

Sebastian Rudolph

International Center for Computational Logic TU Dresden

Existential Rules – Lecture 4

Adapted from slides by Andreas Pieris and Michaël Thomazo Winter Term 2025/2026

Syntax of Existential Rules

An existential rule is an expression

$$\forall \mathbf{X} \forall \mathbf{Y} \ (\varphi(\mathbf{X}, \mathbf{Y}) \to \exists \mathbf{Z} \ \psi(\mathbf{X}, \mathbf{Z}))$$
body head

- X,Y and Z are tuples of variables of V
- $\varphi(X,Y)$ and $\psi(X,Z)$ are (constant-free) conjunctions of atoms

...a.k.a. tuple-generating dependencies, and Datalog[±] rules

Syntax of Conjunctive Queries

A conjunctive query (CQ) is an expression

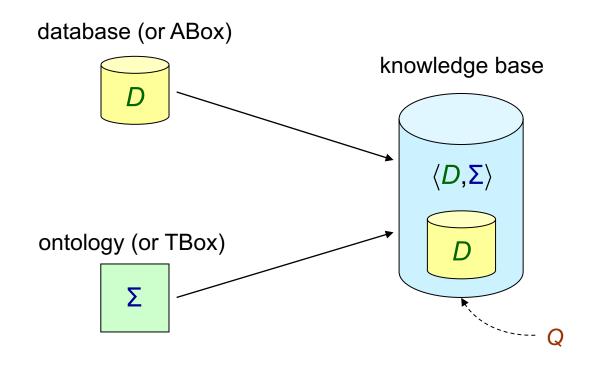
$$\exists Y (\varphi(X,Y))$$

- X and Y are tuples of variables of V
- $\varphi(X,Y)$ is a conjunction of atoms (possibly with constants)

The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL

Ontology-Based Query Answering (OBQA)



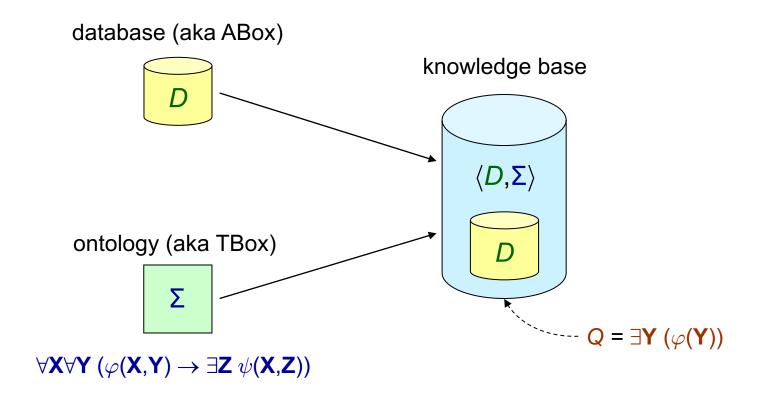
existential rules

$$\forall X \forall Y (\varphi(X,Y) \rightarrow \exists Z \psi(X,Z))$$

conjunctive queries

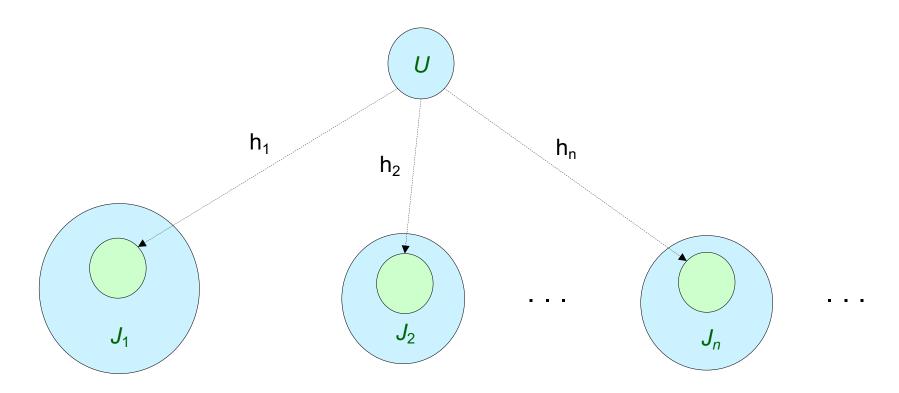
 $\exists Y (\varphi(X,Y))$

BCQ-Answering: Our Main Decision Problem



decide whether $D \wedge \Sigma \models Q$

Universal Models (a.k.a. Canonical Models)



