Extended New Year's Review: Lectures 15–19
Alternating Computations

Non-deterministic TMs:
- Accept if there is an accepting run.
- Used to define classes like NP

Complements of non-deterministic classes:
- Accept if all runs are accepting.
- Used to define classes like coNP

We have seen that existential and universal modes can also alternate:
- Players take turns in games
- Quantifiers may alternate in QBF

Is there a suitable Turing Machine model to capture this?

Alternating Turing Machines

Definition 14.1
An alternating Turing machine (ATM) $M = (Q, \Sigma, \Gamma, \delta, q_0)$ is a Turing machine with a non-deterministic transition function $\delta : Q \times \Gamma \rightarrow 2^{(Q \times \Gamma \times \{L, R\})}$ whose set of states is partitioned into existential and universal states:

q_\exists: set of existential states
q_\forall: set of universal states

- Configurations of ATMs are the same as for (N)TMs: tape(s) + state + head position
- A configuration can be universal or existential, depending on whether its state is universal or existential
- Possible transitions between configurations are defined as for NTMs

Alternating Turing Machines: Acceptance

Acceptance is defined recursively:

Definition 14.2
A configuration C of an ATM M is accepting if one of the following is true:
- C is existential and some successor configuration of C is accepting.
- C is universal and all successor configurations of C are accepting.

M accepts a word w if the start configuration on w is accepting.

Note: configurations with no successor are the base case, since we have:
- An existential configuration without any successor configurations is rejecting.
- A universal configuration without any successor configurations is accepting.

Hence we don’t need to specify accepting or rejecting states explicitly.

Nondeterminism and Parallelism

ATMs can be seen as a generalisation of non-deterministic TMs:
An NTM is an ATM where all states are existential (besides the single accepting state, which is always universal according to our definition).

ATMs can be seen as a model of parallel computation:
In every step, fork the current process to create sub-processes that explore each possible transition in parallel
- for universal states, combine the results of sub-processes with AND
- for existential states, combine the results of sub-processes with OR

Alternative view: an ATM accepts if its computation tree, considered as an AND-OR tree, evaluates to TRUE
Example: Alternating Algorithm for MinFormula

MinFormula

Input: A propositional formula φ.

Problem: Is φ the shortest formula that is satisfied by the same assignments as φ?

MinFormula can be solved by an alternating algorithm:

```
01 MinFormula(formula $\varphi$) :
02 universally choose $\psi$ := formula shorter than $\varphi$
03 exist. guess $I$ := assignment for variables in $\varphi$
04 if $\varphi^I = \psi^I$ :
05 return FALSE
06 else :
07 return TRUE
```

Example: Alternating Algorithm for Geography

```
01 AltGeography(directed graph $G$, start node $s$) :
02Visited := {s} // visited nodes
03cur := s // current node
04while TRUE :
05 // existential move:
06 if all successors of cur are in Visited:
07 return FALSE
08 existentially guess cur := unvisited successor of cur
09Visited := Visited \cup \{cur\}
10 // universal move:
11 if all successors of cur are in Visited:
12 return TRUE
13 universally choose cur := unvisited successor of cur
14Visited := Visited \cup \{cur\}
```

Time and Space Bounded ATMs

As before, time and space bounds apply to any computation path in the computation tree.

Definition 14.3

Let M be an alternating Turing machine and let $f : \mathbb{N} \rightarrow \mathbb{R}^+$ be a function.

- M is f-time bounded if it halts on every input $w \in \Sigma^*$ and on every computation path after $\leq f(|w|)$ steps.
- M is f-space bounded if it halts on every input $w \in \Sigma^*$ and on every computation path using $\leq f(|w|)$ cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)

Defining Alternating Complexity Classes

Definition 14.4

Let $f : \mathbb{N} \rightarrow \mathbb{R}^+$ be a function.

- $\text{ATime}(f(n))$ is the class of all languages \mathcal{L} for which there is an $O(f(n))$-time bounded alternating Turing machine deciding \mathcal{L}, for some $k \geq 1$.
- $\text{ASpace}(f(n))$ is the class of all languages \mathcal{L} for which there is an $O(f(n))$-space bounded alternating Turing machine deciding \mathcal{L}.
Common Alternating Complexity Classes

\[
\begin{align*}
\text{AP} & = \text{APTime} = \bigcup_{d \geq 1} \text{ATime}(n^d) & \text{alternating polynomial time} \\
\text{AExp} & = \text{AExpTime} = \bigcup_{d \geq 1} \text{ATime}(2^n^d) & \text{alternating exponential time} \\
\text{A2Exp} & = \text{A2ExpTime} = \bigcup_{d \geq 1} \text{ATime}(2^{2^n^d}) & \text{alt. double-exponential time} \\
\text{AL} & = \text{ALogSpace} = \text{ASpace}(\log n) & \text{alternating logarithmic space} \\
\text{APSpace} & = \bigcup_{d \geq 1} \text{ASpace}(n^d) & \text{alternating polynomial space} \\
\text{AExpSpace} & = \bigcup_{d \geq 1} \text{ASpace}(2^n^d) & \text{alternating exponential space}
\end{align*}
\]

Example: \text{Geography} \in \text{APTime}

Alternating Complexity Classes: Basic Properties

Nondeterminism: ATMs can do everything that the corresponding NTMs can do, e.g., \(\text{NP} \subseteq \text{APTime}\)

Reductions: Polynomial many-one reductions can be used to show membership in many alternating complexity classes, e.g., if \(L \in \text{APTime}\) and \(L' \leq_p L\) then \(L' \in \text{APTime}\).

In particular: \(\text{PSPACE} \subseteq \text{APTime}\) (since \text{Geography} \in \text{APTime})

Complementation: ATMs are easily complemented:
- Let \(M\) be an ATM accepting language \(L(M)\)
- Let \(M'\) be obtained from \(M\) by swapping existential and universal states
- Then \(L(M') = \overline{L(M)}\)

For alternating algorithms this means: (1) negate all return values, (2) swap universal and existential branching points

Example: Complement of \text{MinFormula}

Original algorithm:

01 \text{MinFormula(formula } \varphi) :
02 \text{ universally choose } \psi := \text{ formula shorter than } \varphi
03 \text{ exist. guess } I := \text{ assignment for variables in } \varphi
04 \text{ if } \varphi^I = \psi^I :
05 \text{ return FALSE}
06 \text{ else :}
07 \text{ return TRUE}

Complemented algorithm:

01 \text{ComplMinFormula(formula } \varphi) :
02 \text{ existentially guess } \psi := \text{ formula shorter than } \varphi
03 \text{ univ. choose } I := \text{ assignment for variables in } \varphi
04 \text{ if } \varphi^I = \psi^I :
05 \text{ return TRUE}
06 \text{ else :}
07 \text{ return FALSE}