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Abstract. Knowledge graphs are based on graph models enriched with (sets of)
attribute-value pairs, called annotations, attached to vertices and edges. Many
application scenarios of knowledge graphs crucially rely on the frequent use of
annotations related to time. Building upon attributed logics, we design description
logics enriched with temporal annotations whose values are interpreted over
discrete time. Investigating the complexity of reasoning in this new formalism, it
turns out that reasoning in our temporally attributed description logic AL‘C’HTQ;) is
highly undecidable; thus we establish restrictions where it becomes decidable, and
even tractable.

1 Introduction

Graph-based data formats play an essential role in modern information management, since
they offer schematic flexibility, ease information re-use, and simplify data integration.
Ontological knowledge representation has been shown to offer many benefits to such
data-intensive applications, e.g., by supporting integration, querying, error detection, or
repair. However, practical knowledge graphs, such as Wikidata [38] or YAGO2 [21], are
based on enriched graphs where edges are augmented with additional annotations.

Example 1. Figure 1 shows an excerpt of the information that Wikidata provides about
Franz Baader. Binary relations, such as memberOf(FranzBaader, AcademiaEuropaea),
are the main modelling primitive for encoding knowledge. They correspond to labelled
directed edges in the graph. However, many of these edges are annotated with additional
information, specifying validity times, references (collapsed in the figure), auxiliary
details, and other pieces of information that pertain to this binary relationship.

A similar approach to knowledge modelling is followed in the popular Property
Graph data model [34], and supported by modern graph stores such as Amazon Azure,
BlazeGraph, and Neo4;j. Other data models allowing attribute-value pairs to be associated
with relations are UML, entity-relation and object-role modelling (see, e.g., [10,37,2]
for works drawing the connection between these data models and DLs). Predicate logic
does not have a corresponding notion of enriched relationships, and established ontology
languages that are based on traditional logic are therefore not readily applicable to
enriched graphs [22]. To provide better modelling support, attributed logics have been
proposed as a way of integrating annotations with logical reasoning [32]. This approach
has been applied to description logics (DLs) [7] to obtain attributed DLs [23,24,12].
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Franz Baader (o729

German computer scientist

o>

member of Academia Europaea 2 edit
affiliation AE section Informatics
start time 2011
» 2 references
employer & TU Dresden 2 edit
start time 2002
position held full professor
» 1 reference
¢ RWTH Aachen University # edit
start time 1993
end time 2002
position held associate professor
» 1 reference
educated at ¢ University of Erlangen-Nuremberg # edit
start time 1985
end time 1989
academic degree doctorate

» 1 reference

Fig. 1. Excerpt of the Wikidata page of Franz Baader; https://wikidata.org/wiki/Q92729

Annotations in practical knowledge graphs have many purposes, such as recording
provenance, specifying context, or encoding n-ary relations. One of their most important
uses, however, is to encode temporal validity of statements. In Wikidata, e.g., start/end
time and point in time are among the most frequent annotations, used in 6.7 million
statements overall.? YAGO?2 introduced the SPOTL data format that enriches subject-
property-object triples (known from RDF) with information on time and location [21].

Reasoning with time clearly requires an adequate semantics, and many approaches
were proposed. Validity time points and intervals are a classical topic in data management
[17,18], and similar models of time have also been studied in ontologies [4,26]. However,

3 As of March 2019, the only more common annotations are reference (provenance) and de-
termination method (context); see https://tools.wmflabs.org/sqid/#/browse?type=
properties&sortpropertyqualifiers=fa-sort-desc
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researchers in ontologies have most commonly focussed on abstract models of time as
used in temporal logics [31,39,8]. Temporal reasoning in ALC with concrete domains
was proposed by Lutz et. al [29]. It is known that satisfiability of ALC with a concrete
domain consisting of a dense domain and containing the predicates = and < is ExpTIME-
complete [28]. In the same setting but for discrete time, the complexity of the satisfiability
problem is open, a criterion which only guarantees decidability has been proposed by
Carapelle and Turhan [15]. None of these approaches has been considered for attributed
logics yet, and indeed support for temporal reasoning for knowledge graphs, such as
Wikidata and YAGO?2, is still missing today. In this paper, we address this shortcoming
by endowing attributed description logics with a temporal semantics for annotations.
Indeed, annotations are already well-suited for representing time-related data.

Example 2. We introduce temporally attributed DLs that use special temporal annotation
attributes, which can refer to individual time points or to intervals of time. For example,
information about Franz Baader’s current employment can be expressed by an annotated
DL fact as follows:

employer(FranzBaader, TUD) @ [since: 2002, position: fullProfessor] (1

Here, the special temporal attribute since is used alongside the regular attribute position.
Likewise, we can express intervals, as in the following axiom#*

educatedAt(FranzBaader, FAU) @ [during : [1985, 1989], degree: doctorate]  (2)

Some facts might also be associated with a specific time rather than with a duration. For
example, we could encode some of the knowledge in Wikidata with the fact:

bornin(FranzBaader, Spalt) @ [time: 1959] 3)

Not all people are as thoroughly documented on Wikidata, but attributed DLs also
provide ways of leaving some information unspecified, as in the following fact about one
of Baader’s former doctoral students:

(Foornin@[ between : [1950,2000] ].T ) (Carsten), 4)

which merely states that Carsten Lutz was born somewhere within the second half of the
20th century.

To deal with such temporally annotated data in a semantically adequate way and to
specify temporal background knowledge, we propose the temporally attributed description
logic AEC’HT@; that enables reasoning and querying with such information. In addition to
the basic support for representing information with attributes, our logic includes a special
semantics for temporal attributes, and the support for (safe) variables in DL axioms.
Beyond defining syntax and semantics of ALC?H~ , our contributions are the following:

— We show that the full formalism is highly undecidable using an encoding of a
recurring tiling problem.

4 FAU is the official abbreviation for the Friedrich-Alexander University in Erlangen/Nuremberg.
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Jemployer @ | position: fullProfessor |. T C Professor 5)
X : | position: fullProfessor]  (3employer@X.T C Professor) (6)
X : | position: fullProfessor]  (3employer@X.T C Professor@ [time: X.time]) @)

Jdemployer @ [position: fullProfessor, time: x].T C Professor @ [time: x] ®)

Fig. 2. Examples for axioms in attributed description logics

— We present three ways (of increasing reasoning complexity) for regaining decidability:
disallowing variables altogether (ExpTiME), disallowing the use of variables only
for temporal attributes (2ExpTIME), or disallowing the use of temporal attributes
referencing time points in the future (3ExpTIME).

- Finally we single out a lightweight case based on the description logic ££ which
features PTIME reasoning.

2 Temporally Attributed DLs

We first present the syntax and underlying intuition of temporally attributed description
logics. In DL, a true fact corresponds to the membership of an element in a class, or of a
pair of elements in a binary relation. Attributed DLs further allow each true fact to carry
a finite set of annotations [23], given as attribute-value pairs. As suggested in Example 2,
the same relationship may be true with several different annotation sets, e.g., to capture
that Baader has been educated at FAU Erlangen-Nuremberg during two intervals: once
for his PhD and once for his Diplom (not shown in Fig. 1).

Example 3. To guide the reader in following the formal definitions, we first illustrate the
main features of attributed DL by means of some example axioms, shown in Fig. 2. We
already use time as an example annotation, but do not yet rely on any specific semantic
interpretation for this attribute.

The (non-temporal) attributed DL axiom (5) states that people employed as full
professors are professors. The open specifier | position: fullProfessor] requires that the
given attribute is among the annotations, but allows other annotations to be there as
well (denoted by the half-open brackets). Axiom (6) is equivalent to (5), but assigns the
annotation set to a set variable X.

If the employer relation specifies a validity time, the same time would apply to
Professor. This is accomplished by axiom (7), which uses the expression time: X .time to
declare that all (zero or more) time values of X should be copied. The closed brackets in
the conclusion specify that no further attribute-value pairs may occur in the annotation
of the conclusion.

A subtly different meaning is captured by (8), which uses an object variable x as
a placeholder for a single attribute value. In contrast to (8), axiom (7) (i) requires that
at least one time annotation is present (rather than allowing zero or more), (ii) requires
that the annotation set in the premise has exactly two attribute-value pairs (rather than
being open for more), and (iii) infers distinct Professor assertions for each time x (rather
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JeducatedAt@ | before: x]. T C —3bornin@ [ time: x|.T 9)
JeducatedAt@ [time: x].T C —3bornin@ | after: x|. T (10)
JeducatedAt@ [ time: x].T C JeducatedAt@ | during : [x,x]].T (11)

JbornIin@ | between : [x,y]|.T € —=JeducatedAt@ | before: x|.T (12)

Fig. 3. Examples for axioms in temporally attributed description logics

than one assertion that copies all time points). Item (iii) deserves some reflection. As
argued above, it is meaningful that the same fact holds true with different annotation sets,
and this does not imply that it is also true with the union of these annotations. However,
in the case of time, our intuition is that something is true at several times individually
exactly if it is true at all of these times together. Our formal semantics will ensure that
this equivalence holds.

