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Previously . . .
• General Game Playing is concerned with computers learning to playpreviously unknown games without human intervention.
• The game description language (GDL) is used to declaratively specify(deterministic) games (with complete information about game states).
• The syntax of GDL game descriptions is that of normal logic programs;various restrictions apply to obtain a finite, unique interpretation.
• The semantics of GDL is given through a state transition system.
• GDL-II allows to represent moves by Nature and information sets.
• The semantics of GDL-II can be given through extensive-form games.
• Conversely, GDL-II can express any finite extensive-form game.
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Cooperative Games: Motivation

• In a noncooperative game, players cannot enter binding agreements.
• (Players can still cooperate if it pays off for them.)
• In a cooperative game, players form explicit coalitions.
• The coalition gets some (overall) payoff, which is then to be distributedamong the coalition’s members (transferable utility).
• Players are still assumed to be rationally maximising their individualpayoffs.
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Example: Hospitals and X-Ray Machines
• Three hospitals (in the same city) are planning to buy x-ray machines.
• However, not every hospital necessarily needs its own machine.
• The smallest machine costs $5m and could cover the needs of any twohospitals.
• A larger machine costs $9m and could cover the needs of all threehospitals.
• Hospitals forming a coalition C can jointly save the difference to eachindividual hospital i ∈ C buying its own $5mmachine.
• It is in society’s interest to save money while covering patients’ needs.

What should the hospitals do?

• Patients’ needs could be covered by one machine with $9m overall cost.
• But then, any two hospitals could break off, each saving another $500k;while this is rational for the two, overall costs would increase to $10m.
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Cooperative Games with Transferable Utility
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Cooperative Games with Transferable Utility
Definition
A cooperative game with transferable utility is a pair G = (P, v) where
• P = {1, 2, . . . ,n} is the set of players and
• v : 2P → R≥0 is the characteristic function of G.
• Intuition: Coalition C ⊆ P earns v(C) by cooperating.• Terminology: We will occasionally omit “with transferable utility”.
Assumption
For any cooperative game G = (P, v), we have:
1. Normalisation: v(∅) = 0.
2. Monotonicity: C ⊆ D ⊆ P implies v(C) ≤ v(D).
Note that a cooperative game with n players requires a representation of asize that is exponential in n.
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Cooperative Games: Example

Hospitals and X-Ray Machines
Three hospitals are planning to buy x-ray ma-chines. However, not every hospital necessar-ily needs its own machine. A small machinecosts $5m and could cover the needs of anytwo hospitals. A larger machine costs $9mand could cover the needs of all three hospit-als. Hospitals forming a coalition C can jointlysave the difference to each individual hospital
i ∈ C buying its own $5mmachine.

• P = {1, 2, 3},
• v(P) = 6,
• v(C) = 5 for |C| = 2,
• v({i}) = 0 for i ∈ P.
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Coalition Structure
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
A coalition structure for G is a partition C = {C1, . . . ,Ck} of P, that is,• C1, . . . ,Ck ⊆ P,
• C1 ∪ . . . ∪ Ck = P, and
• Ci ∩ Cj = ∅ for all 1 ≤ i ̸= j ≤ k.
• The coalition structure C = {P} is called the grand coalition.
• v(C) is the collective payoff of a coalition; it remains to be specified how todistribute the gains to the coalition’s members.
Hospitals and X-Ray Machines
For P = {1, 2, 3}, some possible coalition structures are C1 = {{1, 2, 3}},
C2 = {{1, 3} , {2}}, and C3 = {{1} , {2} , {3}}.
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Outcome of a Cooperative Game
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
An outcome of G = (P, v) is a pair (C,a) where C is a coalition structure and
a = (a1, . . . ,an) ∈ Rn is a payoff vector such that ai ≥ 0 for each i ∈ P and∑

i∈C
ai = v(C) for each coalition C ∈ C.