An instance *U* is a universal model of $D \wedge \Sigma$ if the following holds:

- 1. U is a model of $D \wedge \Sigma$
- 2. $\forall J \in \mathsf{models}(D \land \Sigma)$, there exists a homomorphism h_J such that $\mathsf{h}_J(U) \subseteq J$

The Chase Procedure: Formal Definition

Chase rule - the building block of the chase procedure

- A rule $\sigma = \forall X \forall Y (\varphi(X,Y) \rightarrow \exists Z \psi(X,Z))$ is applicable to instance J if:
 - 1. There exists a homomorphism h such that $h(\varphi(X,Y)) \subseteq J$
 - 2. There is no g $\supseteq h_{|X}$ such that $g(\psi(X,Z)) \subseteq J$

- Let $J_+ = J \cup \{g(\psi(X,Z))\}$, where $g \supseteq h_{|X}$ and g(Z) are "fresh" nulls not in J
- The result of applying σ to J is J_+ , denoted $J(\sigma,h)J_+$ single chase step

The Chase Procedure: Formal Definition

A finite chase of D w.r.t. Σ is a finite sequence

$$D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n$$

where no rule from Σ is applicable in J_n .

Then, chase(D,Σ) is defined as the instance J_n

all applicable rules will eventually be applied

An infinite chase of D w.r.t. Σ is a fair infinite sequence

$$D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n \dots$$

and chase (D, Σ) is defined as the instance $\bigcup_{k>0} J_k$ (with $J_0 = D$)

least fixpoint of a monotonic operator - chase step

Query Answering via the Chase

Theorem: $D \wedge \Sigma \models Q$ iff $U \models Q$, where U is a universal model of $D \wedge \Sigma$ Theorem: chase(D, Σ) is a universal model of $D \wedge \Sigma$

Corollary: $D \wedge \Sigma \models Q$ iff chase $(D,\Sigma) \models Q$

- We can tame the first dimension of infinity by exploiting the chase procedure
- But, what about the second dimension of infinity? the chase may be infinite

Rest of the Lecture

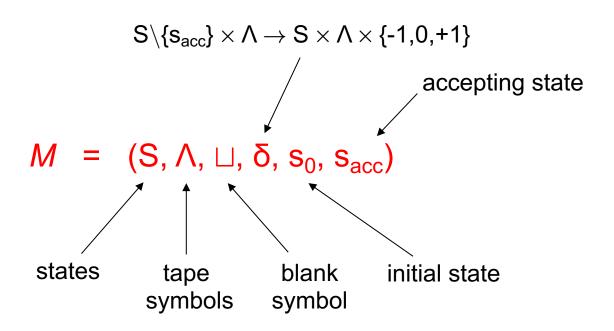
- Undecidability of BCQ-Answering
- Gaining decidability terminating chase
- Full Existential Rules
- Acyclic Existential Rules

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof: By simulating a deterministic Turing machine with an empty tape

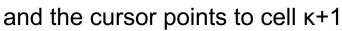
Deterministic Turing Machine (DTM)



$$\delta(s_1, \alpha) = (s_2, \beta, +1)$$

IF at some time instant τ the machine is in sate s₁, the cursor points to cell κ, and this cell contains α