We define our description logic ALCH}; as a multi-sorted version of the attributed
DL ALCH e, thereby introducing datatypes for time points and intervals. Elements of
the different types are represented by members of mutually disjoint sets of (abstract)
individual names N,, time points N1, and time intervals N%. We represent time points
by natural numbers, and assume that elements of Nt (N%) are (pairs of) numbers in
binary encoding. We write [k, £] for a pair of numbers &, ¢ in N%. Moreover, we require
that there are the following seven special individual names, called temporal attributes:
time, before, after, until, since, during, between € N;.

The intuitive meaning of temporal attributes is as one might expect: time describes
individual times at which a statement is true, while the others describe (half-open)
intervals. The meaning of before, after, and between is existential in that they require
the statement to hold only at some time in the interval, while until, since, and during are
universal and require something to be true throughout an interval.

Example 4. The examples in Fig. 3 illustrate the special semantics of temporal attributes.
Axiom (9) states that nobody can be educated before being born. Axiom (10) is equivalent.
In particular, our semantics ensures that temporal attributes like time, before, and after
will be inferred even when not stated explicitly. For example, (11) is a tautology. Longer
intervals of during can be inferred for any span of consecutive time points (our time
model is discrete). Finally, we also allow using object variables in time intervals, as
illustrated in (12), which is actually equivalent to (9) as well.

With these examples in mind, we continue to define the syntax of our temporal DLs
formally. Axioms of AEC’;‘—L}Z) are further based on sets of concept names Ng, and role
names Ng. Attributes are represented by individual names, and we associate a value
type valtype(a) with each individual a € N, for this purpose: during and between have
value type N2, all other temporal attributes have value type Nt, and all other individuals
have value type N,. An attribute-value pair is an expression a:v where a € N, and
v € valtype(a). Now concept and role assertions of AEC”H}% have the following form,
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respectively:

Cla)@[ay:vy,...,a, v, (13)
r(a,b)@[a;:vi,...,an: vy] (14)

where C € Ng, r € Ng, a,b € N;, and a;:v; are attribute-value pairs. Note that (4)
in Example 2 is not a concept assertion in the sense of (13), since it uses a complex
concept expression. As usual in DLs, our language will allow us to encode such complex
assertions by giving them a new name in a terminological axiom.

Role and concept inclusion axioms of ALC Hg introduce additional expressive power
to refer to partially specified and variable annotation sets. Attribute values may now also
contain object variables taken from pairwise disjoint sets Var(N;), Var(Nt), and Var(N%).
Moreover, whole annotation sets might be represented by set variables from a set Ny.

Definition 1. An (annotation set) specifier can be a set variable X € Ny, a closed specifier
of the form [ay:vy,...,a,:v,], or an open specifier of the form |ay:vy,...,a, vy,
where n > 0, a; € Ny and each v; is an expression that is compatible with the value type
of its attribute in the sense that it has one of the following forms:

— v; € valtype(a;) U Var(valtype(a;)), or
= v; = [v,w] with valtype(a;) = N and v,w in Nt U Var(Nr), or
— v; = X.bwith X € Ny, b € N, and valtype(a;) = valtype(b).

The set of all specifiers is denoted S. A specifier is ground if it does not contain variables.

Intuitively, closed specifiers define specific annotation sets whereas open specifiers
provide lower bounds [23]. Object variables are used to copy values from one attribute
to another, as long as the attributes have the same value type (in the same annotation set
or in a new one); the expression X.b is used to copy all of the zero or more b-values of
annotation set X. We also allow specifiers to be empty. That is, we allow | | (meaning
“any annotation set”) and [] (meaning “the empty annotation set”). To simplify notation,
we may omit @| | and @[] in role or concept expressions (and @[] in assertions).

Definition 2. AﬁC?—lg role expressions have the form r@S with r € Ng and S € S.
AEC’HE@ concept expressions C, D are defined recursively:

C,D:=T|A@S|-C|(CnD)|3R.C (15)
with A € Ng, S € Sand R an AEC’H% role expression.

We use abbreviations (C U D), L, and YR.C for =(=C 1 =D), =T, and —(3R.=C),
respectively. .AEC’HE axioms are essentially just (role/concept) inclusions between
AEC’H,E role and concept expressions, which may, however, share variables.

Example 5. Object variables can be used to create new intervals of time using the
temporal information present on the annotations. In the following example, we illustrate
a concept inclusion that allows for inferring the (minimum) period in which a person
typically is a PhD student:

JobtainedMSc @ | between : [x, x’]|. T 1 JobtainedPhD @ | between : [y, y’]|. T (16)
C PhDStudent@ | during : [x’, y]]
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It is sometimes useful to represent annotations by variables while also specifying
some further constraints on their possible values. This can be accommodated by adding
such constraints as (optional) prefixes to axioms.

Definition 3. An AL‘C’H}T@ concept inclusion is an expression of the form

Xi:8,...,X,:S, (CEc D), 17
where C, D are ACC?—[E concept expressions, Si,. . .,S, € Sare closed or open specifiers,
and Xy, . .., X, € Ny are set variables occurring in C,D orin Sy,. . .,S,. We require that

all variables are safe in the following sense:

(1) every set variable in the axiom also occurs in the left concept C,? and
(2) every object variable in the axiom also occurs either in the left concept C or in a
specifier S; in a prefix X; : S;.

AL‘C"HE} role inclusions are defined analogously, but with role expressions instead of
the concept expressions. An AEC’HP& ontology is a set of AEC'HP& assertions, and role
and concept inclusions.

Note that any ALCH axiom is also an ALCHg, axiom in the sense that the absence
of explicit annotations can be considered to mean “@| |.”

3 Semantics of Temporally Attributed DLs

We first recall the general semantics of attributed DLs without temporal attributes. The
semantics of AEC’H}T@ can then be obtained as a multi-sorted extension that imposes
additional restrictions on the interpretation of time.

An interpretation T = (A%,-T) of attributed logic consists of a non-empty domain
AT and a function -Z. Individual names a € N, are interpreted as elements a € AZ.
To interpret annotation sets, we use the set ®” of all finite binary relations over AZ.
Each concept name C € Ng is interpreted as a set CZ € AT x ®Z of elements with
annotations, and each role name r € Ng is interpreted as a set rT ¢ AT x AT x @7 of
pairs of elements with annotations. Each element (pair of elements) may appear with
multiple annotations [23].

Note that attributes are represented by domain elements in this semantics. This has
no actual impact on reasoning in the context of this paper, and could be changed to use a
separate sort for attributes or to consider them as a kind of predicate that is part of a fixed
schema. While this detail is immaterial to our proofs, it is worth noting that attributes
are also treated as special kinds of domain objects in important practical knowledge
graphs. Both RDF-based models and Wikidata use (technically different) notions of
property that are part of the domain and can therefore be described by facts. This ability
is frequently used in practice to store annotations, to declare constraints, or to establish

5 This is a simplification from previous works [24] where set variables were allowed to occur in
the specifier prefix only under some circumstances. It is not hard to see that our simplification
does not relinquish relevant expressivity if we permit some normalisation.
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mappings to external vocabularies. We believe that in particular constraint information
and mappings in datasets should be accessible to ontological reasoning. In contrast, the
Property Graph data model represents attributes as property keys (plain strings) that
cannot be used as objects (vertices) in the graph [33]. However, in this model, attribute
values (property values) cannot refer to objects in the graph either. We do not consider it
desirable to impose those restrictions, since our more general model can capture more
real-world graphs, and is useful for expressing many natural statements (e.g., values like
full professor in Fig. 1 refer to domain objects, which Property Graph would not allow).

3.1 Time-Sorted Interpretations

To deal with time, we define interpretation that include temporal sorts in addition to the
usual abstract domain.

Definition 4. A time-sorted interpretation Z = (AZ,-T) is an interpretation with a domain
AT that is a disjoint union of AF U AL U AL, where AT is the abstract domain, AL is a
finite or infinite interval, ¢ called temporal domain, and A;T = AL x AL

We interpret individual names a € N, as elements a~ € A%; time points t € Nt as
tf e A%; and intervals [t,t'] € N12' as [t,t']F = (5, t7) € A%T. A pair (6,¢€) € A% x AT is
well-typed, if one of the following holds:

(a) 6 = a” for an attribute a of value type Nt and € € AL, or
(b) 6 = a” for an attribute a of value type N% and € € A%T; or
(c) 6 = a” for an attribute a of value type N, and € € AII.

Let ®T be the set of all finite sets of well-typed pairs. The function L maps concept names
C € Ng 1o CT ¢ AT x ®F and role names r € Ng 1o rt € AT x AT x ®Z.

Note that A% can be finite if Nt and N% are (which is always admissible, since
any ontology mentions only finitely many time points). Z satisfies a concept assertion
C@)@[ay:vy,...,an:va] if (af,{(al,v]),. ... (ak,v})}) € CT, and likewise for role
assertions. For interpreting expressions with (object or set) variables, we need a notion
of variable assignment.

Definition 5 (semantics of terms). A variable assignment for a time-sorted interpreta-
tion T is a function Z that maps set variables X € Ny to finite binary relations Z(X) € ®Z,
and object variables x € Var(N;) U Var(Nt)U Var(N%) to elements Z(x) € AII v A% U A%T
(respecting their types). For (set or object) variables x, let x-Z = Z(x), and for abstract

individuals, time points, or time intervals a, let a-% = a”.

