
Symbolic Dynamic Programming

Olga Skvortsova
Department of Computer Science,
Dresden University of Technology,
01062 Dresden (Germany)
e-mail:os447478@inf.tu-dresden.de

Abstract. A symbolic dynamic programming approach for solving first-order Markov
decision processes within the situation calculus is presented. As an alternative specification
language for dynamic worlds the fluent calculus is chosen and the fluent calculus formalization
of the symbolic dynamic programming approach is provided. The major constructs of Markov
decision processes such as the optimal value function and the policy are logically represented.
The technique produces a set of first-order formulae that minimally partitions the state space.
Consequently, the symbolic dynamic programming algorithm presented here does not require
neither state nor action space enumeration, thereby solving the drawback of classical dynamic
programming methods.

Keywords. Dynamic programming, Markov decision processes, Situation calculus, Fluent
calculus

2 Symbolic Dynamic Programming

1 Introduction

Planning under uncertainty is a major issue in the study of sequential decision problems and has
been addressed by scientists in many different fields, including AI planning, decision analysis,
operations research, control theory, and economics [13, 14, 15, 16]. A very wide class of planning
problems in these areas can be modeled as Markov decision processes (MDPs) and treated by
using algorithms of decision theory.

The term dynamic programming (DP) refers to a collection of algorithms that can be used
to compute optimal policies given a model of the environment as an MDP. The key idea of the
dynamic programming is the use of value functions to organize and structure the search for
optimal policies [10].

An advantage of DP methods is their capability to deal with stochastic actions and incom-
plete world knowledge. However, classical dynamic programming algorithms do not scale up to
large state and action spaces. They suffer from what Bellman called “the curse of dimensional-
ity”. That is to say, they rely on explicit state enumeration which dramatically limits their use
for solving complex tasks with very large state spaces. This implies that their computational
requirements grow exponentially with the number of state variables.

In this paper, we address the scalability problem mentioned above by proposing the fluent
calculus formalization of the dynamic programming paradigm. We develop a symbolic descrip-
tion of the value iteration algorithm [2] by representing stochastic actions, value functions, and
the optimality criterion for choosing an optimal value function within the fluent calculus. Our
approach performs a minimal partition of the state space and associates to each obtained par-
tition, or “abstract state”, an utility value. Consequently, our symbolic dynamic programming
algorithm avoids the explicit enumeration of states and actions. Moreover, by using the logical
description for states, we do not need to enumerate domain individuals, i.e., we avoid domain
grounding. The latter is very impractical because the number of propositions grows dramati-
cally with the number of domain objects. If, for example, the domain comprises d objects and

we have k ni-ary relations then the number of atoms is
k∑

i=1
dni . Taking a very primitive example

with 2-ary function f and 3-ary function g and 4 domain objects, we already end up with 80
propositions.

The paper is organized as follows. In Section 2, we describe the classical value iteration
algorithm, an instance of a DP method. In Section 3, we present the symbolic dynamic pro-
gramming approach developed at the University of Toronto. Section 4 is devoted to the fluent
calculus formalization of the classical value iteration algorithm. Finally, we draw conclusions
and give the directions of future work in Section 5.

Project Report 3

2 Classical Dynamic Programming

2.1 Markov Decision Processes

Let us first start with the definition of a Markov Decision Process(MDP) [2].
An MDP is a 4-tuple (Z,A, P, R), where

• Z is a finite set of system states

• A is a finite set of agent actions

• P : Z × A × Z → [0..1] is a state transition function. P(z, a, z′) is the probability with
which the state z′ is reached by performing an action a at a state z.

• R : Z → < is a real-valued reward function associating with each state z ∈ Z the
immediate utility R(z).

Throughout the paper, we make the following three assumptions. Firstly, only fully-
observable MDPs are considered, that is to say, the decision maker (the robot in our case)
observes the state it is in. The outcome of each decision is not predictable with certainty but
can be observed once it is reached. Secondly, discrete state and action spaces are discussed
though general MDPs may work with continuous spaces [3, 4]. Thirdly, rewards are given for
every state z ∈ Z.

Please note that the model is Markovian if state transitions and rewards are independent
of previous states and actions [2, 3].

2.2 Finding a Policy Given a Model

Next we will explore techniques for determining the optimal policy given a correct model
represented as MDP. Because the decision problem faced by an agent is to find an optimal
policy (or plan) that maximizes the expected total discounted accumulated reward received
over the whole course. We restrict our attention mainly to finding optimal policies for the
infinite-horizon discounted model, but one should note that most of these algorithms have
analogues for the finite-horizon and average-case models as well [4]. A stationary policy π is a
mapping π : Z → A. The value of a policy π, or value function, denoted Vπ(z), is given by the
expected total discounted accumulated reward

Vπ(z) = E

(∞∑

t=0

γtR(zt)

)

where E is an expectation taken with respect to the probability P1; 0 ≤ γ < 1 is a discount
factor; R(zt) is a value of the reward function in a state zt.

1The value you expect to get in a statistical experiment is the mean. If you toss a coin 10 times, you expect
to get 5 heads and 5 tails. The mean is often called the “expected value”, the “expectation value”, or simply the

4 Symbolic Dynamic Programming

The discount factor γ can be interpreted in different ways. One may consider it as an interest
rate, namely how much is an agent interested to get rewards in the future. Alternatively, γ is
regarded as a probability of living another step, or one might prefer to view it as a mathematical
means to bound the infinite sum.

Vπ(z) denotes the value of the state z – it is the expected discounted sum of reward that
the agent will get if it starts at state z and then executes the policy π. Vπ(z) can be defined
recursively as follows

Vπ(z) = R(z) + γ
∑

z′∈Z
P(z, π(z), z′)Vπ(z′)

In effect, finding an optimal policy is finding the optimal value function which asserts that
the value of a state z is the expected instantaneous reward plus the expected discounted value
of the next state using the best available action. The optimal value is denoted as V ∗(z) and
defined as

V ∗(z) = max
a∈A



R(z) + γ

∑

z′∈Z
P(z, a, z′)V ∗(z′)





for all z ∈ Z.

2.2.1 Value Iteration Algorithm

A value iteration algorithm [4] can be used to construct optimal value functions for all z ∈ Z.
The n-stage-to-go Q-function Qn(a, z) denotes the expected value of performing action a

at a state z with n stages to go and acting optimally thereafter.
Please note that the Equation 1 given below will be called in the sequel the optimality

constraint, or the optimality criterion.

Vn(z) := max
a∈A

Qn(a, z) (1)

The crucial result concerning the value iteration algorithm is that the sequence of value
functions Vn(z) converges to the optimal value function V ∗(z).2

“expectation”. To formalize the concept a bit more, if for an experiment with the discrete outcomes xi for which
the probability is P (xi), then the mean denoted as a is given by a =

∑
i

xiP (xi). For details about expectations

and their usage please refer to any textbook on statistics, on estimators in particular.
2Since this topic is beyond the scope of our presentation the formal proof will be omitted here. For details see

e.g. [3] which serves as an excellent introduction for discrete stochastic dynamic programming. For discussion
of stopping criteria please refer to the same book.

Project Report 5

n := 0.
Specify ε > 0.
Initialise V0(z) arbitrarily, e.g. V0(z) = R(z), for all z ∈ Z.
loop

n := n + 1.
loop for all z ∈ Z.

loop for all a ∈ A.
Qn(a, z) := R(z) + γ

∑
z′∈Z

P(z, a, z′)Vn−1(z′).

end loop.
Vn(z) := max

a∈A
Qn(a, z).

end loop.
until |Vn(z)− Vn−1(z)| < ε for all z ∈ Z.

Figure 1: Finding the optimal value function through value iteration.

Given the optimal value function, the optimal policy π∗(z) executed at a state z can be
specified as

π∗(z) = arg max
a∈A



R(z) + γ

∑

z′∈Z
P(z, a, z′)V ∗(z′)





Closing this section, we would like to summarize the results obtained so far. Now we know
how to formalize the task as MDP, and then given a formalization to compute the optimal
value functions from which one can extract the optimal policy.

