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Abstract. We introduce the notion of group-weighted tree automata
over commutative groups and characterise sequentialisability of such au-
tomata. In particular, we introduce a fitting notion for tree distance and
prove the equivalence between sequentialisability, the so-called Lipschitz
property, and the so-called twinning property.
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1 Introduction

In theoretical computer science, automata theory arose as a very potent field
of research. Besides having manifold applications in areas like natural language
processing, model checking, and computational biology, automata are studied
in a vast number of syntactical variations. The most prominent case of finite
string automata has been extended to handle more complex input structures
like pictures, trees, and forests (cf. [17,18]). Another direction of generalisation
is to allow quantitative calculations rather than simple binary acceptance. Well-
studied examples of such automata are weighted string automata and weighted
tree automata over some weight structure S (cf. [8] for exhaustive references).
Prominent weight structures include commutative semirings [1] and strong bi-
monoids [9]. In the present paper we consider so-called group-weighted tree au-
tomata (short: group-WTA), which are particular semiring-weighted tree au-
tomata. We have adapted the notion of group-weighted tree automata from [7],
where group-weighted string automata are studied.

One of the major research fields in automata theory is the determinisation of
automata. While this problem has a well-known solution for unweighted string
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automata, very little results are known in the weighted setting. In fact, not
every weighted automaton can be determinised [3, Example 5.9] and hence, the
problem has shifted towards the question of a characterisation of determinisable
weighted automata. Two recent approaches to this question involve maximal
factorisations [5] and automata with set semantics [2,7]. Note however, that [2,7]
deal with sequentiality rather than determinism, which makes a subtle difference
(Remark 10).

The main goal of the present paper is to characterise sequential weighted tree
languages (i.e. weighted tree languages accepted by sequential group-WTA) by
the so-called Lipschitz property and the so-called twinning property, namely

Theorem 1. For every group-WTA A it holds that

[[A ]] is sequential ⇐⇒ [[A ]] satisfies the Lipschitz property

⇐⇒ A satisfies the twinning property .

Hereby, our paper generalises [2,6] from the string case to the tree case.
Note however, that [2,6] are proven for free monoids rather than (infinitary
commutative) groups as in our case. The idea for the proof of Theorem 1 is based
on [2] and our proof applies the terminology and proof techniques given in [7].
Note that [2] provides merely an implication of the form “twinning property =⇒
sequential”, whereas [7] provides a full characterisation of sequentiality. In fact,
[7] proves a more general theorem for unions of k sequential automata and the
present paper only covers the case k = 1. Moreover, [7] is based on [6], which
first introduced an equivalence similar to Theorem 1.

The present paper executes the proof of Theorem 1 in the following way. In
Section 2, we introduce some elementary technical machinery and our automaton
model.

In Section 3, we first introduce the Lipschitz property of weighted tree lan-
guages, which essentially says that close trees have close values in G (with re-
spect to a metric on the set of trees and the Cayley distance on G). Second,
we introduce the twinning property of group-WTA, which states that if the au-
tomaton can loop4 on a context tree in two different states, then the weights of
these loops are equal. Next, we prove two implications of Theorem 1, namely
“sequential =⇒ Lipschitz” and “Lipschitz =⇒ twinning”.

In Section 4, we prove the implication “twinning =⇒ sequential” by applying
a construction similar to the well-known weighted power set construction.

In Section 5, we give a brief presentation of our endeavours to lift the cases
k > 1 from [7]. Most importantly we show where the approach from [7] fails in
the tree case.

We conclude this introductory section by comparing our results to the ex-
isting sequentialisation/determinisation results from the literature. The major
references for our proofs are [2,6,7]. As stated above, our results generalise [2,6]
to the case of group-weighted tree automata. Furthermore, we lift [7, case k = 1]

4 A loop is a run on a context tree such that the state at the context variable is the
same as the state at the root of the context.
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from the string case to the tree case. Another major result in the theory of de-
terminisation is given in [5, Theorem 5.2], which subsumes the determinisation
results from [3,4,13,14,15]. Besides the fact that our paper is concerned with
sequentiality rather than determinism, our class of weight structures is not sub-
sumed by [5]. In particular, [5] provides a determinisation result only if either A
is nonrecursive, the semiring S is locally finite, or S is extremal, none of which
apply to our semirings of the form Pfin(G). Similarly, the determinisation result
given in [16, Section 6] deals only with locally finite strong bimonoids and hence
again does not subsume our results.

2 Preliminaries

We denote the set of nonnegative integers by N and the set of positive integers
by N+. For every k ∈ N, we denote the set {i ∈ N | 1 ≤ i ≤ k} by [k]. Note that
[0] = ∅. For a set A we denote the size of A by #A and for every k ∈ N+ we
denote by Ak the k-fold cartesian power of A.

An alphabet is a finite and non-empty set A and A∗ =
⋃
k∈NA

k is the set
of all (finite) words over A, where A0 = {ε} contains solely the empty word ε.
We denote by |w| the length of the word w ∈ A∗. Given words v, w ∈ A∗, their
concatenation is written v.w or simply vw. We write v � w provided that there
exists u ∈ A∗ such that vu = w. The relation � is in fact a partial order, called
the prefix order.