Intuitively, each specifiers defines a set of annotation sets. For closed specifiers,
there is just one such set (corresponding exactly to the specified attribute-value pairs),
whereas for open specifiers, we obtain many sets (namely all supersets of the set that was
specified). The following definition is making this formal, and also defines the semantics
for all types of expressions that may occur in the value position of attributes within
specifiers.

6 As usual for the natural numbers, a finite interval [k, €] is {n € N | k < n < ¢} and an infinite
interval [k,c0) is {n e N | k < n}.
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Definition 6 (semantics of specifiers). A specifier S € S is interpreted as a set ST-Z C
& of matching annotation sets. We set X% = {Z(X)} for variables X € Ny. The
semantics of closed specifiers is defined as follows:

(i) [a:v]FZ = {{(a%,vE-2)}}, with v € valtype(a) U Var(valtype(a));
(i) [a:[v,w]]FZ = {{(aT,(vE-2,wE-2))}), with valtype(a) = N%, and v,w € Nt U
Var(Nr);
(iii) [a:X.b]15% = {{(d%,6) | (b%,6) € Z(X)}};
(iv) [ay:vi,....an:va]5% = {UL, Fi} with {F;} = [a;:vi15Z foralli € {1,...,n}.

ST-Z therefore is a singleton set for variables and closed specifiers. For open specifiers,

however, we define |ai:vi,. . .,an: va|5Z to be the set
{Fed | F2Gfor{G} =[ai:vi,...,an:va]T%}.

With the above definitions in place, we can now define the semantics of concepts
and roles in the expected way, simply adding the appropriate condition for the additional
annotation sets.

Definition 7 (semantics of concepts and roles). For A € N, r € Ng, and S € S, let:

(A@S)EZ = {6 | (6,F) € AT for some F € ST-%}, (18)
(r@8)Y:Z = {(6,€) | (6,¢,F) € r* for some F € ST-%}. (19)

The semantics of further concept expressions is defined as usual: TH% = AT, =CT-Z =
AT\ CLZ (cn D2 = ¢5Z2 n D2, and (AR.C)YHZ = {6 | thereis (6,€) €
R%-Z with e e CT-Z}.

T satisfies a concept inclusion of the form (17) if, for all variable assignments Z
that satisfy Z(X;) € SiI’Z forall 1 <i < n, we have C1-Z ¢ D%-Z Satisfaction of role
inclusions is defined analogously. Z satisfies an ontology if it satisfies all of its axioms.
As usual, |= denotes both satisfaction and the induced logical entailment relation.

3.2 Semantics of Time

Time-sorted interpretations can be used to interpret AECHE ontologies, but they do not
take the intended semantics of time into account yet. For example, we might find that
A(c)@ [after: 1993] holds whereas A(c)@ [time:¢] does not hold for any time ¢ € Nt
with tZ > 1993. To ensure consistency, we would like to view an interpretation with
temporal domain A% as a sequence (Z;);¢ AZ of regular (unsorted) interpretations that
define the state of the world at each point in time. Such a sequence represents a local
view of time as a sequence of events, whereas the time-sorted interpretation represents
a global view that can explicitly refer to time points. Axioms of .AECHE) refer to this
global view, but it should be based on an actual sequence of events. To simplify the
relationship between local and global views, we assume that the underlying abstract
domain Af and interpretation of constants remains the same over time.
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Definition 8. Consider a temporal domain A% and an abstract domain A%, and let
(Z);e AZ be a sequence of (unsorted) interpretations with domain AX, such that, for all

a € N, we have a%i = a%i foralli,j e A%.

We define a global interpretation for (Ii)ieA% as a multi-sorted interpretation
T = (AT, T) as follows. Let a* = a*i for all a € N,. For any finite set F € ®Z, let
Fr:=Fn (AII X Af ) denote its abstract part without any temporal attributes. For any
A € Ng, 6 € AL, and F € ® with F \ F; # 0, we have (6,F) € AT if and only if7
(6, Fy) € AT for some i € AL, and the following conditions hold for all (a®,x) € F:

— ifa = time, then (6, Fy) € AZx,

— if a = before, then (6, F;) € AL for some j < x,
— if a = after, then (6, Fy) € AZLi for some j > x,
— ifa = until, then (6, F;) € AL forall j < x,

— ifa = since, then (6, F;) € A% forall j > x,
— ifa = between, then (6, F;) € AL for some j € [x],
— if a = during, then (6, Fy) € A% forall j € [x],

where [x] for an element x € A%T denotes the finite interval represented by the pair of
numbers x, and j € A%. For roles r € N, we define (6, €, F) € r* analogously.

In words: in a global interpretation all tuples are consistent with the given sequence
of local interpretations. One can see a global interpretation as a snapshot of a local
interpretation, with timestamps encoding the information of the temporal sequence.
If a global interpretation does not contain temporal attributes the characterization of
Definition 8 holds vacuously for any temporal sequence, meaning that without temporal
attributes the semantics is essentially the same as for ALCH @.

Definition 9. An interpretation of AECH?@ is a time-sorted interpretation T that is a
global interpretation of an interpretation sequence (I;); c AZ as in Definition 8.

A model of an AﬁC’Hg ontology O is an AEC’HE) interpretation that satisfies O,
and O entails an axiom «, written O |= «, if a is satisfied by all models of O.

By virtue of the syntax and semantics of AEC?—% we can express background
knowledge that helps to maintain integrity of the annotated knowledge and allows us to
derive new information from it.

Example 6. Recall the imprecise assertion (4). Even without investigating further into
the life of Carsten Lutz, we do know that he has published papers as early as 1997 [30],
hence we can assume that he was educated before that:

(JeducatedAt@ | before: 1997 T ) (Carsten) (20)

where we again simplify presentation by allowing a complex concept expression in an
assertion. Now together with axiom (9) (or, equivalently, (10) or (12)), we can infer

(Foornin@ | between : [1950,1996]] T )(Carsten) 1)
which, though hardly more precise, serves to illustrate entailments in AECHE 8

7 ‘for some i € A%’ is useful for attributes which universally quantify time points (e.g., until).
8 Readers who long for greater precision may consult the literature [27].
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Some temporal attributes are closely related. Clearly, time can be captured by using
during or between with singleton intervals. Conversely, during can be expressed by
specifying all time points in the respective interval explicitly using time, but this incurs
an exponential blow-up over the binary encoding of time intervals. Similarly, between
could be expressed as a disjunction of statements with specific times. Since time can be
infinite, since and after cannot be captured using finite intervals. It may seem as if until
and before correspond to during and between using intervals starting at 0. However, it is
not certain that 0 is the first element in the temporal domain of an interpretation, and the
next example shows that this cannot be assumed in general.

Example 7. The ontology with the two axioms C(a)@ [until: 10] and C @ [before: 5] C L
is satisfiable in ALCH %, but it does not have models that have times before 5. Replacing
until: 10 with during: [0, 10] would therefore lead to an inconsistent ontology.

. . T
4 Reasoning in ALCH

In our investigations, we focus on the decidability and complexity of the satisfiability
problem as the central reasoning task. As usual, entailment of assertions is reducible
to satisfiability. Also, our definition of assertions could be easily extended to complex
concept expressions, since such assertions can be encoded using concept inclusions. Thus,
all of our decidability and complexity results hold for the problem of answering instance
queries, defined as the class of the assertions allowing complex concept expressions,
such as that of Example 2 (Equation 4).

In this section, we study the expressivity and decidability in AEC?—%. Our first result,
Theorem 1, shows that reasoning is on the first level of the analytical hierarchy and
therefore highly undecidable.

Theorem 1. Satisfiability of AECHE ontologies is Z%-hard, and thus not recursively
enumerable. Moreover, the problem is Z{ -hard even with at most one set variable per
inclusion and with only the temporal attributes time and after.

Proof. We reduce from the following tiling problem, known to be le-hard [20]: given
a finite set of tile types T with horizontal and vertical compatibility relations H and V,
respectively, and 7y € T, decide whether one can tile N X N with #y appearing infinitely
often in the first row. We define an AEC’H}; ontology Or 4, that expresses this property.
In our encoding, we use the following symbols:

— aconcept name A, to mark individuals representing a grid position with a time point;

— aconcept name P to keep time points associated with previous columns in the grid,;

— concept names Ay, for each r € T, to mark individuals with tile types;

— an individual name a, to be connected with the first row of the grid;

— an auxiliary concept name /, to mark the individual a, and a concept name B, used
to create the vertical axis;

— role names r,s, to connect horizontally and vertically the elements of the grid,
respectively.
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We define Or 4, as the set of the following AEC’H% assertion and concept inclusions. We
start encoding the first row of the grid with an assertion /(a) and the concept inclusions:

IC 3r.A@|time:0] and 3r. A@X C Jr.A@| after: X .time|.
Every element in A must be marked in at most one time point (in fact, exactly one):
A@X C -A@]|after: X.time]| (22)

Every element representing a grid position can be associated with exactly one tile type at
the same time point:

A@X C LI A, @|[time: X .time],
teT
Jr.A;@X C —3r. Ay @|[time: X .time|, fortr #1¢ € T.

