{1, 2, ..., 201\}$ $v(C) = 10 \cdot \min\{|C_L|, |C_R|\}$ where $C_L := \{c \in C \mid c \le 100\}$ $C_R := \{c \in C \mid c \ge 101\}$

- The grand coalition makes a total of \$1000 from selling all 100 pairs.
- The core of this game contains as only imputation $\mathbf{a} = (a_1, a_2, ..., a_{201})$ with $a_1 = a_2 = ... = a_{100} = 10$ and $a_{101} = a_{102} = ... = a_{201} = 0$:
- For any imputation **b** with $b_i > 0$ for some $101 \le i \le 201$, the coalition $P \setminus \{i\}$ would obtain $v(P \setminus \{i\}) = v(P) > \sum_{j \in C, i \ne i} b_j$ on their own.
- Intuitively: Left shoes are scarce, right shoes are overabundant.

The Core is a Convex Set

Proposition

Let G = (P, v) be a cooperative game (with transferable utility). For any $\mathbf{a}, \mathbf{b} \in Core(G)$ and $\alpha \in [0, 1]$, we have $\alpha \cdot \mathbf{a} + (1 - \alpha) \cdot \mathbf{b} \in Core(G)$.

Proof.

1. It is clear that
$$\sum_{i\in P} a_i = \sum_{i\in P} b_i = v(P)$$
, and that

$$\sum_{i\in P} (a \cdot a_i + (1-a) \cdot b_i) = a \cdot \sum_{i\in P} a_i + (1-a) \cdot \sum_{i\in P} b_i = a \cdot v(P) + (1-a) \cdot v(P) = v(P)$$

2. Let $C \subseteq P$. With $\sum_{i \in P} a_i \ge v(C)$ and $\sum_{i \in P} b_i \ge v(C)$ we get

$$\sum_{i\in P} (\alpha \cdot a_i + (1-\alpha) \cdot b_i) = \alpha \cdot \sum_{i\in P} a_i + (1-\alpha) \cdot \sum_{i\in P} b_i \ge \alpha \cdot v(C) + (1-\alpha) \cdot v(C) = v(C)$$

Linear Programming (in a Nutshell)

Definition

• A linear program is of the form

 $\begin{array}{ll} \text{maximise} & \mathbf{c}^{T}\mathbf{x} \\ \text{subject to} & \mathbf{A}\mathbf{x} \leq \mathbf{b}, \\ & \mathbf{x} \geq \mathbf{0}, \\ & \text{and} & \mathbf{x} \in \mathbb{R}^{k} \end{array}$

where **x** is a vector of **decision variables**, and **A**, **b**, **c** are a matrix and two vectors of real values; the expression $c^T x$ is the **objective function**.

- If there is no objective function the program is a **feasibility problem**.
- A **solution** is a variable-value assignment that satisfies all constraints.
- A linear program is a special case of a mixed integer program (Lecture 2).
- Linear programming problems can be solved in polynomial time.

Computing the Core

For a given cooperative game G = (P, v), its core is given by the feasible region of the following linear program over variables a_1, \ldots, a_n :

find	<i>a</i> ₁ ,, <i>a</i> _n	
subject to	$a_i \ge 0$	for all $i \in P$
	$\sum_{i\in P}a_i=v(P)$	
	$\sum_{i\in C} a_i \geq v(C)$	for all $C \subseteq P$

Observe: The problem specification contains $2^n + n + 1$ constraints.

Corollary

For a cooperative game G = (P, v) whose characteristic function v is explicitly represented, its core can be computed in deterministic polynomial time.

The ε**-Core**

Definition

Let G = (P, v) be a cooperative game (with transferable utility) and $\varepsilon \in \mathbb{R}$.

1. The set of **pre-imputations of** *G* is

 $PreImp(G) := \left\{ (a_1, \dots, a_n) \in \mathbb{R}^n \mid \sum_{i \in P} a_i = v(P) \right\}$

2. The ε -core of *G* is the following set:

$$\varepsilon\text{-Core}(G) := \left\{ (a_1, \ldots, a_n) \in PreImp(G) \ \middle| \ \sum_{i \in C} a_i \ge v(C) - \varepsilon \text{ for all } C \subseteq P \right\}$$

- Intuition: Coalitions $C \subsetneq P$ that leave *P* have to pay a penalty of at least ε .
- For *ε* = 0, we have 0-*Core*(*G*) = *Core*(*G*).
- If $Core(G) = \emptyset$, then there is some $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$, for which ε -Core(G) $\neq \emptyset$.
- If $Core(G) \neq \emptyset$, then there is some $\varepsilon \in \mathbb{R}$, $\varepsilon < 0$, for which ε -Core(G) = \emptyset .

The Least Core

Definition

Let G = (P, v) be a cooperative game (with transferable utility). The **least core of** *G* is the intersection of all non-empty ε -cores of *G*.