A ranked alphabet is a pair (Σ, rk) consisting of an alphabet Σ and a map-
ping rk: Σ → N that assigns a rank to each symbol of Σ. We refer to the ranked
alphabet (Σ, rk) by the set Σ whenever the map rk is clear from the context.
Furthermore, for every k ∈ N, we let Σ(k) = {σ ∈ Σ | rk(σ) = k} and we write
σ(k) to indicate that rk(σ) = k. Moreover we define maxrk(Σ) := max(rk(Σ)).

Throughout the rest of this paper, we assumeΣ to be an arbitrary ranked
alphabet.

Given a set Z, the set of Σ-trees indexed by Z, denoted by TΣ(Z), is the
smallest set T such that Z ⊆ T and σ(ξ1, . . . , ξs) ∈ T for every s ∈ N, σ ∈ Σ(s),
and ξ1, . . . , ξs ∈ T. We abbreviate TΣ = TΣ(∅) and call every subset L ⊆ TΣ a
tree language.

Next, we recall some common notions and notations for trees. In the fol-
lowing, let ξ ∈ TΣ(Z). The set pos(ξ) of positions of ξ is defined inductively
by pos(z) = {ε} for all z ∈ Z, and pos(σ(ξ1, . . . , ξs)) = {ε} ∪ {i.w | i ∈
[s], w ∈ pos(ξi)} for every s ∈ N, σ ∈ Σ(s), and ξ1, . . . , ξs ∈ TΣ(Z). The height
of ξ is defined by height(ξ) = maxw∈pos(ξ) |w|, and the size of ξ is defined by
size(ξ) = #pos(ξ). A leaf is a position w ∈ pos(ξ) such that w.1 /∈ pos(ξ). We
denote the set of leaves of ξ by leaf(ξ). Given a position w ∈ pos(ξ), the label
of ξ at w is denoted by ξ(w). The subtree of ξ at w, denoted ξ|w, is defined for
every z ∈ Z by z|ε = z and for every s ∈ N, σ ∈ Σ(s), and ξ1, . . . , ξs ∈ TΣ(Z)
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by

σ(ξ1, . . . , ξs)|w =

{
σ(ξ1, . . . , ξs) if w = ε

ξi|w′ if w = i.w′ with i ∈ N and w′ ∈ pos(ξi).

Let Y be a set. The set of positions of ξ labeled by elements in Y , denoted by
posY (ξ), is the set {w ∈ pos(ξ) | ξ(w) ∈ Y }. Moreover, the replacement of the
leaf w ∈ leaf(ξ) by the tree η ∈ TΣ(Z), denoted ξ[η]w, is given for every z ∈ Z
by z[η]ε = η and for every s ∈ N, i ∈ [s], σ ∈ Σ(s), ξ1, . . . , ξs ∈ TΣ(Z),
and w′ ∈ pos(ξi) by σ(ξ1, . . . , ξs)[η]i.w′ = σ(ξ1, . . . , ξi−1, ξi[η]w′ , ξi+1, . . . , ξs).

We fix the set X = {x1, x2, . . . } of variables (which we impose to be disjoint
from any other set we consider), and Xn = {x1, . . . , xn} for every n ∈ N+. A
tree ξ ∈ TΣ(X1) is a context, if #posx1

(ξ) = 1. The set of all contexts is denoted
by CΣ .

Given a context ζ ∈ CΣ and a tree ξ ∈ TΣ(Z), the substitution of ξ into ζ,
denoted by ζ[ξ], is the tree ζ[ξ]w, where w is the unique position in posX(ζ).
Note that, given ζ, ζ ′ ∈ CΣ , also ζ[ζ ′] ∈ CΣ . We write ζk for ζ[ζ[· · · ζ[ζ] · · · ]]
containing the context ζ a total of k times.

Let ξ1, ξ2 ∈ TΣ be two trees. A pair-cut between ξ1 and ξ2 is a triple
(ζ1, ζ2, η) ∈ CΣ × CΣ × TΣ such that ζi[η] = ξi for i ∈ [2]. In this case, we
call η an overlap of ξ1 and ξ2. The set of pair-cuts between ξ1 and ξ2 is denoted
PairCut(ξ1, ξ2). We moreover define the distance between ξ1 and ξ2 as

dist(ξ1, ξ2) := size(ξ1) + size(ξ2)− 2 ·maxoverlap(ξ1, ξ2),

where maxoverlap(ξ1, ξ2) is the maximal size of an overlap of ξ1 and ξ2.
A group (G,⊗, 1) is a set G with an associative operation ⊗ : G2 → G, a

neutral element 1 ∈ G such that for all α ∈ G there exists β ∈ G satisfying
α ⊗ β = β ⊗ α = 1. We refer to β as the inverse element of α and denote it by
α−1. We simply write αβ for α⊗β. A group is commutative if ⊗ is commutative.
We call a group infinitary if for every α, β, γ ∈ G with αβγ 6= β, the set {αnβγn |
n ∈ N} is infinite (cf. [7,10]). We define the delay of α ∈ G and β ∈ G, denoted
delay(α, β), by α−1β.