We also have:
A;@X C A@|time: X.time|, foreacht € T

to ensure that elements are in A, and A at the same time point (exactly one one, see
Eq. 22). The condition that ¢y appears infinitely often in the first row is expressed with:

I C 3r.(A,@[time: 0] U A, @ after:0]),
In3r.A,@X C 3r.A, @| after: X .time].

To vertically connect subsequent rows of the grid, we have:
IC Band BE 3s.B.

We add, for each ¢ € T, the following inclusion to ensure compatibility between vertically
adjacent tile types:

Ir.A,@X C Vs.3r.( I_I Ay @|time: X .time])
(z,t')eV

We also have:

ds.3r.A@X C Ir.A@|time: X.time|

to ensure that the set of time points in each row is the same. We now encode compatibility
between horizontally adjacent tile types. We first state that, given a node associated with
a time point p, for every sibling node d, if d is associated with a time point after p then
we mark d with P and p:

dr.A@X C Vr.(-A@| after: X.time] LI P@ [time: X .time]).

For each node, P keeps the time points associated with previous columns in the grid
(finitely many). We also have:

Jr.P@X C Ir.A@|time: X.time| and P@X C A@|after: X.time|
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to ensure that P keeps only those previous time points. Finally, for each ¢ € T, we add to
Or 1, the inclusion:

dr.A;@X C Vr.(-A@]| after: X.time Ul

P@]|after: X.time| LI I_I Ap).
(t,t')eH

Intuitively, as P keeps the time points associated with previous columns in the grid, only
the node representing the horizontally adjacent grid position of a node associated with a
time point p will not be marked with P after p. O

Theorem 2 shows that even if after is only allowed in assertions reasoning is
undecidable, though, in the arithmetical hierarchy [35]. For this statement, recall that 2(1)
is the class of recursively enumerable problems.

Theorem 2. Satisfiability of AEC’HT@; ontologies with the temporal attributes time, after
and before but after only in assertions is Z?-complete. The problem is Z(l)-hard even with
at most one set variable per inclusion.

The detailed proof of this result can be found in the appendix.

5 Decidable Temporally Attributed DLs

To recover decidability, we need to restrict AEC’H% in some way. In this section, we
do so by restricting the use of variables or of temporal attributes, leading to a range of
different reasoning complexities.

A straightforward approach for recovering decidability is to restrict to ground
ALCH?,, where we disallow set and object variables altogether. It is clear from the
known complexity of ALCH that reasoning is still ExpTime-hard. We establish a matching
membership result by providing a satisfiability-preserving polynomial time translation
to ALCH extended with role conjunctions and disjunctions (denoted ALCHDb), where
satisfiability is known to be in ExpTiMmE [36].

Theorem 3. Satisfiability of ground AL’CHE ontologies is ExpTIME-complete.

Proof. Consider a ground AEC’H% ontology O, and let ky < ... < k,, be the ascending
sequence of all numbers mentioned (in binary encoding) in time points or in time intervals
in 0. WedefineNp = {k; |0 <i<n}U{k;+1]|0<i<n},andlet kpj, := min(Np)
and kmax = max(Ne), where we assume kmin = kmax = 0 if N = 0. For a finite interval
v C N, let N7 be the set of all finite, non-empty intervals u C v with end points in Ne.
The number of intervals in N, then is polynomial in the size of O.

We translate O into an ALCHb ontology O as follows. First, OT contains every
axiom from O, with each annotated concept name A@S and each annotated role name
r @S replaced by a fresh concept name Ag and a fresh role name rg, respectively.

Second, given a ground specifier S, we denote by S(a: b) the result of removing
all temporal attributes from S and adding the pair a: b. Moreover, let St be the set of
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temporal attribute-value pairs in S. Then, for each Ag and rg with St # 0, O contains
the equivalences (as usual, = refers to bidirectional C here):

As = |_| (As@p)? and rs = |_| (rs(am)) (23)
(a:b)eSt (a:b)eSt

where the concept/role expressions (Hg(g: b))ti for H € {A,r} are defined as follows:

- (I'IS(during:v))::t = I_lueN‘(’D HS(during:u)

- (HS(between:v))ﬁ = uke(vﬂNo) HS(during:[k,k])

- (IiS(time:k))ﬁ = (HS(during:[k,k]))ﬁ

- (IiS(since:k))ﬁ = (HS(during:[k,kmax]))ﬁ r HS(since:kmax)

— (Hsunito)* = (Hs@uring [k k]))F T HS untitkegn)

- (HS(after:k))ﬁ = (HS(between:[k+1,kmaxj))ﬁ u HS(after:kmax)
— (Hs(pefore:)* = (Hs(vetween:[kmn.k—11)F U Hs(before:knn)

where k # kmin and k # kmax. If k € {kmin, kmax} then we set (HS(a;k))ti = Hg(4:x). Only
polynomially many inclusions in the size of O are introduced by (23) in O".

Finally, given attribute-value pairs a: b and c: d for temporal attributes a and b, we
say that a: b implies c: d if A(e)@[a:b] = A(e)@[c: d] for some arbitrary A € Ng and
e € N|. Based on a given Nj, this implication relationship is computable in polynomial
time. We then extend O with all inclusions As C A7 and rg C rr, where Ag, Ay and
rs,rr are concept and role names occurring in oF, including those introduced in (23),
such that for each temporal attribute-value pair c: d in T there is a temporal attribute-value
pair a: b in S such that a: b implies c: d and:

— T is an open specifier and the set of non-temporal attribute-value pairs in S is a
superset of the set of non-temporal attribute-value pairs in 7'; or

— §,T are closed specifiers and the set of non-temporal attribute-value pairs in S is
equal to the set of non-temporal attribute-value pairs in 7.

This finishes the construction of O, As shown in the appendix, O is satisfiable iff O is
satisfiable. O

While ground AEC’HE can already be used for some interesting conclusions, it is
still rather limited. However, satisfiability of (non-ground) ALCH @ ontologies is also
decidable [23], and indeed we can regain decidability in AﬁC”H,qg@ by restricting the use of
variables to non-temporal attributes. Using a similar reasoning as in the case of ALCH @,
we obtain a 2ExpTiME upper bound by constructing an equisatisfiable (exponentially
larger) ground AECH% ontology. The details of this proof are given in the appendix.

Theorem 4. Satisfiability in .A/JCHE is 2ExpTiME-complete for ontologies without
expressions of the form X.a; a:x with x in Var(Nt); and a: [t,t'] with one of t,t’ in
Var(Nt), where a is a temporal attribute.

Another way for regaining decidability is by limiting the temporal attributes that
make reference to time points in the future:
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Theorem 5. Satisfiability of AECHED ontologies with only the temporal attributes
during, time, before and until is in 3ExpTIME.

The proof of this result is found in the appendix. It is based on translating the ALC Hg
ontology into a ground AEC’HE) ontology, which, however, is double-exponential in size
if we assume that time points in the temporal domain have been encoded in binary. The
claimed 3ExPTiME upper bound then follows from Theorem 3.

Our result in our next Theorem 6 below is that this upper bound is tight. The proof is
by reduction from the word problem for double-exponentially space-bounded alternating
Turing machines (ATMs) [16] to the entailment problem for AEC”HTCF@ ontologies. The
main challenge in this reduction is that we need a mechanism that allows us to transfer
the information of a double-exponentially space bounded tape, so that each configuration
following a given configuration is actually a successor configuration (i.e., tape cells are
changed according to the transition relation). We encode our tape using time: we can
have exponentially many time points in an interval with end points encoded in binary. So
considering each time point as a bit position, we construct a counter with exponentially
many bits, encoding the position of double-exponentially many tape cells.

Theorem 6. Satisfiability of AEC’HP& ontologies with only time and before is 3ExpTIME-
hard.

Our main theorem of this section completes and summarises our results regarding
decidability and complexity for different combinations of temporal attributes:

Theorem 7. In ALCH,, any combination of temporal attributes containing {time, after}
is undecidable. Moreover, the combination {time, before} is 3ExpTiME-complete, and the
combination {time,during, since, until} and every subset of it are 2ExpTIME-complete.

The cases of undecidability and 3ExpTiME-completeness follow from (the proofs of)
Theorems 1, 5, and 6. Hardness for 2ExpTiME is inherited from ALCH e [23], so our
proof in the appendix mainly needs to establish the membership for this case.

Certain combinations referring to time points in the future, e.g., time and since,
are harmless while others are highly undecidable, e.g., time and after (by Theorem 1).
Essentially, what causes undecidability in .AECHWEa is a combination with the ability to
refer to arbitrarily many intervals of time points in the future.