3 Symbolic Dynamic Programming within the Situation Cal-
culus

3.1 A Short Introduction to the Situation Calculus

The situation calculus [5] is a first-order language (with some second order features) designed
for specifying dynamically changing worlds. All changes to the world are the result of named
actions. A possible world history, which is simply a sequence of actions, is represented by a first
order term called a situation. The constant s0 is used to denote the initial situation, namely
the empty history. Non-empty histories are constructed using a distinguished binary function
symbol do; do(α, S) denotes the successor situation to S resulting from performing the action α.
Actions may be parameterized. For example, put(X, Y) might stand for the action of putting

6 Symbolic Dynamic Programming

object X on object Y , in which case do(put(a, b), s) denotes the situation resulting from placing
a on b when the history is S. In the situation calculus, actions are denoted by first order terms,
situations (world histories) are also first order terms. For example, do(putdown(a), do(walk(l),
do(pickup(a), s0))) is the situation denoting the world history consisting of the sequence of
actions [pickup(a),walk(l),putdown(a)]. Note that the sequence of actions is obtained from a
situation term given above by reading off the actions from right to left.

A particular domain of application will be specified by the union of the following sets of
axioms.

¤ Precondition axioms that are actionwise

Poss(a(X), S) ≡ Πa(X, S),

where Πa(X, S) is a first order formula describing all the conditions under which the
action a is possible to execute in the situation S.

¤ Successor state axioms that are fluentwise

Poss(a, S) ⊃ [f(X, do(a, S)) ≡ γ+
f (X, a, S) ∨ (f(X, S) ∧ ¬γ−f (X, a, S))],

where γ+
f (X, a, S) describes all the conditions under which performing action a in S

results in f becoming true in the successor situation; γ−f (X, a, S) describes all the condi-
tions under which performing action a in S results in f becoming false in the successor
situation.The successor state axioms embody the solution to the frame problem [6].

¤ UNA for the primitive actions which are domain dependent.
For distinct action names a and a′,

a(X) 6= a′(Y).

Identical actions should have identical arguments:

a(X1, . . . , Xn) = a(Y1, . . . , Yn) ⊃ X1 = Y1 ∧ . . . ∧Xn = Yn

¤ Axioms describing s0

3.2 Regression Operator

Regression operator is defined recursively as follows.

1. If ψ is non-fluent atom then

Regr(ψ) = ψ

Project Report 7

2. If f(X, do(a, S)) is a fluent whose successor state axiom is

Poss(a, S) ⊃ f(X, do(a, S)) ≡ Φf (X, a, S)

then

Regr(f(T , do(a′, S′))) = Φf (X/T , a/a′, S/S′)

3. Whenever ψ is a formula,

Regr(¬ψ) = ¬Regr(ψ)
Regr((∃X)ψ) = (∃X)Regr(ψ)

4. Whenever ψ1 and ψ2 are formulae,

Regr(ψ1 ∧ ψ2) = Regr(ψ1) ∧Regr(ψ2),

and likewise for ∀, ⊃, ≡ and ∨.

3.3 Stochastic Actions

Now let us enhance the classical version of the situation calculus presented in the previous
section by the notion of stochastic actions. We need to do so because stochastic actions have
different outcomes that can be described using probabilities. The trick that is used to intro-
duce stochastic action within the situation calculus is to decompose a stochastic action into
deterministic primitives under nature’s control, referred to as nature’s choices. In other words,
we give to the nature a prerogative to expand stochastic actions.

Let us consider a logistics example with trucks, blocks, and cities. Trucks are driven between
cities, blocks are loaded onto and unloaded from trucks. This scenario can be described using
the fluents and actions depicted on the Figure 2.

To illustrate the decomposition of stochastic actions into deterministic primitives consider
the action unload(B, T) that is stochastic and corresponds to unloading a block B from truck
T .

choice(unload (B, T), a) ≡ a = unloadS (B ,T) ∨ a = unloadF (B ,T)

where unloadS (B, T) and unloadF (B, T) define two nature’s choices of action unload (B, T)
and should be thought of successful and poor unloading, respectively.

For each of the nature’s choices nj(X) associated with action a(X), we define the probability
prob(nj(X), a(X), S) with which it is chosen in situation S.

prob(unloadS (B, T), unload (B, T), S) = p ≡
rain(S) ∧ p = 0.7 ∨ ¬rain(S) ∧ p = 0.9

prob(unloadF (B, T), unload (B, T), S) = p ≡
p = 1− prob(unloadS (B, T), unload (B, T), S)

8 Symbolic Dynamic Programming

Fluents

bin(B, C, S) block B is in the city C in the situation S
tin (T,C, S) truck T is in the city C in situation S
on (B, T, S) block B is on truck T in situation S
rain (S) it is raining in situation S

Actions

unload (B, T) block B is unloaded from truck T
load(B ,T) block B is loaded onto truck T
drive (T, C) truck T is driven in city C

Figure 2: Fluents and Actions from Logistics Example.

Precondition Axioms

Poss(loadS (B, T), S) ≡ (∃C).bin(B, C, S) ∧ tin (T, C, S)
Poss(loadF (B, T), S) ≡ (∃C).bin(B, C, S) ∧ tin (T,C, S)
Poss(unloadS (B, T), S) ≡ on (B, T, S)
Poss(unloadF (B, T), S) ≡ on (B, T, S)
Poss(driveS (T, C), S) ≡ true
Poss(driveF (T,C), S) ≡ true

Figure 3: Precondition Axioms.

Notice that the unloading is successful with the probability 0.7 if it is raining and 0.9 if it is
not raining. Unloading fails with probability of 0.3 if it rains and 0.1, otherwise.

Taking into account decomposition of stochastic actions, precondition and successor state
axioms will evolve as shown on the Figure 3 and Figure 4.

3.4 Case Notation

In this section, we introduce an additional notation. This notation is just one convenient
way to represent logical formulae, which is introduced to simplify further calculations. A
case statement

t = case[φ1, t1; . . . ; φn, tn]

Project Report 9

Successor State Axioms

bin(B, C, do(a, S)) ≡ (∃T)[tin (T, C, S) ∧ a = unloadS (B, T)] ∨
bin(B,C, S) ∧ ¬(∃T)a = loadS (B, T)

tin (T,C, do(a, S)) ≡ a = driveS (T,C) ∨
tin (T, C, S) ∧ ¬(∃C ′)a = driveS (T, C ′)

on (B, T, do(a, S)) ≡ a = loadS (B, T) ∨
on (B, T, S) ∧ a 6= unloadS (B, T)

rain (do(a, S)) ≡ rain (S)

Figure 4: Successor State Axioms.

is an abbreviation for the formula
∨

i≤n

φi ∧ t = ti,

where φi are logical formulae that partition the state space and ti are values associated with
each partition. Case statements are defined together with operators on them.

case[φi, ti : i ≤ n]⊗ case[ψj , vj : j ≤ m] =
case[φi ∧ ψj , ti · vj : i ≤ n, j ≤ m]

case[φi, ti : i ≤ n]⊕ case[ψj , vj : j ≤ m] =
case[φi ∧ ψj , ti + vj : i ≤ n, j ≤ m]

case[φi, ti : i ≤ n]ª case[ψj , vj : j ≤ m] =
case[φi ∧ ψj , ti − vj : i ≤ n, j ≤ m]

case[φi, ti : i ≤ n] ∪ case[ψj , vj : j ≤ m] =
case[φ1, t1; . . . ; φn, tn; ψ1, v1; . . . ; ψm, vm]

Now let us reformulate the probabilities within the case notation and address the question
whether it is possible to specify the reward and value functions symbolically, namely whether
one can give correct case statements for them.

First, let a(X) be a stochastic action type with possible nature choices n1(X),. . . ,nk(X).
We refer to a(X) as an action type rather than a specific action because we do not bind it
to specific individuals X1,. . . ,Xn which can be infinitely many. This implies that our solution
can be applied for problems with arbitrary domains of individuals. In this way, we perform an
abstraction of the action space as well.