Throughout the rest of this paper, we assume G to be a finitely generated,
infinitary, commutative5 group, 1 its neutral element and Γ to be a finite
generating set of G.

The undirected Cayley graph for G and Γ is the graph (V,E), where V = G is the
set of vertices and for every α ∈ G and β ∈ Γ , we have that (α, αβ), (αβ, α) ∈ E.
The Cayley distance d(α, β) between α ∈ G and β ∈ G is defined as the length of
the shortest path between α and β in the undirected Cayley Graph. For α ∈ G
we define the Γ -length of α as the Cayley distance between 1 and α and denote
it by |α|Γ .

5 In fact, we do not require commutativity for the proof our results. However, in
order to limit the notational complexity of the present paper, we require G to be
commutative.
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2.1 Weighted tree automata

Definition 2. A (group-)weighted tree automaton over Σ and G (short: group-
WTA or simply WTA) is a tuple (Q,Σ,G,final, T ), where Q is a finite set of
states, final ⊆ Q × G is the finite final relation, and T is a family (Tσ ⊆ Qs ×
G×Q | s ≥ 0, σ ∈ Σ(s)) of finite sets of transitions.

We call q ∈ Q final if there exists α ∈ G such that (q, α) ∈ final, which we

depict as q
α→. For every σ ∈ Σ(s) and t = (q1, . . . , qs, α, q) ∈ Tσ, we denote

out(t) := q, in(t) := (q1, . . . , qs), and wt(t) := α. For notational convenience, we
use the notation out(q) := q and wt(q) := 1. To aid readability, we denote the

fact that (q1, . . . , qs, α, q) ∈ Tσ by σ(q1, . . . , qs)
α→ q.

Definition 3. Let A = (Q,Σ,G,final, T ) be a WTA and let ξ ∈ TΣ ∪CΣ be a
tree or a context. A run of A on ξ is a map ρ : pos(ξ)→ T ∪Q such that

– for every w ∈ posΣ(ξ) we have ρ(w) ∈ Tσ where σ = ξ(w) and in(ρ(w)) =
(out(ρ(w1)), . . . , out(ρ(ws))) where s = rk(σ), and

– for every w ∈ posX(ξ) we have ρ(w) ∈ Q.

We denote by out(ρ) the state out(ρ(ε)) and if ξ ∈ CΣ we denote by in(ρ)
the state ρ(w) where w is the unique position in posX(ξ). The weight of such a
run ρ is wt(ρ) :=

∏
w∈pos(ξ) wt(ρ(w)). Moreover, we say that ρ contains a state

q ∈ Q if there exists w ∈ pos(ξ) such that q = out(ρ(w)). A run ρ is called
accepting if out(ρ) is final.

Remark 4. We use the following notation for a run ρ of A on a tree or context

ξ. Let q := out(ρ) and α := wt(ρ). If ξ ∈ TΣ , then we write
ξ|ρ|α−→ q. If ξ ∈ CΣ ,

then we write p
ξ|ρ|α−→ q, where p := in(ρ). Whenever we do not care about the

name of the run, we simply write
ξ|α−→ q and p

ξ|α−→ q, respectively. Furthermore,

if
ξ|α−→ q for some tree ξ and some weight α, then we call the state q reachable.

Remark 5. Throughout this paper, we assume that all considered WTA are trim.
For a WTA A , this condition means that every state appears in some accepting
run. In particular, for every state p, there exists a context ξ ∈ CΣ , a final state

q, and a run p
ξ|α−→ q.

Note moreover that, without loss of generality, the size of ξ is bounded. If the
run on ξ contains a single state q′ multiple times on a single branch (excluding
the root of the tree), then we can replace the subtree at the topmost occurrence
of q′ with the subtree at the bottommost occurrence of q′. Therefore, we can
assume height(ξ) ≤ #Q+ 1 and hence size(ξ) ≤ maxrk(Σ)#Q+1.

Definition 6. Let A = (Q,Σ,G,final, T ) be a WTA. The weighted tree lan-
guage accepted by A is the relation [[A ]] ⊆ TΣ ×G containing the pairs (ξ, βγ)

such that
ξ|β−→ q

γ→ for some q ∈ Q.
Two WTA A and B are called equivalent if they accept the same weighted

tree language, that is, [[A ]] = [[B]].
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Moreover, we define the constant

MA := max{|α|Γ | (q1, . . . , qk, α, q) ∈
⋃
σ∈Σ

Tσ or (q, α) ∈ final}.

That is, MA is the maximal Γ -length of weights occurring in T or final.

We will now briefly compare group-WTA to semiring-WTA6.

Remark 7. Consider the tuple S = (Pfin(G),∪, ·, ∅, {1}), where Pfin(G) is the set
of finite subsets of G, 1 ∈ G is the neutral group element, and · is the group
operation lifted to finite sets. It is immediate that S is a semiring.