6 Lightweight Temporal Attributed DLs

The complexities of the previous section are still rather high, whereas modern description
logics research has often aimed at identifying tractable DLs [9]. In this section, we
therefore seek to obtain a tractable temporally attributed DL that is based on the popular
EL-family of DLs [6]. We investigate 5£’Hg, the fragment of AEC?’-LPH(;b which uses
only 3, M, T and L in concept expressions. It is clear that variables lead to intractable
reasoning complexities, but it turns out that ground £ CH}T@ still remains intractable:

Theorem 8. Satisfiability of ground £ LHg ontologies is ExpPTIME-complete.
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Proof. The upper bound follows from Theorem 3. For the lower bound, we show how one
can encode disjunctions (i.e., inclusions of the form T T BLIC), which allow us to reduce
satisfiability of ground AECHT@ to satisfiability of ground &£ E’Hg ontologies. In fact,
several combinations of the temporal attributes time, between, before and after suffice to
encode T C B LI C. For example, see the inclusions using the temporal attributes time
and between: T C A@|between : [1,2]], A@|time: 1| C B, A@|time:2|CC. O

It is known that the entailment problem for ££ ontologies with concept and role
names annotated with time intervals over finite models is in PTimE [26]. Indeed, our
temporal attribute during can be seen as a syntactic variant of the time intervals in the
mentioned work and, if we restrict to the temporal attributes time, during, since and until,
the complexity of the satisfiability problem for ground £ E?—lg ontologies is in PTimE.
Our proof here (for ground £ E’Hg over N or over a finite interval in N) is based on a
polynomial translation to £LH extended with role conjunction, where satisfiability is
PTime-complete [36].

Theorem 9. Satisfiability of ground ELHTC;) ontologies without the temporal attributes
between, before and after is PTIME-complete.

Proof. Hardness follows from the PTime-hardness of £L [6]. For membership, note
that the translation in Theorem 3 for the temporal attributes during, since and until does
not introduce disjunctions or negations. So the result of translating a ground £ ﬁHg
ontology belongs to £LH extended with role conjunction. O

7 Related Work

In this section, we discuss the main differences and similarities between our logic and
other related formalisms. Potentially related works include classical first-order and
second-order logic, temporal extensions of description logics, and temporal extensions of
other logics. When setting out to compare our approach to other logics, it is important to
understand that there is no immediate formal basis for doing so. Our approach differs both
in syntax (structure of formulae) and in semantics (model theory) from existing logics,
so that an immediate comparison is not possible. There are three distinct perspectives
one might take for discussing comparisons:

(1) Translate models of temporally attributed logics to models of another logic, and
investigate which classes of models can be characterised by theories of either type.

(2) Look for polynomial reductions of common inference tasks, i.e., for syntactic
translations between formulae that preserve the answer to some decision problem.

(3) Compare intuitive modelling capabilities on an informal level, looking at intended
usage and application scenarios.

Approach (1) can lead to the closest relationships between two distinct logical
formalisms. Unfortunately, it is not obvious how to relate our temporalised model theory
to classical logical formalisms. It is clear that one could capture the semantic conditions
of temporally attributed DLs in second-order logic, which would lead to models that
explicitly define (axiomatically) the temporal domain and that associate temporal validity
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with every tuple. This is close in spirit to the way in which weak second-order logic was
related to (non-temporal) attributed logics by Marx et al. [32], although their work did in
fact show a mere reduction of satisfiability in the sense of (2). Our undecidability results
of Theorem 1 imply that, for any faithful translation of temporally attributed models
into classical relational structures, AECH}T@ can capture classes of models that are not
expressible in first-order logic.

Besides the translation to models of classical logic, it might also be promising to seek
direct translations to model theories of temporal logics, especially to metric temporal
logics (MTL) [19,5]. So far, the combination of MTL with DLs has only been investigated
considering discrete time domains. Recent works on DatalogMTL consider dense (real
or rational) time domains [13,14], into which our integer time could be embedded. Note
that the containment of integers in rationals and reals does not mean that there is any
corresponding relationship between the expressivity of the logics (indeed, decision
procedures for DatalogMTL are also based on restricting attention to a suitably defined
set of discrete, non-dense time points). However, choosing a discrete domain does not
mean that the complexity of the satisfiability problem is lower, neither it means that the
technical results are simpler (as we have already pointed out in the introduction, the
complexity of satisfiability of ALC with a concrete discrete domain using the predicates
= and < is open). A detailed semantic comparison requires a thorough investigation of
the semantic assumptions in either logic, which has to be left to future research.

Approach (2), the syntactic reduction of inference tasks, is the heart of our complexity
results. Our upper complexity bounds are obtained by either grounding the ontology
and then translating it to an ontology in a classical DL; or directly translating it into a
classical DL. Most DLs, including ALC and £L, are syntactic variants of fragments of
first-order logic [7], and thus our decidable fragments can be translated into first-order
logic. The difference in the complexity results for ALC is due to the ability of expressing
certain statements in a more succinct way. For €L, we have shown that some temporal
attributes increase expressivity, allowing disjunctions (and negations) to be encoded in
the logic. A similar interplay between temporal logic and £L has also been observed in
other studies on temporal DLs [3]. Nevertheless the resulting logic is still expressible in
ALC and, thus also in first-order logic.

Approach (3), the comparison of intuitive semantics and modelling applications,
brings many further logics into the scope of investigation (not surprisingly, the motivation
of modelling time has inspired many technically diverse formalisms). Some of the
statements used in our examples can also be naturally expressed in temporal DLs. For
instance, axiom (10) in Fig. 3 is expressible in .ALC extended with Linear Temporal
Logic [31,39] with:

JeducatedAt. T C =¢3bornin. T.

Other authors have also considered extending ALC with Metric Temporal Logic
(MTL) [19,5], where axiom (4) of Example 2 can be expressed with:

0[1950,2000]3b0rnln.‘|' (Carsten).

However, axiom (16) from Example 5 cannot be naturally expressed by temporal DLs. The
complexity results can also be very different, for instance, the complexity of propositional
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MTL is already undecidable over the reals and ExpSpace-complete over the naturals [1],
whereas in Theorem 3 of this paper we show that we can enhance ALC with many
types of time related annotations with time points encoded in binary while keeping
the same ExpTiME complexity of ALC. Regarding temporal £L, it is known that, if
temporal operators are allowed in concept expressions then satisfiability is not easier
than satisfiability for temporal ALC [3]; and it decreases to PSpack if temporal operators
can only be applied over the axioms [11]. Our lightweight fragment based on £ L features
PTimmE complexity but allows only ground specifiers using particular types of temporal
attributes. Syntactic restrictions on the specifiers, similar to those used for attributed
EL[23,24], could also be applied to have a more interesting PTimE fragment of temporally
attributed £L.

8 Conclusion

We investigated decidability and complexities of attributed description logics enriched
with special attributes whose values are interpreted over a temporal dimension. We
discussed several ways of restricting the general, undecidable setting in order to regain
decidability. Our complexity results range from PTiME to 3ExpTIME.

As future work, we plan to study forms of generalising our logic to capture the seman-
tics of other standard types of annotations in knowledge graphs, such as provenance [12]
and spatial information. Another direction is to study our logic over other temporal
domains such as the real numbers (see [13,14] for a combination of Datalog with MTL
over the reals). It would also be interesting to investigate query answering.
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A Proofs for Section 4

Theorem 2. Satisfiability of AEC?—[E) ontologies with the temporal attributes time, after
and before but after only in assertions is 2?—complete. The problem is Z(l)—hard even with
at most one set variable per inclusion.

Proof. We first show hardness. We reduce the word problem for deterministic Turing
machines (DTM) to satisfiability of AEC”H}% ontologies with the temporal attribute after
occurring only in assertions. A DTM is a tuple (Q, %, ©, qo, g), where:

— Q is afinite set of states,

— X is a finite alphabet containing the blank symbol ,

- {qo,q:} € Q are the initial and the final states, resp., and
- ®: 0 XX — QxXx{l,r} isthe transition function.

A configuration of M is a word wgw’ with w,w’ € £* and ¢ in Q. The meaning
is that the (one-sided infinite) tape contains the word ww’ with only blanks behind it,
the machine is in state g and the head is on the left-most symbol of w’. The notion of a
successive configuration is defined in the usual way, in terms of the transition relation @.
A computation of M on a word w is a sequence of successive configurations g, @1, . . .,
where ag = qow is the initial configuration for the input w. Let M be a DTM and
w = 01073 - - - 0y, an input word. Assume w.l.0.g. that M never attempts to move to the
left when its head is in the left-most tape position and that gy occurs only in the domain
of ® (but not in the range).

We construct an AEC’HE ontology O, With after occurring only in assertions
that is satisfiable iff M accepts w. Models of O 4., have a similar structure as in the
proof of Theorem 1. We create a vertical chain with:

I(a)y ICB and BLC3s.B
and ensure that horizontally the set of time points is the same:

Jr. A@X C Vs.3r.A@|time: X.time], 24)
ds.3r.A@X C Ir.A@|time: X .time]. (25)

Every element representing a tape cell is marked with A in at most one time point (in
fact, it will be exactly one):

A@X C ~A@ | before: X.time|

The main difference is that horizontally we do not have infinitely many sibling nodes.
That is, over the naturals, adding the inclusion Ir.A@X C Jr.A@|before: X.time|
would make O 4, unsatisfiable and here we cannot use after in inclusions. Instead, for
each g # g; in Q, we add to O 4, the inclusions:

SqMA@X C S, @[time: X time], (26)
Ir.S,@X C Ir.A@|before: X time| 27)
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where S, is a concept name representing a state. Intuitively, each vertically aligned set of
elements (w.r.t. time) represents a configuration and a sequence of configurations going
backwards in time represents a computation of M with input w. The goal is to ensure
that Oy, is satisfiable iff we reach the final state, that is, w is accepted by M.