The general case statement for probabilities of nature’s choices is given by the following
equation:

prob(nj(X), a(X), S) = case[φj
1(X, S), pj

1; . . . ;φj
n(X,S), pj

n]

10 Symbolic Dynamic Programming

where φj
1(X,S),. . . ,φj

n(X, S) are logical formulae which represent the conditions satisfied by
the corresponding elements of the state space partition and pj

1, . . . , pj
n are the probabilities of

nature’s choice nj(X). The refinement of the probabilities with case notation for action type
unload (B, T) from Section 3.3 will have the following form.

prob(unloadS (B, T), unload (B, T), S) = p ≡ p = case[rain(S), 0.7;¬rain(S), 0.9]

prob(unloadF (B, T), unload (B, T), S) = p ≡ p = case[rain(S), 0.3;¬rain(S), 0.1]

In the following, we assume that only relational fluents determine the reward. The reward
function is defined as case statement in the following way:

reward (S) = case[ξ1(S), r1; . . . ; ξm(S), rm],

where parameters ξi(S) partition the state space. For example, the reward function

reward (S) = case[(∃B)bin(B, paris, S), 10;¬(∃B)bin(B, paris, S), 0]

partitions the state space into two parts: one which satisfies the condition that a block B is in
paris and another one in which this is not the case. If the first condition is met then the robot
is given a reward of 10 points and 0, otherwise.

Value functions can be defined using the case notation in a similar fashion

v(S) = case[β1(S), v1; . . . ;βn(S), vn],

where the states satisfying conditions βi can be treated as an abstract state i. In this way,
we specify value functions without explicit state enumeration exploiting the logical flavor of
the function. This is the crucial point of the approach presented by C. Boutilier, R. Reiter,
and B. Price in [1]. This technique offers the second wind to classical dynamic programming
algorithms that require the explicit state formulation hence, loosing efficiency while solving
complex tasks in complex environments.

3.5 First-Order Decision-Theoretic Regression

Section 3.4 has shown that main constructs of MDPs, namely probabilities, rewards, and value
functions, can be represented in very concise and natural way by using logical descriptions.
In this section, we will generalize decision-theoretic regression(DTR) to the first-order case
and find logical description for the n-stage-to-go Q-function Qn(a, S) which is defined here
classically as in Section 2.2.1 but with an arbitrary value function v which replaces Vn−1. The
function qv(a, S) denotes the value of performing action a in situation S, then acting in a way
to obtain value v thereafter.

Project Report 11

Let a(X) be a stochastic action with nature’s choices nj(X). Then

Qn(a(X), S) = R(S) + γ
∑

S′∈Z
P(S, a(X), S′) · Vn−1(S′)

The situation calculus analogue for Qn(a(X), S) is

qv(a(X), S) = reward (S) + γ
∑

j

prob(nj(X), a(X), S) · v(do(nj(X), S))

because the only one way when action a(X) has different outcomes is through different nature’s
choices. Hence, state S′ is a state reached by performing, for instance, nature’s choice n5(X)
at state S.

Denoting functions reward (S), prob(nj(X), a(X), S) and v(do(nj(X), S) by rCase(S),
pCase(nj(X), S) and νCase(do(nj(X), S)) as case statements, we obtain

qv(a(X), S) = rCase(S)⊕ γ · [⊕j {pCase(nj(X), S)⊗Regr(νCase(do(nj(X), S)))}]

where we apply the regression operator to the last component νCase(do(nj(X), S)) because it
refers not to the current situation S, but to the next situation do(nj(X), S). This is the crucial
point where regression comes into the play to reflect the “backward nature” of value iteration
algorithm.

Since sums and products of case statements are also case statements we obtain a case
statement for qv(a(X), S), e.g., case[αi(X, S), vi], where the parameters αi(X, S) partition the
state space into abstract states and vi are values for each of the abstract states. Handling
preconditions, a function qv(a(X), S) becomes a relation qv(a(X), V, S) of the form:

qv(a(X), V, S) ≡
[∨

i

Poss(ni(X), S)

]
∧ V = case[αi(X, S), vi]

An important outcome of this section is that DTR performs partitioning not only of the
state space but of action space as well. Moreover, the presented technique helps to obviate
difficulties with explicit state and action enumeration.

3.6 First-Order Value Iteration

Having computed the case (or logical) representation of the n-stage-to-go Q-function Qn(a, S),
let us move to the main issue of the approach in [1], namely to the refinement upon value
iteration algorithm by adding symbolic feature.

Coming back to the Section 2.2.1, to classical value iteration algorithm, the only ingredient
left to define logically is the condition that value function has maximum value of Q-function
Qn(a, S) over all actions out of A. And the corresponding action is considered as optimal. Now
let us move to technical details describing how to express this criterion.

12 Symbolic Dynamic Programming

First of all, all values occurring in q(a(X), V, S) are assumed to be numerical constants3.
Suppose we have computed n-stage-to-go relations q(a(X), V, S) for each action type a(X)

and let v(S) denote the n-stage-to-go value function. Then the equation for the optimality
constraint can be written as

v(S) = V ≡ (∃a).q(a, V, S) ∧ (∀b).q(b, V ′, S) ⊃ V ′ ≤ V (2)

Assuming that all actions a are instances of some action type a(X), we have

v(S) = V ≡ [
∨
a

(∃X). q(a(X), V, S)] ∧
∧

b

(∀Y , V ′). q(b(Y), V ′, S) ⊃ V ′ ≤ V (3)

We have computed q(a(X), V, S) for each action type a(X) as a case statement:

q(a(X), V, S) ≡ V = case[αa
i (X,S), va

i] (4)

Substituting Equation 4 for q(a(X), V, S) in Equation 3, we obtain

v(S) = V ≡
[∨

a

(∃X).V = case[αa
i (X,S), va

i]

]
∧

∧

b

(∀Y , V ′).q(b(Y), V ′, S) ⊃ V ′ ≤ V
(5)

Since va
i are constants, we can move the existential quantifier into the case statement.

v(S) = V ≡
[∨

a

V = case[(∃X).αa
i (X, S), va

i]

]
∧

∧

b

(∀Y , V ′).q(b(Y), V ′, S) ⊃ V ′ ≤ V
(6)

Defining (∃X).αa
i (X,S) as γa

i (S), and recalling the definition of the case statement for the
∪ operator from Section 3.4, we have

v(S) = V ≡ v =

[⋃
a

case[γa
i (S), va

i]

]
∧

∧

b

(∀Y , V ′).q(b(Y), V ′, S) ⊃ V ′ ≤ V. (7)

Suppose
⋃

a case[γa
i (S), va

i] has the form case[γi(S), vi : i ≤ k]. Therefore, recalling the
definition of the case statement, we have

v(S) = V ≡
[

k∨

i=1

γi(S) ∧ V = vi

]
∧

∧

b

(∀Y , V ′).q(b(Y), V ′, S) ⊃ V ′ ≤ V. (8)

3Please note that it does not mean that the approach works only on this assumption. Symbolic descriptions
of values can be treated in a same way [1].

Project Report 13

Simplifying further, one gets

v(S) = V ≡
k∨

i=1

(
γi(S) ∧

∧

b

(∀Y , V ′).[q(b(Y), V ′, S) ⊃ V ′ ≤ V]

)
∧ V = vi. (9)

Using the case notation, the Equation 9 is transformed into the Equation 10.

v(S) = V ≡ V = case[γi(S) ∧
∧

b

(∀Y , V ′).q(b(Y), V ′, S) ⊃ V ′ ≤ vi, vi : i ≤ k] (10)

Simplifying the expressions q(b(Y), V ′, S) ⊃ V ′ ≤ vi in the same way as for the action type
a, we get

v(S) = V ≡ V = case[γi(S) ∧
∧

j

[
γj(S) ⊃ vj ≤ vi], vi : i ≤ k

]
. (11)

Since vi are numerical constants, they can be compared, and therefore Equation 11 is
rewritten in more readable way.

v(S) = case




γ1(S) ∧ ∧
{i|vi>v1}

¬γi(S) v1

...
...

γk(S) ∧ ∧
{i|vi>vk}

¬γi(S) vk




(12)

v(S) = case




γ1(S) v1

γ2(S) ∧ ¬γ1(S) v2

...
...