THEN at instant $\tau+1$ the machine is in state s_2 , cell κ contains β ,



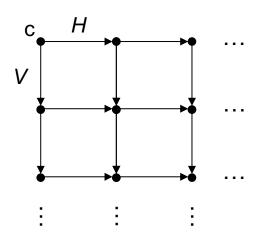
Undecidability of BCQ-Answering

Our Goal: Encode the computation of a DTM *M* with an empty tape

using a database D, a set Σ of existential rules, and a BCQ Q such that

 $D \wedge \Sigma \models Q$ iff M accepts

Build an Infinite Grid



k-th horizontal line represents thek-th configuration of the machine

$$D = \{Start(c)\}$$

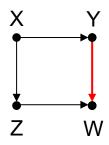
fixes the origin of the grid

$$\forall X (Start(X) \rightarrow Node(X) \land Initial(X))$$

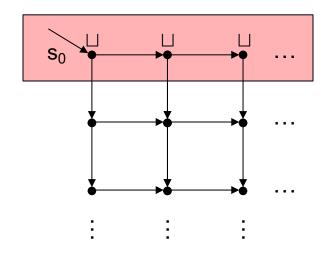
$$\forall X \ (Node(X) \rightarrow \exists Y \ (H(X,Y) \land Node(Y)))$$

$$\forall X \ (Node(X) \rightarrow \exists Y \ (V(X,Y) \land Node(Y)))$$

$$\forall X \forall Y \forall Z \forall W (H(X,Y) H(Z,W) V(X,Z) \rightarrow V(Y,W))$$



Initialization Rules

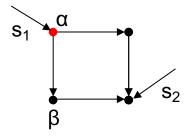


$$\forall X \forall Y \ (Initial(X) \land H(X,Y) \rightarrow Initial(Y))$$

$$\forall X \; (\textit{Start}(X) \rightarrow \textit{Cursor}[s_0](X))$$

$$\forall X (Initial(X) \rightarrow Symbol[\sqcup](X))$$

Transition Rules

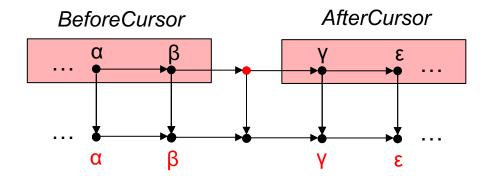


$$\delta(s_1,\alpha) = (s_2,\beta,+1)$$

 $\forall X \forall Y \forall Z \ (Cursor[s_1](X) \land Symbol[\alpha](X) \land V(X,Y) \land H(Y,Z) \rightarrow$

 $Cursor[s_2](Z) \wedge Symbol[\beta](Y) \wedge Mark(X))$

Inertia Rules



$$\forall X \forall Y \ (Mark(X) \land H(X,Y) \rightarrow AfterCursor(Y))$$

$$\forall X \forall Y \ (AfterCursor(X) \land H(X,Y) \rightarrow AfterCursor(Y))$$

$$\forall X \forall Y \ (AfterCursor(X) \land Symbol[\alpha](X) \land V(X,Y) \rightarrow Symbol[\alpha](Y))$$

...we have similar rules for the cells before the cursor

Accepting Rule

Once we reach the accepting state we accept

$$\forall X (Cursor[s_{acc}](X) \rightarrow Accept(X))$$

 $D \wedge \Sigma \models \exists X \ Accept(X)$ iff the DTM M accepts

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof: By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!

Gaining Decidability

By restricting the database

- $\{Start(c)\} \land \Sigma \models Q \text{ iff the DTM } M \text{ accepts}$
- The problem is undecidable already for singleton databases
- No much to do in this direction

By restricting the query language

- $D \wedge \Sigma \models \exists X \ Accept(X)$ iff the DTM M accepts
- The problem is undecidable already for atomic queries
- No much to do in this direction

By restricting the ontology language

- Achieve a good trade-off between expressive power and complexity
- Field of intense research
- Any ideas?