We now add to O, assertions to trigger the inclusions in Equations 24, 25, 26
and 27:

r(a,b), Sg4(b), A(b)@][after:0].

We also use in our encoding concepts C, for each symbol o € X. To encode the input
word w = o0 - - - 0y, We add:

CrMA@X C C,@|time: X.time] for each o € Z,
Coy(b), Fr.S;,@X CVs'.3r.C,,, @|time: X time]

for 1 <i < n. Itis straightforward to add inclusions encoding that (i) the rest of the tape
in the initial configuration is filled with the blank symbol, (ii) each node representing a
tape cell in a configuration is associated with only one C, with o € X and (iii) at most
one S, with ¢ € Q (exactly the node representing the head position). Also, for each
element, the time point associated with A is the same for the concepts of the form C,
and S, (if true in the node).

To access the ‘next’ configuration, we use an auxiliary concept F that keeps time
points in the future. Recall that since a computation here goes backwards in time, these
time points are associated with previous configurations:

Ar.A@XCVr.(-A@|before: X.time|LIF @|time: X .time]).

We now ensure that tape contents are transferred to the ‘next’ configuration, except for
the tape cell at the head position:

Ir.(C,@X M S;z) C Vr.(F@|before: X.time| LI ~A@| before: X.time| U C,-)

for each o € X, where Sz is a shorthand for — L] qe0 Sy Finally we encode the transition
function. We explain for @(q, o) = (¢’,7, D) with D = r (the case with D = [ can be
handled analogously). We encode that the ‘next’ state is g’:

3r.(S4@X 1 Cy) E Vs.Vr.(F@|before: X.time| LI -A@| before: X .time] LI S;/)
(28)

and change to 7 the tape cell at the (previous) head position:
Ir.(S;@X N C,) E Vr.(F@|before: X.time] LI ~A@ | before: X time| U C;).

Equation 28 also increments the head position.
This finishes our reduction.

For the upper bound, we point out that if an ALCHE ontology O with after only in
assertions is satisfiable then there is a satisfiable ontology O’ that is the result of replacing
each occurrence of after : k in O by some time : [ with k < [ € N. By Theorem 5, one
can decide satisfiability of OO’ (that is, satisfiability of ontologies with only the temporal
attributes time and before). As the replacements of after : k by time : [ in assertions can
be enumerated, it follows that satisfiability of AL’C”HE ontologies is in 2(1). m]
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B Proofs for Section 5

Theorem 3. Satisfiability of ground .AL'C’HE ontologies is ExpTIME-complete.

Proof. The construction of an ontology O was already given in the main text. It remains
to show that O is satisfiable iff O is satisfiable. Given a model Z of @, we directly obtain
an ALCHb interpretation 7 over AZ by undoing the renaming and applying Z, i.e., by
mapping As € Ng to A@S7, rg € Ng to r@S7, and a € N, to a”. By the semantics
of AEC”HE, J E ot Conversely, given an ALCHb model J of O, we construct
an interpretation Z = (A%, %) of ACCHg, with AZ = [max(0, kmin — 2), kmax + 2] and
A% = A7 U {x} UT, where T is the set of temporal attributes and * is a fresh individual
name. We define a” = a7 forall a € Ny U Nt UNZ.

For a ground closed specifier S with a;: by,...,a,: b, as non-temporal attributes,
we define:

Fs = {(al,b]),....(a},b)}.

Similarly, for a ground open specifier S with a;: b1,...,a,: b, as non-temporal attribute-
value pairs, we define:

Fs = {(aL,bF),. .., (aZ,bD), (%, %)}.

To simplify the presentation, we write a: b € S if a: b occurs in S. Furthermore, let A%
be the set of all tuples (6, Fs) such that one of the following holds:

-0 € Ag,during:v eSandi € v;

-0€ Asj,after: kmax € S and i = kmax + 1;

— 6 € A since: kmax € S and kmax + 1 < i < kmax + 2;

-0€ ASJ, before: kmin € S,i = kmin — 1 and knin > 0;

— 6 € A7, until: knin € S, max(kmin — 2,0) < i < kmin — 1 and kmin > 0.

We define rZi analogously. Given the definitions of A% and rZi, for alli € N, A € N¢
and r € Ng, we define -Z as in Definition 8.

Claim. For all Ag,rs occurring in O": (1) A = A@S” and (2) r{ = r@S7~.

Proof of the Claim. If no temporal attribute occurs in S then by definition of Z (in
particular, Fs), we clearly have that ¢ € A‘S7 iff 6 € A@SZ. Also, by semantics of

AECHE@, for a ground specifier S with a non-empty set St of temporal attributes the
following holds for any Z and concept A@S:

A@ST = ﬂ A@S(a: b)*
a:beSt

So we can consider A@S with § containing only one temporal attribute. We argue for
during and between (one can give a similar argument for the other temporal attributes):

— if the temporal attribute-value pair during: v is in S then, by definition of Z (and Fy),
6 € A] iff 6 € A@ST;
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— if the temporal attribute-value pair between: v is in S then, by Equation 23, § € AS‘7
iff 0 € Ukevno A:g(during:[k’k]). By definition of Z, § € Ag(durmg:[k’k]) iff 6 €
A@S(during: [k, k])Z, for k € v N Np. Then,

6 € A iff 6 € U A@S(during: [k, k])%;

kevnNp
sod e A@ST.

In the definition of Ny, we add k; + 1 for each k; occurring in O, to ensure that axioms
suchas T C A@|between: [k,[]|11-A@ [time: k|M—-A@|time: /]| with[—k > 2 remain
satisfiable. Also, in the definition of Z we use the interval A% = [max(0, kmin—2), kmax +2],
and so, we give a margin of two ‘additional’ points in each side of the interval [kmin, kmax |
used in the translation. This is to ensure that axioms such as T T A@ | before: kmin | M
—A@ |until: kmin | with kmin > 2 remain satisfiable. Point (2) can be proven with an easy
adaptation of Point (1).

The Claim directly implies that Z |= O. Note that x ensures that axioms such as
TC A@|a:b| M—-A@[a: b] remain satisfiable. O

Theorem 4. Satisfiability in .AEC"HP](% is 2ExpTIME-complete for ontologies without
expressions of the form X.a; a:x with x in Var(Nt); and a: [t,t'] with one of t,t’ in
Var(Nt), where a is a temporal attribute.

Proof. The 2ExpTiME lower bound follows from the fact that satisfiability of ALCH e
(so without temporal attributes) is already 2ExpTiMe-hard [23]. Our proof strategy for
the upper bound consists on defining an ontology with grounded versions of inclusion
axioms. Let O be an ALCH g, ontology and let N := N UNE U N2° be the union of
the sets of individual names, time points, and intervals, occurring in O, respectively.
Let Z be an interpretation of AEC”HE over the domain A = N U {x}, where x is a
fresh individual name, satisfying a” = a for all a € N. Let Z : Ny — CD(IQ be a variable
assignment, where (I)(I9 = Pin (AI x AT ) Consider a concept inclusion a of the form
X1:S1,..., X, S, (C T D). We say that Z is compatible with « if Z(X;) € S7% for
all 1 < i < n. In this case, the Z-instance az of « is the concept inclusion C’ & D’
obtained by

— replacing each X; by [a: b | (a,b) € Z(X;)];

— replacing every a: X;.b occurring in some specifier (with a, b non-temporal attributes)
by all a: ¢ such that (b, c) € Z(X;); and

— replacing each object variable x by Z(x).

Then, the grounding O, of O contains all Z-instances az for all concept inclusions « in
O and all compatible variable assignments Z; and analogous axioms for role inclusions.

There may be (at most) exponentially many different instances for each terminological
axiom in O, thus O, is of exponential size. We show that O is satisfiable ift Oy is
satisfiable. By construction, we have O |= O, i.e., any model of O is also a model of O,.
Conversely, let Z = (A%, -T) be a model of Oy. W.Lo.g., assume that there is x € AT such
that x # a” for all a € N \ {x}. For an annotation set F € Py, (AT x AT), we define
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rep, (F) to be the annotation set obtained from F by replacing any individual 6 ¢ Z (NIO)
in F by x.

Let ~ be the equivalence relation induced by rep, (F) = rep,(G) and define an
interpretation 7 of ALCHg over the domain A7 = AZ, where A7 = {(6,F) |
(6,G) € AT and F ~ G} forall A € N¢, r7 = {(6,€,F) | (6,€6,G) € r* and F ~ G}
for all r € Ng, and a7 := a” for all a € Ny U Ny U N2. It remains to show that .7 is
indeed a model of O. Suppose for a contradiction that there is a concept inclusion « in
O that is not satisfied by J (the case for role inclusions is analogous). Then we have
some compatible variable assignment Z that leaves @ unsatisfied. Let Z, be the variable
assignment X +— rep, (Z(X)) for all X € Ny. Clearly, as expressions of the form a: X;.b,
a: x,and a: [t,t’] with at least one of #,#” an object variable, are not allowed for a, b being
temporal attributes, Z, is also compatible with . But now we have C7>Z = C%-2~ for
all .zélEC”y'-lT(;3 concepts C, yielding the contradiction Z & az, . Thus, O is satisfiable iff
Oy is satisfiable. The result then follows from Theorem 3. O

Theorem 5. Satisfiability of AECH% ontologies with only the temporal attributes
during, time, before and until is in 3EXPTIME.