γk(S) ∧ ¬γ1(S) ∧ ¬γ2(S) ∧ . . . ∧ ¬γk−1(S) vk




(13)

where all vi|i ≤ k preserve the descending order, namely v1 is the biggest value and vk the
smallest one. In the first line of the Equation 13 the expression

∧
{i|vi>v1}

¬γi(S) is absent because

the value v1 is the biggest one, in the second line the expression
∧

{i|vi>v2}
¬γi(S) has only one

conjunct because there exists the only one value vi, namely v1, which is bigger than v2. In
other words, the formulae γi(S) are conditions that partition state space into abstract states.

Equation 13 describes a value function in a purely symbolic manner, obviating the need of
the explicit state and action space formulation in the value iteration algorithm.

14 Symbolic Dynamic Programming

The termination criterion can also easily be represented in case notation. We just take
the current and previous (from the previous iteration) values of value function and subtract
previous value from current one, i.e., Cn ª Cn−1, where Cn and Cn−1 are corresponding case
statements4. The optimal policy (optimal action for every abstract state) is then extracted
from the corresponding optimal value function.

MDPs and dynamic programming algorithms are popular approaches to treat probabilistic
uncertainty that more realistic robotics applications involve. However, these algorithms face
the difficulty of explicit state enumeration; their complexity is exponential in the number of
state variables. Symbolic approaches propose a concise and natural way out from this difficulty.
Purely symbolic reasoning about value functions and policies leads to no need in explicit state
and action formulation, and moreover, to more effective policy (or plan) search. Another crucial
advantage of this technique is the ability to work in domains represented by first-order terms
without grounding them, hence, avoiding the explosion of number of propositions even in very
simple environments.

Keeping these ideas in mind, we would like to illustrate the advantages of the presented
approach by an example in the next section.

3.7 An Example

We will develop a coffee delivery example, where a robot delivers a cup of coffee to persons.
The uncertainty is captured by the fact that the person can be absent at her office [8].

Let us describe the world as MDP. First, we introduce the actions and fluents stated on
Figure 5 and precondition axioms together with the successor state axioms on Figure 6.

For the sake of slight simplification, we want to have two assumptions. First is that
startGo(L1, L2) and endGo(L1, L2) are “incorporated” into an action giveCoffee(P). Secondly,
an attempt to serve a person a cup of coffee is made only once in order to prevent the robot
from repeatedly trying to serve a person who is out of her office.

Probabilities of nature’s choices of stochastic action types endGo(L1, L2) and giveCoffee(P)
are given below.

prob(endGoS(L1, L2), endGo(L1, L2), S) = case[true, 0.7]
prob(endGoF (L1, L2), endGo(L1, L2), S) = case[true, 0.3]
prob(giveCoffeeS (P), giveCoffee(P),S) =

case[ispresent(P, S), 0.95;¬ispresent(P, S), 0.1]
prob(giveCoffeeF (P), giveCoffee(P),S) =

case[ispresent(P, S), 0.05;¬ispresent(P, S), 0.9]

4Please note that in general it is necessary to take the modulus of the expression CnªCn−1 and then compare
the resulting case statement with ε. If each value is less then ε the algorithm terminates, yielding an optimal
value function for every abstract state from the state space.

Project Report 15

Actions

startGo(L1 ,L2) robot starts to go from location L1 to location L2

endGo(L1 ,L2) robot ends at location L2 starting from location L1

giveCoffee(P) robot serves a coffee to a person P

Fluents

going(L1 ,L2 ,S) robot is going from location L1 to location L2 in the situation S
robotloc(L,S) robot is in location L in situation S
hascoffee(P ,S) person P has a coffee in situation S
ispresent(P ,S) person P is present at his/her office in situation S

Figure 5: Actions and Fluents.

Action endGo(L1, L2) is successful with probability 0.7 and fails with 0.3. Please note, that
in either case no conditions are met. Action giveCoffee(P) is successful, meaning that a coffee
delivery was successful, with probability 0.95 if a person is present and with 0.1, otherwise.
Accordingly, giveCoffee(P) is poor with likelihood 0.05 if a person is present and with 0.9,
otherwise.

To be ready to perform value iteration we should initialize the reward function first5. Then
consider reward function reward(S) as

reward (S) = case[hascoffee(bob,S), 10 ; hascoffee(ann,S), 20]

which means rewarding of the fact that bob has coffee. In this case robot will get the immediate
utility of 10 points and 20 points if ann was served with a coffee.

For the sake of simplicity, initialize v0(S) in the same way as reward function. Following
the first-order value iteration algorithm in the Sections 3.5, 3.6 we compute for each action type
a(X) the case representation of Q1(a(X), V, S) using v0(S). We first will show DTR of v0(S)
through action giveCoffee(bob) which results from a simplification in q1(giveCoffee(bob),V ,S)
with following elements

α1(S) ≡ hascoffee(bob,S) ∧ robotloc(office(bob),S)
α2(S) ≡ ¬ispresent(bob, S) ∧ hascoffee(ann,S) ∧ robotloc(office(ann),S)
α3(S) ≡ ispresent(bob, S) ∧ hascoffee(bob,S) ∧ robotloc(office(bob),S)
α4(S) ≡ hascoffee(ann,S) ∧ robotloc(office(ann),S) ∧ hascoffee(bob,S)

which represent the conditions that partition state space into 4 regions (abstract states). The
corresponding values of n stage-to-go q-function are

5c.f. first-order value iteration algorithm in section 4.3.

16 Symbolic Dynamic Programming

Action Precondition Axioms

Poss(startGo(L1, L2), S) ≡ ¬(∃L,L′). going(L,L′, S) ∧ robotloc(L1, S)
Poss(endGoS(L1, L2), S) ≡ going(L1, L2, S)
Poss(endGoF (L1, L2), S) ≡ (∃L′). going(L1, L

′, S) ∧ L′ 6= L2

Poss(giveCoffeeS (P),S) ≡ robotloc(office(P),S)
Poss(giveCoffeeF (P),S) ≡ robotloc(office(P),S)

Successor State Axioms

going(L,L′, do(a, S)) ≡ a = startGo(L,L′) ∨ going(L,L′, S)∧
¬a = endGoS(L,L′) ∨ going(L,L′, S) ∧ ¬(∃L′′). a = endGoF (L,L′′)

robotloc(L, do(a, S)) ≡ (∃P). L = office(P) ∨ L = hall ∧
(∃L1).(a = endGoS(L1, L) ∨ a = endGoF (L1, L)) ∨ robotloc(L, S)∧
¬(∃L2, L3).(a = endGoS(L2, L3) ∧ a = endGoF (L2, L3))

hascoffee(P , do(a,S)) ≡ a = giveCoffeeS (P) ∨ hascoffee(P ,S)
ispresent(P, do(a, S)) ≡ ispresent(P, S)

Figure 6: Precondition and Successor State Axioms.

v1 = 29 v2 = 27.1 v3 = 19.45 v4 = 19

Second, the regression of v0(S) through action giveCoffee(ann) results in a case statement
for q1(giveCoffee(ann),V ,S) with following elements (after simplification):

α1(S) ≡ hascoffee(ann,S) ∧ robotloc(office(ann),S)
α2(S) ≡ ¬ispresent(ann, S) ∧ hascoffee(bob,S) ∧ robotloc(office(bob),S)
α3(S) ≡ ispresent(ann, S) ∧ hascoffee(ann,S) ∧ robotloc(office(ann),S)
α4(S) ≡ hascoffee(ann,S)

and the values are

v1 = 38 v2 = 37.1 v3 = 29.45 v4 = 28

In the next step of the algorithm, the value function is computed using q1(a(X), V, S). Sup-
pose that one iteration already gave us the optimal value function, namely that the termination
criterion was met, hence there is no need to increment n. Therefore, value function v1(S) can
be considered to be optimal and it has the following elements:

γ1(S) ≡ hascoffee(ann,S) ∧ robotloc(office(ann),S)

Project Report 17

γ2(S) ≡ ¬ispresent(ann, S) ∧ hascoffee(bob,S) ∧ robotloc(office(bob),S)
γ3(S) ≡ ispresent(ann, S) ∧ hascoffee(ann,S) ∧ robotloc(office(ann),S)
γ4(S) ≡ hascoffee(ann,S) ∧ ¬(hascoffee(bob,S) ∧ robotloc(office(bob),S))

and the values

v1 = 38 v2 = 37.1 v3 = 29.45 v4 = 28

Action giveCoffee(ann) turns out to be optimal because the maximum of the value function
is obtained when this action is chosen.