Let A = (Q,Σ,G,final, T ) be a group-WTA. In order to syntactically match
the definition of group-WTA over G with the definition of semiring-WTA over S,
we replace Tσ by the map T sr

σ : Qs×Q→ Pfin(G) such that (q1, . . . , qs, q) 7→ {α |
(q1, . . . , qs, α, q) ∈ Tσ}. Furthermore we replace the final relation by finalsr : Q→
Pfin(G) such that q 7→ {β | (q, β) ∈ final}. Denote the semiring-WTA A sr =
(Q,T sr,finalsr) and note that [[A sr]](ξ) = {α | (ξ, α) ∈ [[A ]]}. Therefore, up to
this identification of maps and relations, group-WTA are particular semiring-
WTA. However, the important difference is that each run of A calculates a
single group element, whereas each run of A sr calculates multiple aggregated
group elements at once.

Definition 8. Let Ai = (Qi, Σ,G,finali, Ti) be WTA for i ∈ [2].

The union of A1 and A2, denoted A1∪A2, is the WTA (Q1∪Q2, Σ,G,final1∪
final2, T1 ∪ T2), where we (without loss of generality) assume that Q1 ∩Q2 = ∅.
This definition naturally extends to finitely many WTA.

The direct product of A1 and A2, denoted A1 × A2, is the WTA (Q1 ×
Q2, Σ,G,final, T ), where final := {((q, p), αβ) | (q, α) ∈ final1 ∧ (p, β) ∈ final2}
and

Tσ := {((q1, p1), . . . , (qs, ps), αβ, (q, p))

| (q1, . . . , qs, α, q) ∈ (T1)σ ∧ (p1, . . . , ps, β, p) ∈ (T2)σ}.

Again, without loss of generality, we assume that Q1 ∩ Q2 = ∅. This definition
naturally extends to finitely many WTA.

Definition 9. Let A = (Q,Σ,G,final, T ) be a WTA. We call A sequential if
for all s ≥ 0, σ ∈ Σ(s), and q1, . . . , qs ∈ Q there exist at most one α ∈ G and
q ∈ Q such that (q1, . . . , qs, α, q) ∈ Tσ.

A relation R ⊆ TΣ ×G is called sequential if there exists a sequential WTA
A such that [[A ]] = R.

6 As a reference, we use the definition of semiring-weighted tree automata from [5].
For a more thorough introduction to semirings confer [12] and for semiring-WTA we
refer to [11].
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Remark 10. Note that Definition 9 is highly similar to the definition of determin-
istic semiring-WTA [5, preceeding Example 3.1]. However, sequentiality forces
the weight of transitions to be at most one single group element, whereas deter-
minism merely forces the weight of transitions to be at most one set of group
elements. This difference results in sequentiality being a properly more restrictive
condition on the automaton than determinism.

Example 11. Let Σ = {σ(2), α(0)} and G = (Z,+, 0). Note that G is a commuta-
tive, finitely generated, infinitary group with finite generating set Γ = {1}. De-
fine the WTA A := (Q,Σ,G,final, T ) where Q := {qα, q0, q1}, final := {(q0, 0)}
and T is defined by

Tα ∪ Tσ = {α 0→ qα, σ(qα, qα)
1→ q1, σ(qα, qα)

3→ q0,

σ(qα, q1)
1→ q0, σ(qα, q0)

1→ q1}.

Consider the context η = σ(α, x1) ∈ CΣ . One easily sees that all trees ξ ∈ TΣ
occurring in [[A ]] are of the form ξ = η`[α] for some ` ≥ 1. In this case, if
#pos{σ}(ξ) = 2n for some n ∈ N we have (ξ, 2n) ∈ [[A ]] and if #pos{σ}(ξ) =
2n+ 1 we have (ξ, 2n+ 3) ∈ [[A ]]. Clearly, A is not sequential.

3 Lipschitz and Twinning Property

In this section we formally introduce the two characterisations of sequentiality
from Theorem 1, and prove the implications “sequential =⇒ Lipschitz” in
Theorem 13 and “Lipschitz =⇒ twinning” in Theorem 16.

3.1 The Lipschitz Property

Definition 12. A relation R ⊆ TΣ ×G satisfies the Lipschitz property if there
exists L ∈ N such that for all pairs (ξ0, α0), (ξ1, α1) ∈ R it holds that d(α0, α1) ≤
L · (dist(ξ0, ξ1) + 1).

Theorem 13. Let R ⊆ TΣ × G be a sequential relation. Then R satisfies the
Lipschitz property.

The proof of Theorem 13 primarily uses the fact that a sequential WTA has
a unique non-vanishing run weight on every overlap of two input trees ξ1 and ξ2.

3.2 The Twinning Property

Throughout the rest of this paper, we assume A = (Q,Σ,G,final, T ) to
be a WTA.