Proof. The difference w.r.t. the proof of Theorem 4 is that here expressions of the form
a: X;.b, a: x, and a: [t,1'] with at least one of 7,7’ an object variable, may occur in front
of the temporal attributes during, before, time and until and the other temporal attributes
are not allowed (not even in assertions). Let v be the internal [0, k], where k is the largest
number occurring in O (or 0 if no number occurs). To define our ground translation, we
consider variable assignments Z : Ny — CD(IQ’V, where CI%’V = Pin (AI x AT ) and AT
is the set of all individual names in O plus a fresh individual name x, all time points
in v and all intervals contained in v. This gives us a ground ontology O, with size
double-exponential in the size of O. Clearly, O is satisfiable iff O, is satisfiable. O

Theorem 6. Satisfiability of AEC’HT@ ontologies with only time and before is 3ExpTIME-
hard.

Proof. We reduce the word problem for double-exponentially space-bounded alternating
Turing machines (ATMs) to the entailment problem for ALC Hg ontologies. We consider
w.l.o.g. ATMs with only finite computations on any input. As usual, an ATM is a tuple
M =(0,%,0,qp), where:

- Q = 03 W Qy is a finite set of states, partitioned into existential states Q3 and
universal states Qv,

¥ is a finite alphabet containing the blank symbol ,,

qo € Q is the initial state, and

- O CQOXXEXQXZXX{lr}isthe transition relation.

We use the same notions of configuration, computation and initial configuration
given in the proof of Theorem 2. We recall the acceptance condition of an ATM. A
configuration @ = wqw’ is accepting ift

— « is a universal configuration and all its successor configurations are accepting, or
— « is an existential configuration and at least one of its successor configurations is
accepting.
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Note that, by the definition above, universal configurations without any successors are
accepting. We assume w.l.o.g. that all configurations wgw of a computation of M satisfy
[ww’| <2%". M accepts aword in (Z \ {_})* (in space double-exponential in the size of
the input) iff the initial configuration is accepting.

There exists a double-exponentially space bounded ATM M = (Q, %, gy, ®) whose
word problem is 3ExpTime-hard [16]. Let M be such a double-exponentially space
bounded ATM and w = 003 - - - 0, an input word. W.l.o.g., we assume that M never
attempts to move to the left (right) when the head is on the left-most (right-most) tape
cell.

We construct an AﬂC"Hg ontology O, that entails A(a) iff M accepts w. We
represent configurations using individuals in O 4, which are connected to the corre-
sponding successor configurations by roles encoding the transition. W.l.0.g., we assume
that these individuals form a tree, which we call the configuration tree. Furthermore, each
node of this tree, i.e., each configuration, is connected to 22" individuals representing
the tape cells. The main ingredients of our construction are:

— an individual a denoting the root of the configuration tree;

— an attribute bit, with values in {0, 1}, used to encode double-exponentially many tape
positions;

— an attribute flip which has value 1 at a (unique) time point where bit has value 0 and
bit has value 1 in all subsequent time points;

— aconcept A marking accepting configurations;

— aconcept H marking the head position;

— aconcept T marking tape cells;

— aconcept / marking the initial configuration;

— concepts S, for each state g € Q;

— concepts C, for each symbol o € X;

— roles ry for all transitions 6 € ©O;

— arole tape connecting configurations to tape cells; and

— attributes ay, . . ., a, to encode the binary representation of time values.

time 0 1 2n-2 2" -1

Fig. 4. A model of Oz, encoding the computation tree of an ATM; blue edges (potentially grey)
represent the tape role (we omit for brevity 7 in nodes representing tape cells)
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To encode the binary representation of time values we first state that for time: 2" — 1
we have all a; set to 1:

TCT@|[time:2" - 1,a,:1,...,a0:1].

We now use the following intuition: if the g; attributes represent a pattern s - 1000, where
s is a binary sequence and - means concatenation, then s - 0111 should occur before that
pattern in the time line. To ensure this, we add concept inclusions of the form, for all
0<i<nm

X:S(T@X C T@]|before: X.time, Pfij)
where S is |a;: 1,a;-1:0,...,a9:0] and P} abbreviates
an:X.an,...,0;11: X.ai41,0;:0,a0;1:1,...,a0: 1.

By further adding a concept inclusion encoding that a; can only be one of 1,0 at the same
time point we have that, in any model, the ag; attributes encode the binary representation
of the corresponding time value, for time points in [0,2" — 1]. This means that, for time
points in [0,2" — 1], we can simulate the temporal attribute after by using variables and
specifiers of the form X : |@;: 1] and |a,: X.ay,. . .,a;-1: X.a;-1a;:0], forall 0 < i < n.

Remark 1. To simplify the presentation, in the following, we use the temporal attributes
after and during (the latter is used to encode the initial configuration). Given the
construction above it is straightforward to replace the inclusions using after and during
with inclusions using the attributes a;.

We encode the meaning of the attribute flip (i.e., it has value 1 at the time point from
which bits should be flipped to increment a tape position) with the following concept
inclusions:

T@|bit: 0] ET@]|flip: 1] (29)
X : [flip: 1](T@X C —-T@]|bit: 0, after: X.time]) 30)
X: [flip: 1](T@X E T@|bit: 0,time: X.time]) 3D

Intuitively, in Equation 29 we say that if there is a time point where we have bit with
value O then there is a time point where we should flip some bit to increment the tape
position, i.e., where flip is 1. In Equation 30 we state that there is no bit with value 0 after
a time point marked with flip set to 1. Finally, in Equation 31, we state that bit has value 0
where flip has value 1. Thus, Equations 30 and 31 ensure that there is at most one time
point where flip has value 1. _

Let Q be a sequence with the following variables Xi'] ,withl <i<mand1<j <5,
and their respective specifiers:

- Xl.1 : [flip: 1], we look at our auxiliary attribute that indicates from which time point
we should flip our bits to obtain the next tape position (this will be a time point with
bit value 0);
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— wealso define X? : | before: X/ time, bit: 0] and X7 : | before: X/ .time, bit: 1], to filter
time points with bit values 0 and 1, respectively, before the time point with flip : 1,
related to X 1.1;

— we use Xf: |bit : 0] and Xl.5: Lbit: 1] to filter time points bit values 0 and 1,
respectively.

Basically, the first three variables are related to specifiers that filter the information
needed to increment the tape position encoded with the bit attribute. The last two variables
le are related to specifiers that filter the information needed to copy the tape position.

We now define specifiers S{ ,9;,for1 <i <mand1 < j < 5. Intuitively, the next four
specifiers are used to increment the tape position, using the information given by the
le variables. The last two specifiers copy the tape position, again using the information

given by the Xl.j variables:

— the negation of a concept expression associated with S; = | after : Xil time, bit : 1]
ensures that we have bit : 0 in all time points after the time point marked with flip : 1
in the previous position;

— we use Sl.l = |time : Xil .time, bit : 1] to flip to 1 the bit marked with flip : 1 in the
previous position;

— inaddition, we define S? = [time : X?.time,bit : 0] and §? = [time : X;.time,bit : 1]
to transfer to the next tape position bit values which should not be flipped (i.e., those
that are before the time point with flip : 1);

— finally, we define S} = [time : X} .time,bit : 0] and S} = [time : X? time,bit : 1], to
receive a copy of the bit values.

To simplify the presentation, we define the abbreviations P;, P}, P for the following
concepts, respectively, to be used in concept inclusions with Q:

- [hejss T@Xij , we filter the bits encoding a tape position and the information of
which bits should be flipped in order to increment it;
-The<s T@S{ n-T@S§;, we increment the tape position,

- [agj<s T@S{, we copy the tape position.

We may also write P, P*, P~ if i = 1.

Encoding the initial configuration We add assertions to O 4, that encode the initial
configuration of M. We mark the root of the configuration tree with the initial state by
adding S,,(a) and initialise the tape cells with the input word by adding /(a) and the
concept inclusions:

Q (I € Ftape.(H N C, MT@|during : [0,2" — 1],bit: 0]))
Q (I 1 3tape.P; C tape.(Cy,,, MP)) for 1 <i<n
Q (1 M 3tape.P, C 3tape.(C, M Py))
The intuition is as follows. In the first inclusion, we place the head, represented by the

concept H, in the first position of the tape and fill the tape cell with the first symbol of
the input word, represented by the concept C,,. We then add the remaining symbols
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of the input word in their corresponding tape positions. In the last inclusion we add a
blank symbol after the input word. We now add the following concept inclusion fill the
remaining tape cells with blank in the initial configuration marked with the concept I:

Q (I 1 3tape.(C. M P) C Ftape.(CL M PY))

Synchronising configurations For each transition 8 € ®, we make sure that tape contents
are transferred to successor configurations, except for the tape cell at the head position:

Q (tape.(P M1 —=H M Cy) C Vrg.tape. (P~ N Cy))

We now encode our transitions 6 = (g, 0, q’, 7, D) € ® with concept inclusions of the
form (we explain for D = r, the case D = [ is analogous):

Q(Sq M Jtape.(H N P 1 Cy) N 3tape.(P* N C,) C
Jre.(Sy M Ftape.(H M P 1 C,) M 3tape.(P~ N CT)))

Essentially, if the head is at position P then, to move it to the right, we increment the
head position using P* in the successor configuration. We use the specifiers in © to
modify the tape cell with C, in the head position to C; in the successor configuration.