This simple example shows how in an application which involves probabilistic uncertainty
one can find an optimal value function and extract from it an optimal policy (or plan) by purely
symbolic reasoning, avoiding explicit state and action enumeration.

4 The Fluent Calculus View

4.1 Alternatives: Reflections and Suggestions

The fluent calculus, much like the situation calculus, provides a methodology for specifying
and reasoning about states, actions and causality. It was originally set up as a first-order logic
program with equality using SLDE- or SLDENF-resolution as sole inference rule [11]. In the
meantime, the fluent calculus has been revised as a predicate logic specification language using
constraint handling rules for reasoning [12]. Whereas the original version allowed for backward
as well as forward reasoning, the revised version is a strictly forward reasoning approach.

The crucial difference between the situation calculus and the revised version of the fluent
calculus is in search strategy. The situation calculus uses backward reasoning (regression) and
the fluent calculus forward reasoning (progression) instead.

In forward search, the initial state is the root of the search tree. Each action applied extends
the plan by one step and transfers the system to a new successor state, which is a new leaf node
in the tree. If the corresponding state is already in the tree, then this node can be deleted.
The search ends when a state is identified as a member of the goal set (in which case a plan
can be extracted from the tree), or when all branches have been pruned (in which case no
plan exists). Forward search attempts to build a plan progressively, i.e., from the beginning to
the end, adding actions to the end of the current sequence of actions. Forward search never
considers states that cannot be reached from the initial state.

Backward search can be viewed in the following way. The search starts from the goal state
which is taken as the root of a tree. We take an action and consider all predecessor states from
which we can reach the current state performing this action. The search terminates when the
initial state is added to the tree, and a solution plan can again be extracted from the tree. This
search is similar to dynamic programming based algorithms for finding an optimal policy (or
plan, or path in the tree).

18 Symbolic Dynamic Programming

The important thing to observe about these two strategies is that they restrict their atten-
tion to the reachable states. That is to say, in forward search, only those states that can be
reached from initial state are considered. This can provide benefit over dynamic programming
methods if few states are reachable, since unreachable states cannot play a role in construct-
ing a successful plan. In backward approaches only states on some path to the goal state are
considered, and this can have significant advantages over dynamic programming if only a part
of the state space is connected to the goal state.

Both methods do not make use of all information available, namely forward search does not
exploit knowledge of the goal set, nor does backward search exploit knowledge of the initial
state.

One should note that there exists an alternative to search strategies mentioned above,
namely bidirectional search which uses backward reasoning as well as forward reasoning. The
main idea is to simultaneously search forward from the initial state, and backward from the goal
state, until the two search frontiers meet. The path from the initial state is then concatenated
with the inverse of the path from the goal state to form the complete solution path [9].

This leads us to the conclusion that both forward and backward search techniques offer
benefits to dynamic programming algorithms helping to shrink the state space. Moreover,
these techniques should not be seen as mutually exclusive, and therefore, the common opinion
that regression suits more effectively for dynamic programming algorithms than progression
can be disputed [7].

Thus, in order to combine the fluent calculus and dynamic programming we have three
possibilities: (1) use the revised version of the fluent calculus and revise dynamic programming
such that it reasons forwardly, (2) use the revised version of the fluent calculus and specify a
regression operator in this version, or (3) use the original version of the fluent calculus.

To our knowledge, there is no efficient forward dynamic programming algorithm. There
always has to be a back up at some point to do any form of prediction. Checking the revised
version of the fluent calculus, it is not immediately obvious how a regression operator can be
formalized without a major change in the calculus. We would need to introduce a regression
operator which performs regression over fluents rather than over actions. This requires the
crucial change in the fluent calculus axiomatization, namely the change of the state update
axioms (which are initially actionwise) to a fluentwise form. In other words, the fluent
calculus becomes the counterpart of the situation calculus.

Because this paper is mainly a case study of whether it is beneficial to combine dynamic
programming and reasoning in the fluent calculus, we opt for the last possibility. In this case we
do not have to change existing systems but can rather concentrate on finding a fluent calculus
formalization of the value iteration algorithm presented in the previous sections.

Before doing so, however, the original version of the fluent calculus is briefly sketched in
the next subsection.

Project Report 19

4.2 Fluent Calculus Revisited

The fluent calculus is a first-order axiomatization technique for solving main Cognitive Robotics
problems [12]. Basic notions are fluents, actions, and states.

Fluents are first-order terms starting with function symbol like on(a, b), i.e., block a is on
block b, or just constants like empty, i.e., arm of the gripper is empty.

Actions are elementary actions of the robot such as load(B, T) denoting the fact of loading
block B onto truck T .

States are characterized by multisets of fluents which may or may not be present in certain
states.

Formally, we have an alphabet A with variables AV and function symbols AF together with
predefined function symbols {◦, 1}, where ◦ is 2-ary function symbol and 1 is a constant.

A fluent term, which clearly represents a state of the system can be defined inductively:

• 1 is a fluent term;

• each fluent is a fluent term;

• if S and T are fluent terms, then S ◦ T is a fluent term.

For example, on(a, b) ◦ on(b, c) ◦ ontable(c) ◦ clear(a) defines a state in which the block a is
on b, the block b is on c, the block c is on the table, and the block a is clear.

Foundational axioms which are used in the fluent calculus are AC1, namely associativity(A),
commutativity(C), and unit element(1).

(∀X, Y, Z) X ◦ (Y ◦ Z) = (X ◦ Y) ◦ Z associativity
(∀X, Y) X ◦ Y = Y ◦X commutativity
(∀X) X ◦ 1 = X unit element

In the fluent calculus, actions are represented by a predicate action/3, where the arguments
encode preconditions, name, and effects of an action. For every action, we will have the
predicate action of the form action(Pre, A,E).

With the help of the predicate causes/3, we can express that one state is transformed into
another one by applying sequence of actions.

causes(Z, [], Z ′) ← Z =AC1 Z ′.
causes(Z, [A|P], Z ′) ← action(Pre,A, E)∧

Z ′ =AC1 E ◦ Z ′′∧
causes(Z, P, Z ′′ ◦ Pre).

where the first clause corresponding to the base case says that if the goal state contains the
initial one then there is nothing to do, namely that we have reached the initial situation. The
second clause can be read as follows: an execution of the plan [A|P] transforms a state Z into a

20 Symbolic Dynamic Programming

rin (R, C) racing car R is in city C
tin (T, C) truck T is in city C
on (R, T) racing car R is on truck T
rain it is raining

unload (R, T) racing car R is unloaded from truck T
load(R, T) racing car R is loaded onto truck T
drive (T,C) truck T is driven to city C

Figure 7: The fluents and actions of a logistics example.

state Z ′ if there is an action A with the preconditions Pre and effects E and there is a state Z ′′

satisfying an equation Z ′ =AC1 E ◦Z ′′ and after performing an action A the plan P transforms
Z into Z ′′ ◦ Pre.

The FC theory comprises AC1-axioms for the function ◦/2 and the definitions of action
and causes predicates.

For more details about the version of fluent calculus presented here see [11]. For the current
extensions of the fluent calculus please refer to [12].

4.3 Logistics Example

Let us consider the logistics example with cars, trucks and cities. Cars are delivered from one
city to another on trucks. Cars may be loaded on trucks and unloaded from them. The trucks
are driven between cities. This scenario can be described using the fluents and actions depicted
on the Figure 7.