Efficiency: For each coalition C ∈ C, its payoff v(C) is distributed completely.
Transferable Utility: Players within coalitions can transfer payoffs freely.
Hospitals and X-Ray Machines: Outcomes
C1 = {{1, 2, 3}} with a1 = (2, 2, 2), C2 = {{1, 3} , {2}} with a2 = (2.5, 0, 2.5),
C3 = {{1} , {2} , {3}} with a3 = (0, 0, 0), but also C2 with a′2 = (3, 0, 2).
No outcome: C2 with (2, 1, 2).
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Superadditive Games (1)
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
G is called superadditive iff for all coalitions C,D ⊆ P

C ∩D = ∅ implies v(C ∪D) ≥ v(C) + v(D).
Intuition: C ∪D can achieve what C and D can achieve separately;there might be additional synergistic effects.
Non-Example
• A group C of emacs-using programmers achieves a part of a task T in 8h.
• A (disjoint) group D of vi-using programmers achieves the rest of T in 8h.
• The group C ∪D, attempting to work together, might not achieve T in 8h.
We will only consider superadditive games unless specified otherwise.
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Superadditive Games (2)
Observation
Let G = (P, v) be a superadditive (cooperative) game.
For every coalition structure C = {C1, . . . ,Ck}, we have

v(P) ≥ v(C1) + . . . + v(Ck)
⇝ In superadditive games, we can expect the grand coalition to form.
However, it does not automatically mean that the grand coalition is “stable”:
Example
• The “Hospitals and X-Ray Machines” game is superadditive.
• In outcome ({{1, 2, 3}} , (2, 2, 2)), e.g. {1, 2} have an incentive to deviate:
• In ({{1, 2} , {3}} , (2.5, 2.5, 0)), they would increase their individual payoff.
⇝ It remains to analyse how to distribute the grand coalition’s payoff.
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Solution Concept: The Core
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Imputations
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
• A payoff vector a = (a1, . . . ,an) ∈ Rn is individually rational iff

ai ≥ v({i}) for all i ∈ P.
• A payoff vector a is efficient (w.r.t. the grand coalition) iff∑n

i=1 ai = v(P)
• An imputation for G is a payoff vector a that is efficient and individuallyrational. The set of all imputations of G is denoted Imp(G).
Observations
1. Imp(G) ̸= ∅ iff v(P) ≥

∑
i∈P v({i}).2. If G is superadditive, then Imp(G) ̸= ∅.
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Imputations: Visualisation
Consider the game G = (P, v) with:
• P = {A,B,C},
• v(P) = 100 and v({i}) = 0 for i ∈ P,
• v({A,B}) = v({A,C}) = 50, and v({B,C}) = 30.

(100, 0, 0)

(0, 100, 0)(0, 0, 100)

(50, 50, 0)
(33, 33, 34)
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The Core of a Cooperative Game
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
1. An imputation (a1, . . . ,an) ∈ Imp(G) is coalitionally rational iff∑

i∈C ai ≥ v(C) for all coalitions C ⊆ P.
2. The core of G is the set of all coalitionally rational imputations for G.
Intuition: No group C has an incentive to break off the grand coalition.
Example
In “Hospitals and X-Ray Machines”, the core is empty:
• If (a1,a2,a3) ∈ Core(G), then a1 + a2 + a3 = 6 by being an imputation.
• But for any i, j ∈ {1, 2, 3} with i ̸= j we also have ai + aj ≥ v({ai,aj}) = 5.
• Let ai ≤ aj ≤ ak, then ai + aj ≥ 5, but ak ≤ 1 and ai + aj ≤ 2, contradiction.
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The Core: Visualisation
Consider the game G = (P, v) with:
• P = {A,B,C},
• v(P) = 100 and v({i}) = 0 for i ∈ P,
• v({A,B}) = v({A,C}) = 50, and v({B,C}) = 30.

(100, 0, 0)

(0, 100, 0)(0, 0, 100)

(50, 0, 50)
(70, 0, 30)

(50, 50, 0)
(70, 30, 0)

(0, 50, 50)
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Cores of Cooperative Games: Example (1)

Chess Pairings
A group of n ≥ 3 people want to playchess. Every pair of players appointedto play against each other receives $1.

P = {1, . . . ,n}

v(C) =
{

|C|2 if |C| is even,
|C|–12 otherwise

• For n ≥ 4 even, the payoff vector an := (12 , . . . , 12
) is in the core:

– deviation by an odd group C ⊆ P would yield v(C) = |C|–12 < 12 · |C|;
– deviation by an even group C ⊆ P would yield v(C) = |C|2 = 12 · |C|.• In fact, for n ≥ 4 even, we have Core(G) = {an}:– Assume a ∈ Core(G), then for any {

ai,aj} ⊆ P, it follows that ai + aj ≥ v(C) = 1.
– From a ∈ Imp(G), we get a1 + . . . + an = n2 , and we obtain ai = 12 for all i ∈ P.• For n ≥ 3 odd, the core is empty: (One player remains without a partner.)– For n = 3 and a ∈ Core(G), we get a1 + a2 + a3 = 1, so e.g. a1 > 0.– But then a2 + a3 = 1 – a1 < 1 although v({a2,a3}) = 1, contradicting a ∈ Core(G).