Acceptance Condition Finally, we add concept inclusions that propagate acceptance from
the leaf nodes of the configuration tree backwards to the root of the tree. For existential
configurations, we add S, M 3ry.A C A for each g € O3, whereas to handle universal
configurations, we add, for each g € Qv, the concept inclusion

S, M 3tape.(C, MH) M |_| Jrg. AC A
6cO
0=(q,0,q’,7,D)
where the conjunction may be empty if there are no suitable 6 € ©.
With an inductive argument along the recursive definition of acceptance, we show
that O = A(a) iff M accepts w.

Given a natural number i < 22", we write ip[j] for the value of the j-th bit of the
binary representation of i using 2" bits, where i,[0] is the value the most significant bit.
In the following, we write B; as a shorthand for the concept:

T @|bit : ip[y], time : y].
O<y<2n

Following the terminology provided in [25], given an interpretation Z of ALCH. 5, we say
that an element § € A% represents a configuration 7y . .. 7,_1q7; . . . T, if (6, F) € ST, for
some F € &%, § € (3tape.(B; 1 H))* and 6 € (3tape.(B; N C;,))*, forall 0 < j < 2%".
We are now ready to show Claims 1 and 2.

Claim 1 If ¢ € A% represents a configuration @ and some transition 8 € @ is applicable
to a then ¢ has an ry-successor that represents the result of applying 6 to .
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Proof of Claim 1. Let ¢ € A% be an element representing a configuration o and assume
0 € O is applicable to @. To synchronise configurations, we added to O ,, concept
inclusions that (1) ensure that tape contents other than the content at the head position
are copied to all ry-successors of §; and (2) create an ry-successor that represents the
correct state, position of the head and corresponding symbols at the previous and current
position of the head. Then our concept inclusions ensure that ¢ has an rg-successor that
represents the result of applying 6 to a.

Claim 2 w is accepted by M iff Opqyy | A(a).

Proof of Claim 2. Consider an arbitrary interpretation Z of ACCH}; that satisfies O a0
First we show that if any element ¢ € Af represents an accepting configuration then
(6,F) € AZ, for some F € ®. We make a case distinction.

— If @ is a universal configuration, then all successor configurations of @ must
be accepting. By Claim 1, for any 6-successor configuration @’ of « there is a
corresponding rg-successor ¢’ of §. By induction hypothesis for a’, (§’, F’) is in
AL, for some F’ € ®Z. Since this holds for all §-successor configurations of a,
our concept inclusion encoding acceptance of universal configurations implies that
(6,F) € AZ, for some F € ®Z, as required. This argument covers the base case
where a has no successors.

— If o is an existential configuration, then there is some accepting 6-successor
configuration ¢’ of @. By Claim 1, there is an rg-successor §” of § that represents a’
and, by induction hypothesis, (6’, F’) € AL, for some F’ € ®L. Then, our concept
inclusion encoding acceptance of existential configurations applies and so, we
conclude that (6, F) € AZ, for some F € ®F.

Since elements in I” represent the initial configuration of M, this shows that IZ c A
when the initial configuration is accepting. As I(a) is an assertion in O 4,,,, we have
that (aZ,G) € AZ, for some G € ®Z.

We now show that if the initial configuration is not accepting, then there is some
interpretation Z of AL:CH% such that I7 ¢ A7, in particular, (aZ,G) ¢ AZ, for all
G € ®T. To show this we construct a canonical interpretation J of Oy, as follows.
Let Conpq = {wgw’ | [ww’| <2%",q € Q,{w,w’} C Z*} be the set of all possible M
configurations with size bounded by 22". Also, we define a set Tp; = {a - ¢l | @ €
Conpy,0 < i < 22,0 € 3}, containing individuals that represent tape cells, related to
each possible configuration of a computation of M. The domain A7 is a disjoint union

J J J .
of Ay UA; U Ay, where:

- A;7 = Conpq UTpy UT, where T C N, is either time or before;
- A ={07,...,2" - 1)7 };and AY, = AT x A

The extension of the concepts C-, H and B; in the interpretation is defined as
expected so that every element « - ¢.. € Tp,, is in C, and B; and no other C; or B s
witht # o0 ori # j. Also, « - ¢, is in H iff « is of the form wgw’ and |w| =i — 1. We
connect a to @ - ¢’ using the role tape iff @ has o at position i. Moreover, « is in S, iff @
is of the form wgw’. We then have that every configuration @ € Con 4 represents itself
and no other configuration. I is the singleton set containing the initial configuration
a’ . Given two configurations @ and @’ and a transition 6 € ®, we connect « to @’ using
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the role ry iff there is a transition 6 from « to @’. Finally, A7 is defined to be the set of
tuples (a, F), for some F € ®7, where « is an accepting configuration.

Now, if the initial configuration a is not accepting then, by construction, (a,G) ¢ A7,
for all G € ®7 . By checking the concept inclusions in O vq.,,, We can see that 7 satisfies
Opaw- Then, J is a counterexample for O,y = A(a), and so O, = Aa). O

Theorem 7. In ALCHE, any combination of temporal attributes containing {time, after}
is undecidable. Moreover, the combination {time, before} is 3ExpTimE-complete, and the
combination {time,during, since, until} and every subset of it are 2ExpTIME-complete.

Proof. The proof of Theorem 1 uses only the temporal attributes time and after. Thus,
any combination containing these attributes is 2}—hard. By Theorems 5 and 6 the combi-
nation {time, before} is 3ExpTiME-complete. It remains to show that the combination
{time, during, since, until} is in 2ExpTiME (since 2ExpTime-hardness is already known
for ALCHe [23]).

Our proof strategy consists in showing that, given an ALCH, interpretation and an
AECHE ontology that contains only the temporal attributes in {time, during, since, until},
one can always transform this interpretation so that only time points explicitly mentioned
in the ontology are relevant to determine if the interpretation is a model of the ontology.
Then one can check satisfiability by grounding the ontology using only those time points
explicitly mentioned. We start by providing some notation.

Given an AEC?—% ontology O, we define a set No as in Theorem 3, except that we
do not need k; + 1 here. To this end, let ky < ... < k, be the ascending sequence of all
numbers mentioned in time points or in time intervals (as endpoints) in O. We define No
as {k; | 0 <i < n}, and let kpin := min(Np) and knax = max(Np), where we assume
kmin = kmax = 0if Np = 0.

Let Z = (A%,) be an ALCHj, interpretation. By Definition 8, Z is a global
interpretation of a sequence (Z;), AZ of ALCH @ interpretations with domain A% . We

now define a sequence (J;); A7 of ALCHe interpretations as follows. Let A;7 = A%
and let Ag = (k7 ... k). Forall A € Ng, all F € ®F with F \ F; # 0 and

min’

ke [kmin, kmax]:
(6, Fy) € A% iff (6, Fy) € AT+

and either:

(1) k € No; or
(2) there is k; < k such that k; € N and (8, Fy) € A% forall k; < j < kmay; Or
(3) there is k; > k such that k; € N and (6, F;) € AL for all kmin < Jj < ki.

We analogously apply the definition above for all role names r € Ng. We define Zp as
a global interpretation of the sequence (;);c,7 and set (6, F) € ATo iff (6,F) € AT
for all A € N¢ with F = Fj, and similarly for all role names » € Ng. Let Og be
the result of grounding O in the same way as in the proof of Theorem 4 using time
points in Ny (here O may have expressions of the form X.a, a: x, or a: [t,t'], with
a € {time,during, since, until}, and ¢, € Nt U Var(Nr)).

Claim. Forall A@S,r@S occurring in Oy: A@ST0 = A@ST and r@S7e = r@S7Z.
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Proof of the Claim. This claim follows by definition of (7;); A7 and the fact that only the
temporal attributes {time, during, since, until} are allowed. Correctness for the temporal
attributes time and during follows from item (1), whereas correctness for the temporal
attributes since and until follows from items (2) and (3), respectively.

By definition of Og, we know that O |= Og. So if O is satisfiable then Oy is satisfiable.
Conversely, by the Claim, one can show with an inductive argument that CZ¢ = CZ for
all AﬁC”H,g concepts C occurring in Oy. So, if an AL’CH}T@ interpretation Z satisfies
Oy then Z satisfies O. Since Oy is at most exponentially larger than O, it follows that
satisfiability in this fragment is in 2ExpTIME. O