Please note that all actions are stochastic. To deal with stochastic actions within the fluent
calculus we will use the same idea as in the situation calculus. Namely, we will decompose a
stochastic action into the deterministic primitives under the nature’s control. For instance, the
stochastic action load(B, T) will be decomposed in the following way.

choice(load(B, T), a) ≡ a = loadS (B, T) ∨ a = loadF (B, T)

Similarly, for the actions unload (B, T) and drive (T, C)

choice(unload (B, T), a) ≡ a = unloadS (B, T) ∨ a = unloadF (B, T)

choice(drive (T,C), a) ≡ a = driveS (T,C) ∨ a = driveF (T,C)

Project Report 21

prob (unloadS (R, T), unload (R, T), Z) = .7 ↔ holds (rain , Z)
prob (unloadS (R, T), unload (R, T), Z) = .9 ↔ ¬holds (rain , Z)
prob (unloadF (R, T), unload (R, T), Z) = .3 ↔ holds (rain , Z)
prob (unloadF (R, T), unload (R, T), Z) = .1 ↔ ¬holds (rain , Z)
prob (loadS (R, T), , T), Z) = .99
prob (loadF (R, T), , T), Z) = .01
prob (driveS (T,C), drive (T, C), Z) = .99
prob (driveF (T,C), drive (T,C), Z) = .01

Figure 8: The probabilities of nature’s choices in the logistics example.

action (rin (R, C) ◦ tin (T, C), loadS (R, T), on (R, T) ◦ tin (T, C))
action (rin (R, C) ◦ tin (T, C), loadF (R, T), rin (R, C) ◦ tin (T,C))
action (on (R, T) ◦ tin (T,C), unloadS (R, T), rin (R, C) ◦ tin (T, C))
action (on (R, T) ◦ tin (T,C), unloadF (R, T), on (R, T) ◦ tin (T, C))
action (tin (T, C ′), driveS (T, C), tin (T, C))
action (tin (T, C ′), driveF (T, C), tin (T,C ′))

Figure 9: The action specifications of the logistics example.

For each of the nature’s choices associated with an action we define the probability with
which it is chosen in a particular state. For example,

prob (unloadS (R, T), unload (R, T), Z) = .7 ↔ holds (rain , Z)

states that the probability for the successful execution of an unload action in state Z is .7 if it
is raining, where holds is a macro defined by:

holds (F, Z)
def
= (∃Z ′).Z = F ◦ Z ′.

Altogether, we specify the probabilities shown on Figure 8.
Recall that in the fluent calculus, actions are represented by a predicate action/3, where

the arguments encode preconditions, name, and effects of an action. Figure 9 shows the speci-
fication.

In the next step, we have to define the value of the reward function for each state. We give

22 Symbolic Dynamic Programming

a reward of 10 to all states in which the car Ferrari is in Monte Carlo and 0, otherwise:

reward (Z) = 10 ↔ holds (rin (f, m), Z)
reward (Z) = 0 ↔ ¬holds (rin (f, m), Z).

One should observe that we have specified the reward function without explicit state enumera-
tion. Rather, the state space is divided into abstract states depending on whether the Ferrari is
in Monte Carlo or not. Likewise, the value function can be specified with respect to the abstract
states only. This is in contrast to classical DP algorithms like the one shown in Section 2, in
which the states are explicitly enumerated.

We proceed by specifying the n-stage-to-go Q-function

Qn(a, z) = R(z) + γ
∑

z′∈Z
P(z, a, z′)Vn−1(z′). (14)

within the fluent calculus. In our approach, the only way the execution of an action may
lead to different outcomes is by means of nature’s choices. Let a(X) be an action and aj(X),
1 ≤ j ≤ k, its nature’s choices, where X is a sequence of arguments. We may replace (14) by

qn(a(X), Z) = reward (Z) + γ
∑

j

prob (aj(X), a(X), Z) vn−1(Z ′j) (15)

with

FC |= causes (Z, [aj(X)], Z ′j) (16)

for all 1 ≤ j ≤ k. One should observe that in the fluent calculus formalization of the value
iteration algorithm we are not going to enumerate all states but rather divide the state space
into abstract states. In our running example, these are initially the two abstract states, where
the Ferrari is in Monte Carlo or is not. In order to meet condition (16), Z ′j is instantiated with
these abstract states whereas the variable Z and the parameters X are left uninstantiated. By
computing the entailment relation, we effectively regress Z ′j through the corresponding nature’s
choice aj(X) to obtain Z. This reflects the backward nature of the value iteration algorithm.

We can now come back to the running example and illustrate the fluent calculus formal-
ization of the value iteration algorithm. Let the discount factor γ be set to .9 and initialize
v0(Z) = reward (Z) for all abstract states Z. The next step is to compute q1(a(X), Z) with
respect to the given actions a(X) and the abstract states. But before doing so let us introduce
Condition 4.3.1 the impact of which will be clear in a sequel.

Condition 4.3.1 Ground rin(f, m)-fluents occur at most once in a state.

Let us start with performing the regression through the action unload(R, T). In this case,
we obtain:

q1(unload (R, T), Z) = reward (Z)+
γ prob (unloadS (R, T), unload (R, T), Z) v0(Z ′1)+
γ prob (unloadF (R, T), unload (R, T), Z) v0(Z ′2)

(17)

Project Report 23

with

FC |= causes (Z, [unloadS (R, T)], Z ′1) (18)

and

FC |= causes (Z, [unloadF (R, T)], Z ′2). (19)

Starting from the given abstract state space, we compute the possible abstract predecessor
states with respect to (18) and (19). Consider first the abstract state where the Ferrari is in
Monte Carlo, i.e., holds (rin (f, m), Z ′1) is true. In this case, the holds -macro can be merged
into the causes -statement. We obtain:

FC |= causes (Z, [unloadS (R, T)], rin (f, m) ◦ Z ′′1) (20)

and

FC |= causes (Z, [unloadF (R, T)], rin (f, m) ◦ Z ′′2). (21)

To solve (20), we effectively have to find a refutation for:

?− causes (Z, [unloadS (R, T)], rin (f, m) ◦ Z ′′1).

Within two steps, this goal can be reduced to:

?− rin (R, C) ◦ tin (T, C) ◦X =AC1 rin (f, m) ◦ Z ′′1 ,
causes (Z, [], on (R, T) ◦ tin (T,C) ◦X).

(22)

In the next step, the AC1-unification algorithm is called and terminates successfully with a set
of most general unifiers consisting of

σ1 = {R 7→ f, C 7→ m, Z ′′1 7→ tin (T,m) ◦X}

and
σ2 = {X 7→ rin (f,m) ◦ Y, Z ′′1 7→ rin (R, C) ◦ tin (T,C) ◦ Y }.

Thus, we obtain the two goals

?− causes (Z, [], on (f, T) ◦ tin (T,m) ◦X)

and
?− causes (Z, [], on (R, T) ◦ tin (T,C) ◦ rin (f, m) ◦ Y).

Both goals can be refuted in one step leading to the computed answer substitutions

θ1 = {Z 7→ on (f, T) ◦ tin (T,m) ◦X, R 7→ f, Z ′′1 7→ tin (T, m) ◦X, C 7→ m}

24 Symbolic Dynamic Programming

and

θ2 = {Z 7→ on (R, T) ◦ tin (T,C) ◦ rin (f,m) ◦ Y, Z ′′1 7→ rin (R, C) ◦ tin (T, C) ◦ Y },
respectively. Furthermore, it can be computed that reward (Zθ1) = 0 and reward (Zθ2) = 10.

Thus, we obtain two abstract predecessor states Z specified by

A
def
= holds (on (f, T) ◦ tin (T, m), Z) ∧ ¬holds (rin (f,m), Z)

and
B

def
= holds (on (R, T) ◦ tin (T, C) ◦ rin (f,m), Z).

Now consider the second abstract state where the Ferrari is not in Monte Carlo, i.e.,
¬holds (rin (f, m), Z ′1) is true. In this case, we obtain:

FC |= causes (Z, [unloadS (R, T)], Z ′1) (23)

with extra condition that ¬holds (rin (f, m), Z ′1) is true.
To solve (23), we have to find a refutation for:

?− causes (Z, [unloadS (R, T)], Z ′1).

Within two steps, this goal can be reduced to:

?− rin (R,C) ◦ tin (T, C) ◦X =AC1 Z ′1,
causes (Z, [], on (R, T) ◦ tin (T,C) ◦X).