Cooperative Games: Definition and the Core (Lecture 11)Computational Logic Group // Hannes StrassAlgorithmic Game Theory, SS 2024 Slide 18 of 29 Computational
Logic ∴ Group



Cores of Cooperative Games: Example (2)
Shoe Makers
Of 201 shoe makers, (the first) 100have made one left shoe each, (theremaining) 101 have made one rightshoe each. A pair of shoes consists ofone left and one right shoe (ignoringsizes), and can be sold for $10.

P = {1, 2, . . . , 201}
v(C) = 10 ·min {|CL| , |CR|}

where
CL := {c ∈ C | c ≤ 100}
CR := {c ∈ C | c ≥ 101}

• The grand coalition makes a total of $1000 from selling all 100 pairs.
• The core of this game contains as only imputation a = (a1,a2, . . . ,a201)with a1 = a2 = . . . = a100 = 10 and a101 = a102 = . . . = a201 = 0:
• For any imputation b with bi > 0 for some 101 ≤ i ≤ 201, the coalition

P \ {i} would obtain v(P \ {i}) = v(P) > ∑
j∈C,j ̸=i bj on their own.• Intuitively: Left shoes are scarce, right shoes are overabundant.
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The Core is a Convex Set
Proposition
Let G = (P, v) be a cooperative game (with transferable utility).
For any a,b ∈ Core(G) and α ∈ [0, 1], we have α · a + (1 – α) · b ∈ Core(G).
Proof.
1. It is clear that ∑

i∈P ai =
∑

i∈P bi = v(P), and that∑
i∈P

(α · ai + (1 – α) · bi) = α ·
∑
i∈P

ai + (1 –α) · ∑
i∈P

bi = α · v(P) + (1 –α) · v(P) = v(P)
2. Let C ⊆ P. With ∑

i∈P ai ≥ v(C) and ∑
i∈P bi ≥ v(C) we get∑

i∈P
(α · ai + (1 – α) · bi) = α ·

∑
i∈P

ai + (1 –α) · ∑
i∈P

bi ≥ α · v(C) + (1 –α) · v(C) = v(C)
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Linear Programming (in a Nutshell)
Definition
• A linear program is of the form

maximise cTx
subject to Ax ≤ b,

x ≥ 0,
and x ∈ Rk

where x is a vector of decision variables, and A, b, c are a matrix andtwo vectors of real values; the expression cTx is the objective function.
• If there is no objective function the program is a feasibility problem.
• A solution is a variable-value assignment that satisfies all constraints.
• A linear program is a special case of a mixed integer program (Lecture 2).
• Linear programming problems can be solved in polynomial time.
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Computing the Core
For a given cooperative game G = (P, v), its core is given by the feasibleregion of the following linear program over variables a1, . . . ,an:

find a1, . . . ,an
subject to ai ≥ 0 for all i ∈ P∑

i∈P
ai = v(P)∑

i∈C
ai ≥ v(C) for all C ⊆ P

Observe: The problem specification contains 2n + n + 1 constraints.
Corollary
For a cooperative game G = (P, v) whose characteristic function v is explicitlyrepresented, its core can be computed in deterministic polynomial time.
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The ε-Core
Definition
Let G = (P, v) be a cooperative game (with transferable utility) and ε ∈ R.
1. The set of pre-imputations of G is

PreImp(G) := {(a1, . . . ,an) ∈ Rn ∣∣ ∑
i∈P ai = v(P)}

2. The ε-core of G is the following set:
ε-Core(G) :=

{
(a1, . . . ,an) ∈ PreImp(G)