Definition 14. We say that A satisfies the twinning property if for all runs ρ0

and ρ1 of A , states q0, q1 ∈ Q, trees ξ ∈ TΣ , and contexts ζ ∈ CΣ , such that ρj
(j = 0, 1) equals

ξ|αj−→ qj
ζ|βj−→ qj ,

it holds that β0 = β1.
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Example 15. We continue Example 11 by showing that A satisfies the twinning
property. Let ρ0 and ρ1 be runs of A quantified as in Definition 14. Recall that
ζ[ξ] has the form η`[α]. Moreover, non-empty runs cannot loop in the state qα
by definition of the transition relation. Therefore, we have that ξ 6= α, whence
ξ = ηj [α] for some 1 ≤ j < `. However, in this case the single non-deterministic
choice already occurs in ξ and hence β0 = β1 = #pos{σ}(ζ). In particular, this
proves the twinning property.

Next we provide a WTA B over ∆ = {σ(2), α(0), β(0)} and G = (Z,+, 0)

which does not satisfy the twinning property. Define B = (Q̃,∆,G, fĩnal, T̃ ),

where Q̃ = {qα, qβ}, fĩnal = {(qα, 0), (qβ , 0)}, and

T̃α ∪ T̃β ∪ T̃σ = {α 1→ qα, β
0→ qα, σ(qα, qα)

0→ qα, (counting α)

α
0→ qβ , β

1→ qβ , σ(qβ , qβ)
0→ qβ}. (counting β)

One easily verifies the fact that for every ξ ∈ TΣ there are exactly two runs of
B on ξ and we obtain (ξ,#pos{α}(ξ)), (ξ,#pos{β}(ξ)) ∈ [[B]]. Clearly, B is not
sequential. Consider the tree ξ = σ(α, β), the context ζ = σ(α, x1), and the two
runs of B on ζ[ξ]

ξ|α0−→ qα
ζ|β0−→ qα and

ξ|α1−→ qβ
ζ|β1−→ qβ .

By the definition of T̃ we calculate the values β0 = 0 + 1 + 0 and β1 = 0 + 0 + 0.
This proves β0 6= β1, whence we obtain that B does not satisfy the twinning
property.

Theorem 16. If [[A ]] satisfies the Lipschitz property, then A satisfies the twin-
ning property.

The proof of Theorem 16 is done by contradiction. We take a witness of the
non-satisfaction of the twinning property and pump the occurring loops. This
makes the run weights diverge in G (using the fact that G is infinitary), which
contradicts the Lipschitz property.

Remark 17. Note that Theorem 16 implies that, whenever A does not satisfy the
twinning property, no equivalent automaton can satisfy the twinning property .

4 Sequentiality of the Twinning Property

This section executes the proof of the implication “twinning =⇒ sequential” of
Theorem 1. Given a WTA A , we apply a construction similar to the well-known
power set construction to A . This yields a (not necessarily finite) sequential
WTA DA . However, we prove that DA is indeed finite if A satisfies the twinning
property (see Corollary 25). The proof of Corollary 25 can be outlined as follows.
First we show that all runs of A on a fixed input tree generate close weights
with respect to the Cayley-distance (see Lemma 23). Next, the definition of DA
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implies that every (reachable) state of DA contains only weights that are close
to the neutral element 1 ∈ G (see Lemma 24), which implies that the set of
reachable states of DA is finite. We derive the fact that DA is equivalent to
A from the definition of DA (see Theorem 26). We conclude this chapter by
applying our construction to the automata from Examples 11 and 15.

Theorem 18. If A satisfies the twinning property, then [[A ]] is sequential.

Throughout this section, we assume A to satisfy the twinning property.

Definition 19. We define the infinite WTA7 DA = (Q′, Σ,G,final′, T ′) as fol-
lows. The states of DA are Q′ := P(Q×G), the final relation is

final′ := {(S, αβ) | S ∈ Q′,∃q ∈ Q : (q, α) ∈ S and (q, β) ∈ final},

and the transitions are constructed as follows. For every σ ∈ Σ(s) and S1, . . . , Ss ∈
Q′, consider the set

S := {(q, α1 · · ·αsβ) | ∃p1, . . . , ps ∈ Q :

(∀i ∈ [s] : (pi, αi) ∈ Si) and (p1, . . . , ps, β, q) ∈ Tσ}

and fix an arbitrary element8 (p, α) ∈ S. We define the set

S′ := {(q, α−1γ) | (q, γ) ∈ S}

and ultimately add (S1, . . . , Ss, α, S
′) to T ′σ.

Remark 20. Note that DA is indeed sequential. This follows directly from the
construction. Moreover, in Definition 19 we first calculate an intermediate suc-
cessor state S, which is then shifted by a fixed value α occurring in some pair
(p, α) ∈ S. We call this shifting process the factorisation of S.

We will show in Corollary 25 that every reachable state S of DA satisfies
#S ≤ K for a global constant K and hence after trimming DA , also the final
relation final′ is finite.