... force the chase to terminate

What is the Source of Non-termination?



$$\forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$$

chase(D,Σ) = $D \cup \{hasParent(Alice, z_1), Person(z_1), Person(z_1),$

hasParent(z_1, z_2), Person(z_2),

 $hasParent(z_2, z_3), Person(z_3), \dots$

- Existential quantification
- Recursive definitions

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules
 - A.k.a. non-recursive existential rules

Full Existential Rules

A full existential rule is an existential rule of the form

$$\forall X \forall Y (\varphi(X,Y) \rightarrow \psi(X))$$

We denote FULL the class of full existential rules

- A local property we can inspect one rule at a time
 - \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in \mathsf{FULL}$
 - \Rightarrow closed under union $\Sigma_1 \in \mathsf{FULL}$, $\Sigma_2 \in \mathsf{FULL} \Rightarrow (\Sigma_1 \cup \Sigma_2) \in \mathsf{FULL}$
- Why does the chase terminate?

Full Existential Rules

Consider a database D and a set Σ∈ FULL

• chase $(D,\Sigma)\subseteq \{P(c_1,\ldots,c_n)\mid \langle c_1,\ldots,c_n\rangle\in \operatorname{adom}(D)^n \text{ and } P\in\operatorname{sch}(\Sigma)\}$ active domain - constants occurring in Dschema - predicates occurring in Σ

maximum number of tuples with terms of adom(*D*)

•
$$|\mathsf{chase}(D,\Sigma)| \leq |\mathsf{sch}(\Sigma)| \cdot (|\mathsf{adom}(D)|)^{\mathsf{maxarity}}$$

 $\max_{P \in \operatorname{sch}(\Sigma)} \{\operatorname{arity}(P)\}\$

maximum number of atoms with predicates of $sch(\Sigma)$ and terms of adom(D)

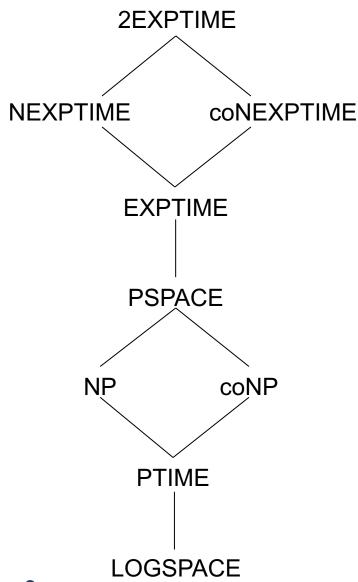
Complexity Measures for Query Answering

 Data complexity: is calculated by considering only the database as part of the input, while the ontology and the query are fixed

Combined complexity: is calculated by considering, apart from the database,
 also the ontology and the query as part of the input

- Data complexity vs. Combined complexity
 - Data complexity tends to be a more meaningful measure ontologies and queries tend to be small; databases tend to be large
 - Nevertheless, the combined complexity is a relevant measure identifies
 the real source of complexity

Some Important Complexity Classes



Problems that can be solved by an algorithm that runs in double-exponential time

We need the power of non-determinism

Problems that can be solved by an algorithm that runs in exponential time

Problems that can be solved by an algorithm that uses a polynomial amount of memory

We need the power of non-determinism

Problems that can be solved by an algorithm that runs in polynomial time

Problems that can be solved by an algorithm that uses a logarithmic amount of memory

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set $\Sigma \in FULL$, and a BCQ Q

We apply the naïve algorithm:

- 1. Construct chase (D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D,\Sigma)$

Step 1: We construct the chase level-by-level

$$\begin{array}{c}
L_0 = D \\
L_1 \\
L_2 \\
\vdots \\
L_n
\end{array}$$

- From L_k to L_{k+1} : for each $\sigma \in \Sigma$, find all the homomorphisms h such that $h(body(\sigma)) \subseteq L_k$, and add to L_k the set of atoms $h(head(\sigma))$
- Stop when $L_k = L_{k+1}$

 $|\Sigma| \cdot (|adom(D)|)^{maxvariables(\Sigma)} \cdot maxbody(\Sigma) \cdot |L_k|$

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set $\Sigma \in FULL$, and a BCQ \mathbb{Q}

We apply the naïve algorithm:

- 1. Construct chase (D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

Step 1: We construct the chase level-by-level in time

$$(k-1) \cdot |\Sigma| \cdot (|adom(D)|)^{maxvariables(\Sigma)} \cdot maxbody(\Sigma) \cdot |L|$$

where k, $|L| \leq |\operatorname{chase}(D,\Sigma)| \leq |\operatorname{sch}(\Sigma)| \cdot (|\operatorname{adom}(D)|)^{\operatorname{maxarity}}$

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set $\Sigma \in FULL$, and a BCQ \mathbb{Q}

We apply the naïve algorithm:

- 1. Construct chase (D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

Step 2: By applying similar analysis, we can show that the existence of h can be checked in time

$$(|adom(D)|)^{\#variables(Q)} \cdot |Q| \cdot |chase(D,\Sigma)|$$

where $|\operatorname{chase}(D,\Sigma)| \leq |\operatorname{sch}(\Sigma)| \cdot (|\operatorname{adom}(D)|)^{\operatorname{maxarity}}$

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set $\Sigma \in FULL$, and a BCQ \mathbb{Q}

We apply the naïve algorithm:

- 1. Construct chase (D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

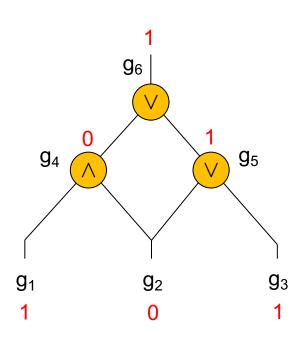
Consequently, in the worst case, the naïve algorithm runs in time

```
(|\mathrm{sch}(\Sigma)| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxarity}})^2 \cdot |\Sigma| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxvariables}(\Sigma)} \cdot \mathrm{maxbody}(\Sigma) \\ + \\ (|\mathrm{adom}(D)|)^{\mathrm{\#variables}(\mathbb{Q})} \cdot |\mathbb{Q}| \cdot |\mathrm{sch}(\Sigma)| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxarity}}
```


We cannot do better than the naïve algorithm

Theorem: BCQ-Answering under FULL is PTIME-hard w.r.t. the data complexity

Proof: By a LOGSPACE reduction from Monotone Circuit Value problem



Does the circuit evaluate to true?

encoding of the circuit as a database D

$$T(g_1)$$
 $T(g_3)$
 $AND(g_4,g_1,g_2)$ $OR(g_5,g_2,g_3)$ $OR(g_6,g_4,g_5)$

evaluation of the circuit via a *fixed* set Σ

$$\forall X \forall Y \forall Z \ (T(X) \land OR(Z,X,Y) \rightarrow T(Z))$$

$$\forall X \forall Y \forall Z \ (T(Y) \land OR(Z,X,Y) \rightarrow T(Z))$$

$$\forall X \forall Y \forall Z \ (T(X) \land T(Y) \land AND(Z,X,Y) \rightarrow T(Z))$$

Circuit evaluates to *true* iff $D \wedge \Sigma \models T(g_6)$

Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is in EXPTIME w.r.t. the combined complexity

Proof: Consider a database D, a set $\Sigma \in FULL$, and a BCQ Q

We apply the naïve algorithm:

- 1. Construct chase (D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subset chase(D,\Sigma)$

By our previous analysis, in the worst case, the naïve algorithm runs in time

```
(|\operatorname{sch}(\Sigma)| \cdot (|\operatorname{adom}(D)|)^{\operatorname{maxarity}})^2 \cdot |\Sigma| \cdot (|\operatorname{adom}(D)|)^{\operatorname{maxvariables}(\Sigma)} \cdot \operatorname{maxbody}(\Sigma)
                      (|adom(D)|)^{\#variables(Q)} \cdot |Q| \cdot |sch(\Sigma)| \cdot (|adom(D)|)^{maxarity}
```