∣∣∣∣∣ ∑
i∈C

ai ≥ v(C) – ε for all C ⊆ P
}

• Intuition: Coalitions C ⊊ P that leave P have to pay a penalty of at least ε.
• For ε = 0, we have 0-Core(G) = Core(G).
• If Core(G) = ∅, then there is some ε ∈ R, ε > 0, for which ε-Core(G) ̸= ∅.
• If Core(G) ̸= ∅, then there is some ε ∈ R, ε < 0, for which ε-Core(G) = ∅.
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The Least Core
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
The least core of G is the intersection of all non-empty ε-cores of G.
Alternatively: The least core of G is ε̃-Core(G) for ε̃ ∈ R such that
ε̃-Core(G) ̸= ∅ and ε-Core(G) = ∅ for all ε < ε̃.
The value of the least core can be computed via linear programming:

minimise ε
subject to ai ≥ 0 for all i ∈ P∑

i∈P
ai = v(P)∑

i∈C
ai ≥ v(C) – ε for all C ⊆ P
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The Cost of Stability
Idea: If Core(G) = ∅, stabilise G by subsidising the grand coalition.
Modelling Assumptions
• Some external authority has an interest in a stable grand coalition.
• The supplemental payment γ gets distributed among P along with v(P).
Definition
Let G = (P, v) be a cooperative game (with transferable utility).
1. For a supplemental payment γ ≥ 0, the adjusted game Gγ = (P, v ′) has

v ′(C) :=
{
v(P) + γ if C = P,
v(C) otherwise.

2. The cost of stability of G is inf {
γ ∈ R

∣∣ γ ≥ 0 and Core(Gγ) ̸= ∅
}.
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Computing the Cost of Stability
Example: Hospitals and X-Ray Machines
The cost of stability is γ = 1.5: In Gγ , we have v ′({1, 2, 3}) = 6 + 1.5 = 7.5,whence for no C ⊆ {1, 2, 3} with |C| = 2 it would pay to deviate (as v ′(C) = 5).
The cost of stability can be computed by linear programming:

minimise γ
subject to γ ≥ 0

ai ≥ 0 for all i ∈ P∑
i∈P

ai = v(P) + γ∑
i∈C

ai ≥ v(C) for all C ⊆ P
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Least Core vs. Cost of Stability

Observation
For any cooperative game G, the following are equivalent:
1. Core(G) = ∅.
2. The value ε of the least core is strictly positive.
3. The cost γ of stability is strictly positive.
What is the relationship between the values ε and γ?
• Least core: Punish undesired behaviour
⇝ a fine for leaving the grand coalition.

• Cost of stability: Encourage desired behaviour
⇝ a subsidy for staying in the grand coalition.
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Least Core v. Cost of Stability: Examples
Let n ≥ 2 and consider the following two games (i.e. where P = {1, . . . ,n}):

G1 = (P, v1)
v1(C) =

{
n – 1 if C ∩ {1, 2} ̸= ∅,
0 otherwise.

G2 = (P, v2)
v2(C) =

{1 if C ̸= ∅,
0 otherwise.

G3 = (P, v3)
v3(C) =

{2n–2
n if C ∩ {1, 2} ̸= ∅,

0 otherwise.
• In both games G1 and G2, the core is empty.
• The cost of stability in both games G1 and G2 is γ = n – 1:

a1 = (n – 1,n – 1, 0, . . . , 0) vs. a2 = (1, 1, 1, . . . , 1)
• The value of the least core in G1 is ε1 = n–12 , via (

n–12 , n–12 , 0, . . . , 0).
• The value of the least core in G2 is ε2 = n–1

n , via (1
n , 1n , . . . , 1n

).
• For G3, we have ε3 = n–1

n via a3 = (
n–1
n , n–1n , 0, . . . , 0) and

γ3 = 2n–2
n via a′3 =

(2n–2
n , 2n–2n , 0, . . . , 0).
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Conclusion
Summary
• In cooperative games, players P form explicit coalitions C ⊆ P.
• Coalitions receive payoffs, which are distributed among its members.
• We concentrate on superadditive games, where disjoint coalitions cannever decrease their payoffs by joining together.
• Of particular interest is the grand coalition {P} and whether it is stable.
• An imputation is an outcome that is efficient and individually rational.
• Various solution concepts formalise stability of the grand coalition:

– the core contains all imputations where no coalition has an incentive to leave;– the ε-core disincentivises leaving the grand coalition via a fine of ε;– the cost of stability subsidises staying in the grand coalition via a bonus γ.
• The core is a convex set.
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