Alternatively: The least core of *G* is $\tilde{\varepsilon}$ -*Core*(*G*) for $\tilde{\varepsilon} \in \mathbb{R}$ such that $\tilde{\varepsilon}$ -*Core*(*G*) $\neq \emptyset$ and ε -*Core*(*G*) $= \emptyset$ for all $\varepsilon < \tilde{\varepsilon}$.

The value of the least core can be computed via linear programming:

minimise	8	
subject to	$a_i \ge 0$	for all $i \in P$
	$\sum_{i\in P} a_i = v(P)$	
	$\sum_{i\in C}^{-} a_i \geq v(C) - \varepsilon$	for all $C \subseteq P$

The Cost of Stability

Idea: If *Core*(*G*) = \emptyset , stabilise *G* by subsidising the grand coalition.

Modelling Assumptions

- Some external authority has an interest in a stable grand coalition.
- The supplemental payment y gets distributed among P along with v(P).

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

1. For a supplemental payment $\gamma \ge 0$, the **adjusted game** $G_{\gamma} = (P, v')$ has

$$v'(C) := \begin{cases} v(P) + \gamma & \text{if } C = P, \\ v(C) & \text{otherwise} \end{cases}$$

2. The **cost of stability of** *G* is inf $\{\gamma \in \mathbb{R} \mid \gamma \ge 0 \text{ and } Core(G_{\gamma}) \neq \emptyset\}$.

Computing the Cost of Stability

Example: Hospitals and X-Ray Machines

The cost of stability is $\gamma = 1.5$: In G_{γ} , we have $v'(\{1, 2, 3\}) = 6 + 1.5 = 7.5$, whence for no $C \subseteq \{1, 2, 3\}$ with |C| = 2 it would pay to deviate (as v'(C) = 5).

The cost of stability can be computed by linear programming:

minimise	У	
subject to	$\gamma \geq 0$	
	$a_i \ge 0$	for all $i \in P$
	$\sum a_i = v(P) + \gamma$	
	i∈P	
	$\sum a_i \geq v(C)$	for all $C \subseteq P$
	i∈C	

Least Core vs. Cost of Stability

Observation

For any cooperative game *G*, the following are equivalent:

- 1. *Core*(G) = \emptyset .
- 2. The value ε of the least core is strictly positive.
- 3. The cost *y* of stability is strictly positive.

What is the relationship between the values ε and γ ?

- Least core: Punish undesired behaviour → a fine for leaving the grand coalition.
- Cost of stability: Encourage desired behaviour → a subsidy for staying in the grand coalition.

Least Core v. Cost of Stability: Examples

Let $n \ge 2$ and consider the following two games (i.e. where $P = \{1, ..., n\}$):

$$G_{1} = (P, v_{1})$$

$$G_{2} = (P, v_{2})$$

$$v_{1}(C) = \begin{cases} n-1 & \text{if } C \cap \{1,2\} \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

$$v_{2}(C) = \begin{cases} 1 & \text{if } C \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

$$G_3 = (P, V_3)$$
$$v_3(C) = \begin{cases} \frac{2n-2}{n} & \text{if } C \cap \{1, 2\} \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

- In both games G_1 and G_2 , the core is empty.
- The cost of stability in both games G_1 and G_2 is $\gamma = n 1$:

 $\mathbf{a}_1 = (n-1, n-1, 0, \dots, 0)$ vs. $\mathbf{a}_2 = (1, 1, 1, \dots, 1)$

- The value of the least core in G_1 is $\varepsilon_1 = \frac{n-1}{2}$, via $\left(\frac{n-1}{2}, \frac{n-1}{2}, 0, \dots, 0\right)$.
- The value of the least core in G_2 is $\varepsilon_2 = \frac{n-1}{n}$, via $\left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$.
- For G_3 , we have $\varepsilon_3 = \frac{n-1}{n}$ via $\mathbf{a}_3 = \left(\frac{n-1}{n}, \frac{n-1}{n}, 0, \dots, 0\right)$ and $\gamma_3 = \frac{2n-2}{n}$ via $\mathbf{a}'_3 = \left(\frac{2n-2}{n}, \frac{2n-2}{n}, 0, \dots, 0\right)$.

Conclusion

Summary

- In **cooperative** games, players *P* form explicit **coalitions** $C \subseteq P$.
- Coalitions receive payoffs, which are distributed among its members.
- We concentrate on **superadditive** games, where disjoint coalitions can never decrease their payoffs by joining together.
- Of particular interest is the **grand coalition** {*P*} and whether it is *stable*.
- An **imputation** is an outcome that is efficient and individually rational.
- Various solution concepts formalise stability of the grand coalition:
 - the core contains all imputations where no coalition has an incentive to leave;
 - the ε-core disincentivises leaving the grand coalition via a fine of ε;
 - the **cost of stability** subsidises staying in the grand coalition via a bonus *y*.
- The core is a convex set.