Combined Complexity of FULL

We cannot do better than the naïve algorithm

Theorem: BCQ-Answering under FULL is EXPTIME-hard w.r.t. the combined complexity

Proof: By simulating a deterministic exponential time Turing machine

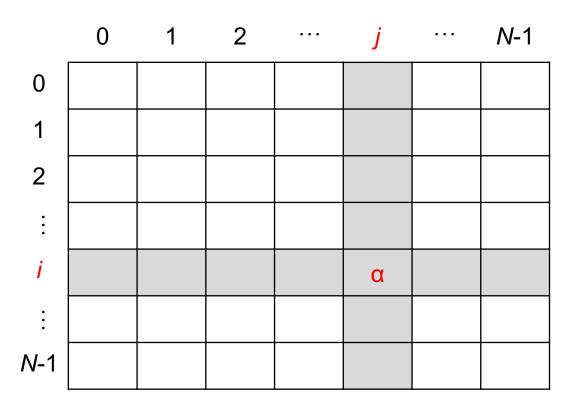
EXPTIME-hardness of FULL

Our Goal: Encode the exponential time computation of a DTM *M* on input

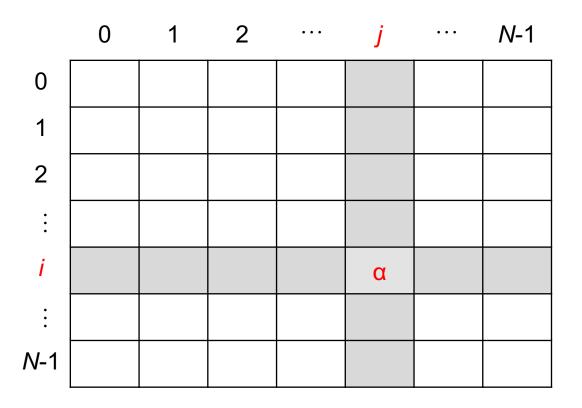
string I using a database D, a set $\Sigma \in FULL$, and a BCQ Q such that

 $D \wedge \Sigma \models Q$ iff M accepts I in at most $N = 2^m$ steps, where $m = |I|^k$

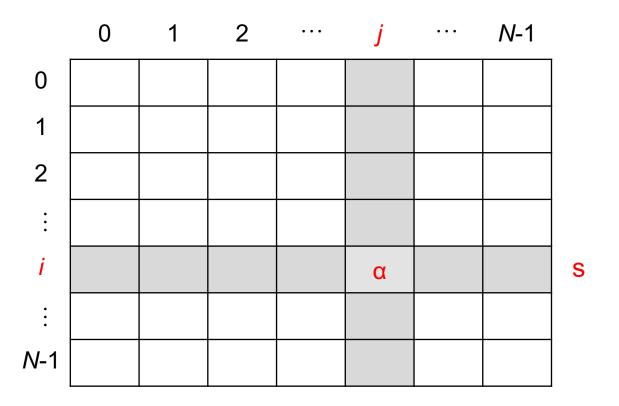
The Schema



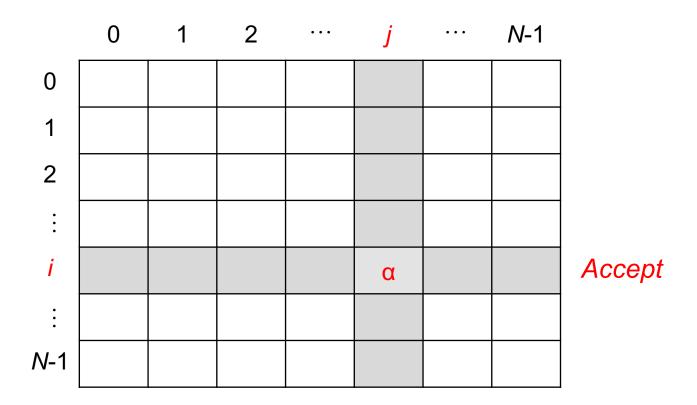
Symbol[α](i,j) - at time instant i, cell j contains α