Lemma 21. Let ξ ∈ TΣ and consider the (unique) run of DA on ξ,
ξ|α−→ S′. It

holds that

S′ = {(q, β) | ∃ run
ξ|δ−→ q of A : αβ = δ}.

Definition 22. We define the constant NA := 2MA maxrk(Σ)(#Q2+1).

Lemma 23. For every tree ξ ∈ TΣ and every two runs
ξ|α−→ q and

ξ|β−→ p of A
on ξ it holds that

d(α, β) < NA .

7 That is, a tuple satisfying the conditions of a WTA, except for finiteness.
8 Formally, we have a globally fixed choice function f : P(Q× G)→ Q× G and then

simply define (p, α) := f(S).
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Note that the proof of Lemma 23 uses the fact that A satisfies the twinning
property.

Lemma 24. Let S be a reachable state of DA and let (q, α) ∈ S. It holds that
|α|Γ ≤ NA .

Proof. The reachability of S implies the existence of a tree ξ ∈ TΣ such that

there exists a run
ξ|δ−→ S. If α = 1, then we are done. Therefore, we assume that

α 6= 1 and hence there exists (p, β) ∈ S such that β = 1. Therefore by Lemma 21,

there are two runs of A on ξ,
ξ|δα−→ q and

ξ|δ−→ p. By Lemma 23 it holds that
d(δα, δ) < NA . The fact that d(δα, δ) = |α|Γ implies that |α|Γ < NA .

Corollary 25. The set of states of DA is finite and hence DA is a WTA.

Proof. Denote for every N ∈ N the (finite) set GN := {g ∈ G | |g|Γ ≤ N}.
By Lemma 24 every reachable state of DA is an element of the finite set

P(Q×GNA ), which proves the claim.

Theorem 26. DA is equivalent to A .

Proof. We first show that [[DA ]] ⊆ [[A ]]. Let (ξ, α) ∈ [[DA ]] and let
ξ|β−→ S be a

run of DA on ξ and (S, γ) ∈ final′ such that α = βγ. Note that by the definition
of final′ there exist q ∈ Q, (q, β′) ∈ S and (q, γ′) ∈ final such that γ = β′γ′.

By Lemma 21 there exists a run
ξ|δ−→ q of A such that ββ′ = δ. Hence,

α = βγ = ββ′γ′ = δγ′ and therefore (ξ, α) = (ξ, δγ′) ∈ [[A ]].
To prove the fact that [[A ]] ⊆ [[DA ]], we apply a similar argument. Let (ξ, α) ∈

[[A ]]. There is a unique run
ξ|β−→ S of DA on ξ. By definition of [[A ]], there exist

a run
ξ|δ−→ q of A on ξ and a pair (q, γ′) ∈ final such that δγ′ = α.

By Lemma 21 there exists an element (q, β′) ∈ S such that ββ′ = δ and hence
by the definition of final′ we obtain (S, β′γ′) ∈ final′. We obtain α = δγ′ = ββ′γ′

and hence (ξ, α) ∈ [[DA ]].

Proof of Theorem 18. We have seen that DA is a sequential (Remark 20) WTA
(Corollary 25) which is equivalent to A (Theorem 26). This proves the claim.

Example 27. Recall the WTA A and B from Examples 11 and 15. We apply
the construction from Definition 19 to both, A and B, and obtain that DA has
a finite trim state space, whereas DB has an infinite trim state space.

First we consider DA . Clearly, T ′α = {(0, S0)}, where S0 = {(qα, 0)}. By
pointwise application of Tσ to (S0, S0) we obtain {(q1, 1), (q0, 3)}. We chose
(q1, 1) for the factorisation, which yields the new state S1 = {(q1, 0), (q0, 2)}
and therefore we have constructed the transition (S0, S0, 1, S1) ∈ T ′σ. By contin-
uing this process we arrive at

T ′σ = {(S0, S0, 1, S1), (S0, S1, 1, S2), (S0, S2, 1, S1)},
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where S2 = {(q0, 0), (q1, 2)}. The trim state space of DA is Q′ = {S0, S1, S2}
and the final relation is final′ = {(S1, 2), (S2, 0)}.

Next we consider DB. Define R1 = {(qα, 1), (qβ , 0)} and note that T̃ ′α =

{(0, R1)}. Pointwise application of T̃σ to (R1, R1) yields R2 = {(qα, 2), (qβ , 0)},
which is already normalised. Another pointwise application of T̃σ to (R1, R2)
results in R3 = {(qα, 3), (qβ , 0)}, which is again normalised. One easily sees
that repeatedly generating transitions of DB like this yields an infinite set of
reachable states of DB and hence DB is not a WTA. In Section 5 we will discuss
the approach given in [7, case k > 1], which describes how to handle DB in order
to generate a finite union of sequential WTA which is equivalent to B.

5 Outlook

In the present paper, we have successfully lifted the result from [7, case k = 1]
to weighted tree automata. Recall that [7] characterises unions of k sequential
automata. The natural next step is to lift the remaining cases k > 1. This section
is designed to briefly demonstrate why a straightforward lift of [7, cases k > 1]
to weighted tree automata fails.