(24)

In the next step, the AC1-unification algorithm is called and terminates successfully with
a most general unifier

σ = {Z ′1 7→ rin (R,C) ◦ tin (T, C) ◦X}
Then we conclude that ¬holds (rin (f,m), X) is true and (R 6= f ∨ C 6= m). The computed

answer substitution is:

θ = {Z 7→ on (R, T) ◦ tin (T,C) ◦X}
with the condition that ¬holds (rin (f, m), X) is true and (R 6= f ∨ C 6= m).

Since ¬holds (rin (f,m), X) is true reward (Zθ) = 0.
Thus we obtain one abstract predecessor state Z specified as

C
def
= holds (on (R, T) ◦ tin (T,C), Z) ∧ ¬holds (rin (f, m), Z) ∧ (R 6= f ∨ C 6= m).

Likewise, solving (19) we have to consider two cases. First, when the Ferrari is in Monte
Carlo, i.e., holds (rin (f, m), Z ′2) and second, when the Ferrari is not in Monte Carlo, i.e.,
¬holds (rin (f, m), Z ′2).

Project Report 25

For the first case, the holds-macro can be merged into the causes-statement. We obtain:

FC |= causes (Z, [unloadF (R, T)], rin (f,m) ◦ Z ′′2) (25)

To solve (25), we effectively have to find a refutation for:

?− causes (Z, [unloadF (R, T)], rin (f,m) ◦ Z ′′2).

Within two steps, this goal can be reduced to:

?− on (R, T) ◦ tin (T, C) ◦X =AC1 rin (f, m) ◦ Z ′′2 ,
causes (Z, [], on (R, T) ◦ tin (T,C) ◦X).

(26)

In the next step, the AC1-unification algorithm is called and terminates successfully with a
most general unifier

σ = {X 7→ rin (f,m) ◦ Y, Z ′′2 7→ on (R, T) ◦ tin (T,C) ◦ Y }.

Thus, we obtain the goal

?− causes (Z, [], on (R, T) ◦ tin (T,C) ◦ rin (f, m) ◦ Y).

The goal can be refuted in one step leading to the computed answer substitution

θ = {Z 7→ on (R, T) ◦ tin (T,C) ◦ rin (f,m) ◦ Y }.

Since holds(rin(f, m), Z) is true, reward (Zθ) = 10.
Thus, we obtain the abstract predecessor state Z specified by

D
def
= holds (on (R, T) ◦ tin (T,C) ◦ rin (f, m), Z).

Now consider the second abstract state where the Ferrari is not in Monte Carlo, i.e.,
¬holds (rin (f, m), Z ′2) is true. In this case, we obtain:

FC |= causes (Z, [unloadF (R, T)], Z ′2) (27)

with extra condition that ¬holds (rin (f, m), Z ′2) is true.
To solve (27), we have to find a refutation for:

?− causes (Z, [unloadF (R, T)], Z ′2).

26 Symbolic Dynamic Programming

Within two steps, this goal can be reduced to:

?− on (R, T) ◦ tin (T, C) ◦X =AC1 Z ′2,
causes (Z, [], on (R, T) ◦ tin (T,C) ◦X).

(28)

In the next step, the AC1-unification algorithm is called and terminates successfully with
a most general unifier

σ = {Z ′2 7→ on (R, T) ◦ tin (T, C) ◦X}
Then we conclude that ¬holds (rin (f,m), X) is true and obtain the computed answer substi-
tution

θ1 = {Z 7→ on (R, T) ◦ tin (T, C) ◦X}

with the condition that ¬holds (rin (f, m), X) is true and (R 6= f ∨ C 6= m). Or,

θ2 = {Z 7→ on (R, T) ◦ tin (T, C) ◦X}

with the condition that ¬holds (rin (f, m), X) is true and (R = f ∧ C = m).
Since ¬holds (rin (f,m), X) is true reward (Zθ1) = 0 and reward (Zθ2) = 0.
Thus we obtain two abstract predecessor states Z specified as

E
def
= holds (on (R, T) ◦ tin (T, C), Z) ∧ ¬holds (rin (f,m), Z) ∧ (R 6= f ∨ C 6= m)

and

F
def
= holds (on (R, T) ◦ tin (T, C), Z) ∧ ¬holds (rin (f,m), Z) ∧ (R = f ∧ C = m).

Since the states A and F , B and D, E and C are specified in the same way and have the
same rewards, we finally end up with 3 abstract predecessor states.

A
def
= holds (on (f, T) ◦ tin (T, m), Z) ∧ ¬holds (rin (f,m), Z)

B
def
= holds (on (R, T) ◦ tin (T, C) ◦ rin (f, m), Z)

and

C
def
= holds (on (R, T) ◦ tin (T,C), Z) ∧ ¬holds (rin (f, m), Z) ∧ (R 6= f ∨ C 6= m).

For each of the abstract predecessor states, we can now compute its q1-value. There is a
slight complication, though, because the probabilities of nature’s choices for the unload action
depend on whether it is raining. Altogether, we obtain the six cases shown in Table 1. Because
(B1) and (B2) lead to the same q1-value, it does not make a difference whether it is raining.

Project Report 27

abstract pred. state Z q1-value

(A1) A ∧ holds (rain , Z) 0 + .9 · .7 · 10 + .9 · 3 · 0 = 6.3
(A2) A ∧ ¬holds (rain , Z) 0 + .9 · .9 · 10 + .9 · .1 · 0 = 8.1
(B1) B ∧ holds (rain , Z) 10 + .9 · .7 · 10 + .9 · .3 · 10 = 19
(B2) B ∧ ¬holds (rain , Z) 10 + .9 · .9 · 10 + .9 · .1 · 10 = 19
(C1) C ∧ holds (rain , Z) 0 + .9 · .7 · 0 + .9 · 3 · 0 = 0
(C2) C ∧ ¬holds (rain , Z) 0 + .9 · .9 · 0 + .9 · .1 · 0 = 0

Table 1: The q1-values for the unload action.

The same holds for (C1) and (C2). Altogether, we obtain an abstract predecessor state space
with four abstract states Zu

1 , Zu
2 , Zu

3 , and Zu
4 .

Zu
1

def
= holds (on (f, T) ◦ tin (T, m) ◦ rain , Z) ∧ ¬holds (rin (f, m), Z)

Zu
2

def
= holds (on (f, T) ◦ tin (T, m), Z) ∧ ¬holds (rin (f, m) ◦ rain , Z)

Zu
3

def
= holds (on (R, T) ◦ tin (T,C) ◦ rin (f, m), Z)

Zu
4

def
= holds (on (R, T) ◦ tin (T, C), Z) ∧ ¬holds (rin (f, m), Z) ∧ (R 6= f ∨ C 6= m).

One should observe that, for example, in case (C), we were considering the action unload (R, T)
without instantiating R and T . Thus, the fluent calculus formalization of the classical dynamic
programming abstracts not only from the state but also from the action space.

Let us analyze the obtained predecessor abstract states and the corresponding q1-values.
The state Zu

1 differs from the state Zu
2 only in presence of the fluent rain. This fact leads to

the different q-values. The state Zu
3 has the maximum value because both actions unloadS and

unloadF lead us to the goal state. And the last state Zu
4 is given value of 0 because none of

the nature’s choices of the action unload reach the goal state.
Now the same computations should be performed for other actions, i.e., load(R, T) and

drive(T, C).
Performing the decision-theoretic regression through the action load(R, T), we obtain:

q1(load(R, T), Z) = reward (Z)+
γ prob (loadS (R, T), load(R, T), Z) v0(Z ′1)+
γ prob (loadF (R, T), load(R, T), Z) v0(Z ′2)

(29)

with

FC |= causes (Z, [loadS (R, T)], Z ′1) (30)

and

FC |= causes (Z, [loadF (R, T)], Z ′2). (31)

28 Symbolic Dynamic Programming

Starting from the given abstract state space, we compute the possible abstract predecessor
states with respect to (30) and (31). Consider first the abstract state where the Ferrari is in
Monte Carlo, i.e., holds (rin (f, m), Z ′1) is true. In this case, the holds -macro can be merged
into the causes -statement. We obtain:

FC |= causes (Z, [loadS (R, T)], rin (f, m) ◦ Z ′′1) (32)

and

FC |= causes (Z, [loadF (R, T)], rin (f, m) ◦ Z ′′2). (33)

To solve (32), we effectively have to find a refutation for:

?− causes (Z, [loadS (R, T)], rin (f, m) ◦ Z ′′1).