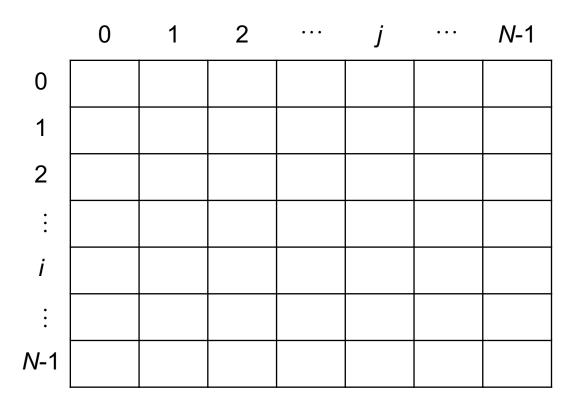
Cursor(i,j) - at time instant i, cursor points to cell j



State[s](i) - at time instant i, the machine is in state s



Accept(i) - at time instant *i*, the machine accepts



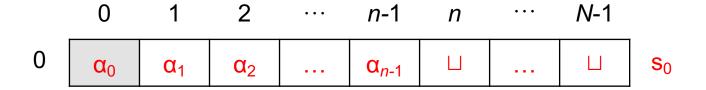
First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)

≺ - transitive closure of Succ

will be defined later

Initialization Rules

Assume that $I = \alpha_0 \dots \alpha_{n-1}$



$$\forall T (First(T) \rightarrow Symbol[\alpha_i](T,i) \land Cursor(T,T) \land State[s_0](T))$$

$$\forall T \forall C \ (First(T) \land \prec (n-1,C) \rightarrow Symbol[\sqcup](T,C))$$

Transition Rules

$$\delta(s_1,\alpha) = (s_2,\beta,+1)$$

$$i \quad x \quad \alpha \quad y \quad s_1$$

$$i+1 \quad x \quad \beta \quad y \quad s_2$$

$$\forall \mathsf{T} \forall \mathsf{T}_1 \forall \mathsf{C} \forall \mathsf{C}_1 \; (State[\mathsf{s}_1](\mathsf{T}) \land \mathit{Cursor}(\mathsf{T},\mathsf{C}) \land \mathit{Symbol}[\alpha](\mathsf{T},\mathsf{C}) \land \mathit{Succ}(\mathsf{T},\mathsf{T}_1) \land \mathit{Succ}(\mathsf{C},\mathsf{C}_1) \rightarrow \\ Symbol[\beta](\mathsf{T}_1,\mathsf{C}) \land \mathit{Cursor}(\mathsf{T}_1,\mathsf{C}_1) \land \mathit{State}[\mathsf{s}_2](\mathsf{T}_1))$$

Inertia Rules

Cells that are not changed during the transition keep their old values

 $\forall \mathsf{T} \forall \mathsf{T}_1 \forall \mathsf{C} \forall \mathsf{C}_1 \; (\mathit{Symbol}[\alpha](\mathsf{T},\mathsf{C}) \land \mathit{Cursor}(\mathsf{T},\mathsf{C}_1) \land \prec (\mathsf{C},\mathsf{C}_1) \land \mathit{Succ}(\mathsf{T},\mathsf{T}_1) \rightarrow \mathit{Symbol}[\alpha](\mathsf{T}_1,\mathsf{C}))$

 $\forall \mathsf{T} \forall \mathsf{T}_1 \forall \mathsf{C} \forall \mathsf{C}_1 \; (\mathit{Symbol}[\alpha](\mathsf{T},\mathsf{C}) \; \land \; \mathit{Cursor}(\mathsf{T},\mathsf{C}_1) \; \land \; \prec (\mathsf{C}_1,\mathsf{C}) \; \land \; \mathit{Succ}(\mathsf{T},\mathsf{T}_1) \; \rightarrow \; \mathit{Symbol}[\alpha](\mathsf{T}_1,\mathsf{C}))$