The outline of the proof given in [7] goes as follows. Let k ∈ N. The notions
of k-sequential WTA, the k-Lipschitz property, and the k-branching twinning
property are introduced and the directions “sequential =⇒ Lipschitz” and
“Lipschitz =⇒ twinning” are proven similarly to our Theorems 13 and 16. For
the direction “twinning =⇒ sequential”, the automaton DA is introduced and
its properties are studied. As we have seen in the second part of Example 27, DA

is in general infinite. However, if A satisfies the k-branching twinning property,
[7] describes the following construction on DA , yielding a k-sequential automa-
ton which is equivalent to A . First, the set of states of DA is restricted to a
finite set. In fact, the set of reachable states S of DA containing only “small”
weights |α|Γ < NA is denoted U and the set of states reachable from U in one
step is denoted U ′. Note that U and U ′ are finite. DA is restricted to U ∪ U ′
and each state S in U ′ \ U (i.e. the outer border of U) is replaced by a union
of k sequential WTA. These sequential WTA are constructed by induction on k
and depend on the state S. The resulting automaton D̄A can easily be divided
into k sequential automata, which concludes the proof.

The tree case differs in the following way. Consider a symbol σ ∈ Σ(2) and
consider two different states S, S′ ∈ U ′\U . Surely, in DA we can find a transition
of the form σ(S, S′)→ S′′. However, the states S and S′ are replaced by different
automata in D̄A . Therefore, a run ρ of DA on a tree ξ ending in S (resp. S′)
translates into a run of D̄A on ξ ending in some state qS /∈ Q′ (resp. qS′ /∈ Q′).
Moreover, qS and qS′ are taken from disjoint sets. We have not been able to find
the proper way to construct a transition of the form σ(qS , qS′)→ q.

Therefore, we leave the lift of [7, cases k > 1] as an open research question.
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A Appendix

Lemma 28. For every α, β, γ ∈ G it holds that |αβγ|Γ ≥ |β|Γ − |α|Γ − |γ|Γ

Proof. We know that |δ|Γ = |δ−1|Γ for every δ ∈ G by definition of the Cayley
graph of G. Hence by |β|Γ = |α−1αβγγ−1|Γ ≤ |α|Γ + |αβγ|Γ + |γ|Γ we obtain
the desired inequality.

The following lemma collects some straightforward formulas for delays.

Lemma 29 (Lemmas 1 and 2 from [7]). For all α0, α1, β0, β1, γ0, γ1 ∈ G it
holds that

1. delay(α0, β0) = 1 iff α0 = β0,
2. delay(α0, α1) = delay(β0, β1) implies delay(α0γ0, α1γ1) = delay(β0γ0, β1γ1),
3. d(α0, β0) = |delay(α0, β0)|Γ .

We now provide the missing proofs for our paper.

Proof of Theorem 13. By assumption there exists a sequential WTA A such
that [[A ]] = R.

Let (ξ0, α0), (ξ1, α1) ∈ [[A ]] and let (ζ0, ζ1, η) be a pair-cut between ξ0 and ξ1
with a maximal overlap η. We know that there exist runs ρi on ξi and elements
(qi, βi) ∈ final for i ∈ {0, 1}, such that

αi = wt(ρi) · βi =
∏

w∈pos(ξi)

wt(ρi(w)) · βi

=
∏

w∈pos(ζi)

wt(ρi(w)) ·
∏

w∈pos(η)

wt(ρi(viw)) · βi,

where vi ∈ pos(ζi) is the unique position of x1 in ζi. Because A is sequential,
we have that wt(ρ0(v0w)) = wt(ρ1(v1w)) for every w ∈ pos(η). Thus we deduce

d(α0, α1) = d
( ∏
w∈pos(ζ0)

wt(ρ0(w)) · β0,
∏

w∈pos(ζ1)

wt(ρ1(w)) · β1

)
≤MA (size(ζ0) + size(ζ1)) + 2MA ≤ 2MA (dist(ξ0, ξ1) + 1).

This proves the Lipschitz property.

Lemma 30. If A does not satisfy the twinning property, then for all L ∈ N,

there are two runs of A ,
ξ|α0−→ p0 and

ξ|α1−→ p1 (for some ξ ∈ TΣ and p0, p1 ∈ Q),
such that it holds that d(α0, α1) > L.

Proof. The idea of this proof is as follows. We quantify an instance of the twin-
ning property that is not satisfied and pump the loop contexts until the weights
arrive at a high Cayley-distance. This uses the fact that G is infinitary.



14 F. Dörband, T. Feller, and K. Stier

Let L ∈ N. As A does not satisfy the twinning property, there are runs ρ0

and ρ1 of A , states q0, q1 ∈ Q, a tree ξ ∈ TΣ , and contexts ζ ∈ CΣ , such that
ρj (j = 0, 1) equals

ξ|αj−→ qj
ζ|βj−→ qj

and it holds that β0 6= β1, which implies delay(α0, α1) 6= delay(α0β0, α1β1).