Accepting Rule

Once we reach the accepting state we accept

$$i$$
 0 1 2 ··· n -1 n ··· N -1 s_{acc}

 $\forall T (State[s_{acc}](T) \rightarrow Accept(T))$

- First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
- In fact, 0,...,N-1 are in binary form assume the N = 2^m, where m = 3
 First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)
- Inductive definition of First_i and Succ_i

$$D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$$

$$First_2(0,0)$$
, $Last_2(1,1)$, $Succ_2(0,0,0,1)$, $Succ_2(0,1,1,0)$, $Succ(1,0,1,1)$

$$\forall X (First_1(X) \land First_1(X) \rightarrow First_2(X,X))$$

$$\forall X (Last_1(X), Last_1(X) \rightarrow Last_2(X,X))$$

- First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
- In fact, 0,...,N-1 are in binary form assume the N = 2^m, where m = 3
 First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)
- Inductive definition of First_i and Succ_i

$$D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$$

$$\forall X \forall Y \forall Z \ (First_1(X), Succ_1(Y,Z) \rightarrow Succ_2(X,Y,X,Z))$$

$$\forall X \forall Y \forall Z \ (Last_1(X), Succ_1(Y,Z) \rightarrow Succ_2(X,Y,X,Z))$$

- First(0), Succ(0,1), Succ(1,2), Succ(2,3), ..., Succ(N-2,N-1)
- In fact, 0,...,N-1 are in binary form assume the N = 2^m, where m = 3
 First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),..., Succ(1,1,0,1,1,1)
- Inductive definition of First_i and Succ_i

$$D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$$

First₂(0,0), Last₂(1,1), Succ₂(0,0,0,1), Succ₂(0,1,1,0), Succ(1,0,1,1)

 $\forall X \forall Y \forall Z \forall W \ (First_1(X), Last_1(Y), Succ_1(Z,W) \rightarrow Succ_2(Z,X,W,Y))$

$$D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$$

Inductive definition of $First_{i+1}$ and $Succ_{i+1}$:

$$\forall \mathbf{X} \forall \mathbf{Y} \ (Succ_i(\mathbf{X}, \mathbf{Y}) \rightarrow Succ_{i+1}(\mathbf{Z}, \mathbf{X}, \mathbf{Z}, \mathbf{Y}))$$

$$\forall \mathbf{X} \forall \mathbf{Y} \forall \mathbf{Z} \forall \mathbf{W} \ (Succ_1(\mathbf{Z}, \mathbf{W}) \land Last_i(\mathbf{X}) \land First_i(\mathbf{Y}) \rightarrow Succ_{i+1}(\mathbf{Z}, \mathbf{X}, \mathbf{W}, \mathbf{Y}))$$

$$\forall \mathbf{X} \forall \mathbf{Z} \ (First_1(\mathbf{Z}) \land First_i(\mathbf{X}) \rightarrow First_{i+1}(\mathbf{Z}, \mathbf{X}))$$

$$\forall \mathbf{X} \forall \mathbf{Z} \ (Last_1(\mathbf{Z}) \land Last_i(\mathbf{X}) \rightarrow Last_{i+1}(\mathbf{Z}, \mathbf{X}))$$

Definition of \prec_m :

$$\forall \mathbf{X} \forall \mathbf{Y} \ (Succ_m(\mathbf{X}, \mathbf{Y}) \rightarrow \prec_m(\mathbf{X}, \mathbf{Y}))$$

$$\forall \mathbf{X} \forall \mathbf{Y} \forall \mathbf{Z} \ (Succ_m(\mathbf{X}, \mathbf{Z}) \prec_m(\mathbf{Z}, \mathbf{Y}) \rightarrow \prec_m(\mathbf{X}, \mathbf{Y}))$$

Concluding EXPTIME-hardness of FULL

- Several rules but polynomially many ⇒ feasible in polynomial time
- $D \wedge \Sigma \models \exists X \ Accept(X) \ iff \ M \ accepts \ I \ in \ at \ most \ N \ steps$
- Can be formally shown by induction on the time steps

Corollary: BCQ-Answering under FULL is EXPTIME-complete w.r.t. the combined complexity

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules
 - A.k.a. non-recursive existential rules