Note that G is infinitary and hence we obtain that {delay(α0β
N
0 , α1β

N
1 ) |

N ∈ N} is an infinite set. However, the generating set Γ of G is finite and hence,
there exists N ∈ N such that d(α0β

N
0 , α1β

N
1 ) > L.

Consider the tree ξ′ := ζN [ξ] and for every j ∈ {0, 1} the run ρ′j obtained
from ρj by pumping the loop parts according to the value N . It surely holds
that the weight of ρ′j satisfies wt(ρ′j) = αjβ

N
j . Therefore we have found two runs

of A on ξ′, namely ρ′0 and ρ′1, such that d(wt(ρ′0),wt(ρ′1)) > L, which proves
the claim.

Proof of Theorem 16. Assume that A does not satisfy the twinning property,
let L ∈ N, and let L′ := L(2N+1)+2NMA +2MA , where N := maxrk(Σ)#Q+1.
Recall from Remark 5 that N is an upper bound for the size of minimal contexts
that extend runs into accepting runs.

By Lemma 30 there exist two runs of A on some tree ξ ∈ TΣ ,
ξ|α0−→ p0 and

ξ|α1−→ p1, for some p0, p1 ∈ Q, such that it holds that d(α0, α1) > L′.

By Remark 5 there exist contexts ζ0, ζ1 ∈ CΣ such that size(ζj) ≤ N , pairs

(qj , γj) ∈ final, and runs
ξ|αj−→ pj

ζj |βj−→ qj (for j ∈ {0, 1}). Then, (ζj [ξ], αjβjγj) ∈
[[A ]] for every j ∈ {0, 1}. Moreover, we apply Lemma 28 to obtain

d(α0β0γ0, α1β1γ1) > L′ − 2NMA − 2MA = L(2N + 1) ≥ L(dist(ξ0, ξ1) + 1).

As L was arbitrary, this proves that [[A ]] does not satisfy the Lipschitz property.

Proof of Lemma 21. We prove the claim by induction on the structure of ξ. Let
σ ∈ Σ(s), ξ1, . . . , ξs ∈ TΣ , such that ξ = σ(ξ1, . . . , ξs) and assume the claim is

true for ξ1, . . . , ξs. For every i ∈ [s], let Si be the unique state such that
ξi|αi−→ Si

and let (S1, . . . , Ss, α̂, S
′) ∈ T ′σ. We therefore know that α = α1 · · ·αsα̂ and

Si = {(q, β) | ∃ run
ξi|δ−→ q of A : αiβ = δ}.
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Hence by definition of T ′ it holds that

S′ = {(q, α̂−1β1 · · ·βsγ) | ∃p1, . . . , ps ∈ Q :

(∀i ∈ [s] : (pi, βi) ∈ Si) and (p1, . . . , ps, γ, q) ∈ Tσ}
= {(q, α̂−1β1 · · ·βsγ) | ∃p1, . . . , ps ∈ Q :

(∀i ∈ [s] : ∃ run
ξi|δi−→ pi of A : αiβi = δi) and (p1, . . . , ps, γ, q) ∈ Tσ}

= {(q, α̂−1β1 · · ·βsγ) | ∃ run
ξ|δ−→ q of A : α1β1 · · ·αsβsγ = δ}

= {(q, β) | ∃ run
ξ|δ−→ q of A : α1 · · ·αsα̂β = δ}

= {(q, β) | ∃ run
ξ|δ−→ q of A : αβ = δ},

which proves the claim.

Proof of Lemma 23. We prove the claim by induction on the size of ξ.
If size(ξ) ≤ maxrk(Σ)(#Q2+1), the claim holds by definition of NA .

Now assume size(ξ) > maxrk(Σ)(#Q2+1) and let ρ0 :=
ξ|α−→ q and ρ1 :=

ξ|β−→ p
be two runs of A on ξ.

Consider the automaton A ×A and the run9 ρ0 × ρ1 of A ×A on ξ. Note
that the number of states of A ×A is #Q2 and hence by Remark 5, ξ is large
enough such that ρ0 × ρ1 contains a loop.

In particular, there exist ζ, ζ ′ ∈ CΣ and ξ0 ∈ TΣ and states q′, p′ ∈ Q such
that ξ = ζ ′[ζ[ξ0]], size(ζ) > 1, and we can decompose ρ0 and ρ1 such that

ρ0 =
ξ0|α0−→ q′

ζ|α1−→ q′
ζ′|α2−→ q, and ρ1 =

ξ0|β0−→ p′
ζ|β1−→ p′

ζ′|β2−→ p.

By the twinning property we obtain

d(α, β) = |delay(α0α1α2, β0β1β2)|Γ = |α−1
2 delay(α0α1, β0β1)β2|Γ

= |α−1
2 delay(α0, β0)β2|Γ = d(α0α2, β0β2),

hence we can apply the induction hypothesis to the tree ζ ′[ξ0], which proves the
claim.

9 Defined in the obvious way as the position-wise direct product of ρ0 and ρ1.
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