It can be rewritten to:

?− action(Pre, loadS (R, T), E),
E ◦X =AC1 rin (f, m) ◦ Z ′′1 ,
causes (Z, [], P re ◦X).

(34)

And Equation (34) results in:

?− on (R, T) ◦ tin (T, C) ◦X =AC1 rin (f, m) ◦ Z ′′1 ,
causes (Z, [], rin (R,C) ◦ tin(T,C) ◦X).

(35)

In the next step, the AC1-unification algorithm terminates successfully with a most general
unifier

σ = {X 7→ rin(f, m) ◦ Y, Z ′′1 7→ on (R, T) ◦ tin(T,C) ◦ Y }.
And we obtain the goal:

?− causes (Z, [], rin (R, C) ◦ tin (T, C) ◦ rin (f, m) ◦ Y).

The goal is refuted in one step leading to the computed answer substitution

θ = {Z 7→ rin (R, C) ◦ tin (T, C) ◦ rin(f, m) ◦ Y }

with extra condition by 4.3.1 that (R 6= f ∨ C 6= m).
Furthermore, it can be computed that reward (Zθ) = 10 since holds(rin(f, m), Z).
Thus, we obtain the abstract predecessor state Z specified by

A
def
= holds (rin (R, C) ◦ tin (T,C) ◦ rin (f, m), Z) ∧ (R 6= f ∨ C 6= m).

Project Report 29

Now consider the second abstract state where the Ferrari is not in Monte Carlo, i.e.,
¬holds (rin (f, m), Z ′1) is true. In this case, we obtain:

FC |= causes (Z, [loadS (R, T)], Z ′1) (36)

with extra condition that ¬holds (rin (f, m), Z ′1) is true.
To solve (36), we have to find a refutation for:

?− causes (Z, [loadS (R, T)], Z ′1).

Within two steps, this goal can be reduced to:

?− on (R, T) ◦ tin (T,C) ◦X =AC1 Z ′1,
causes (Z, [], rin (R, C) ◦ tin (T, C) ◦X).

(37)

In the next step, the AC1-unification algorithm is called and terminates successfully with
a most general unifier

σ = {Z ′1 7→ on (R, T) ◦ tin (T, C) ◦X}
with the condition that ¬holds (rin (f, m), X) is true. And we obtain the goal:

?− causes (Z, [], rin (R,C) ◦ tin (T, C) ◦X).

The goal is refuted in one step leading to two computed answer substitutions:

θ1 = {Z 7→ rin (R,C) ◦ tin (T, C) ◦X}
with the condition that ¬holds (rin (f, m), X) is true and (R 6= f ∨ C 6= m).

Since ¬holds (rin (f,m), X) is true reward (Zθ1) = 0.
In the second case the computed answer substitution is:

θ2 = {Z 7→ rin (R,C) ◦ tin (T, C) ◦X}
with the condition that ¬holds (rin (f, m), X) is true and (R = f ∧ C = m).

Since holds (rin (f,m), Z) is true reward (Zθ2) = 10.
Thus we obtain two abstract predecessor states Z specified as

B
def
= holds (rin (R, C) ◦ tin (T,C), Z) ∧ ¬holds (rin (f, m), Z) ∧ (R 6= f ∨ C 6= m).

C
def
= holds (rin (f,m) ◦ tin (T, m), Z).

Likewise, solving (31) we have to consider two cases. First, when the Ferrari is in Monte
Carlo, i.e., holds (rin (f, m), Z ′2) and second, when the Ferrari is not in Monte Carlo, i.e.,
¬holds (rin (f, m), Z ′2).

30 Symbolic Dynamic Programming

For the first case, the holds-macro can be merged into the causes-statement. We obtain:

FC |= causes (Z, [loadF (R, T)], rin (f,m) ◦ Z ′′2) (38)

To solve (38), we effectively have to find a refutation for:

?− causes (Z, [loadF (R, T)], rin (f,m) ◦ Z ′′2).

Within two steps, this goal can be reduced to:

?− rin (R, C) ◦ tin (T, C) ◦X =AC1 rin (f, m) ◦ Z ′′2 ,
causes (Z, [], rin (R, C) ◦ tin (T, C) ◦X).

(39)

In the next step, the AC1-unification algorithm is called and terminates successfully with a set
of most general unifiers

σ1 = {R 7→ f, C 7→ m,Z ′′2 7→ tin (T, m) ◦X}

with ¬holds(rin (f, m), X) by Condition 4.3.1. And

σ2 = {X 7→ rin (f, m) ◦ Y, Z ′′2 7→ rin (R,C) ◦ tin(T, C) ◦ Y }

with (R 6= f ∨ C 6= m) by Condition 4.3.1.
Thus, we obtain two goals:

?− causes (Z, [], rin (f, m) ◦ tin (T,m) ◦X)

and
?− causes (Z, [], rin (R, C) ◦ tin (T, C) ◦ rin (f, m) ◦ Y).

These goals can be refuted in one step leading to the computed answer substitutions

θ1 = {Z 7→ rin (f, m) ◦ tin (T,m) ◦X}.

with reward (Zθ1) = 10 and

θ2 = {Z 7→ rin (R, C) ◦ tin (T,C) ◦ rin(f,m) ◦ Y }

with reward (Zθ2) = 10, correspondingly.
Thus, we obtain two abstract predecessor states Z specified by

D
def
= holds (rin (f, m) ◦ tin (T, m), Z)

and
E

def
= holds (rin (R, C) ◦ tin (T,C) ◦ rin (f, m), Z) ∧ (R 6= f ∨ C 6= m).

Project Report 31

Now consider the second case when the Ferrari is not in Monte Carlo, i.e., ¬holds (rin (f, m), Z ′2)
is true. In this case, we obtain:

FC |= causes (Z, [loadF (R, T)], Z ′2) (40)

with extra condition that ¬holds (rin (f, m), Z ′2) is true.
To solve (40), we have to find a refutation for:

?− causes (Z, [loadF (R, T)], Z ′2).

Within two steps, this goal can be reduced to:

?− rin (R, C) ◦ tin (T, C) ◦X =AC1 Z ′2,
causes (Z, [], rin (R, C) ◦ tin (T, C) ◦X).

(41)

In the next step, the AC1-unification algorithm is called and terminates successfully with
a most general unifier

σ = {Z ′2 7→ rin (R,C) ◦ tin (T, C) ◦X}
Then we conclude that ¬holds (rin (f,m), X) is true and obtain the computed answer substi-
tution

θ = {Z 7→ rin (R, C) ◦ tin (T,C) ◦X}

with the condition that ¬holds (rin (f, m), X) is true and (R 6= f ∨ C 6= m).
Since ¬holds (rin (f,m), X) is true and (R 6= f ∨ C 6= m), reward (Zθ) = 0.
Thus we obtain the abstract predecessor state Z specified by

F
def
= holds (rin (R,C) ◦ tin (T, C), Z) ∧ ¬holds (rin (f, m), Z) ∧ (R 6= f ∨ C 6= m).

Since the abstract states A and E, F and B, D and C are specified in the same way and
have the same rewards, we finally end up with three abstract predecessor states.

Z l
1

def
= holds (rin (R, C) ◦ tin (T, C) ◦ rin (f, m), Z) ∧ (R 6= f ∨ C 6= m).

Z l
2

def
= holds (rin (f, m) ◦ tin (T, m), Z)

and

Z l
3

def
= holds (rin (R, C) ◦ tin (T,C), Z) ∧ ¬holds (rin (f,m), Z) ∧ (R 6= f ∨ C 6= m).

Table 2 depicts the q1-values for load(R, T)-action. Please note that probabilities of a
successful or failure loading of a racing car R to a truck T are independent of the fact whether
it is raining or not.

32 Symbolic Dynamic Programming

abstract pred. state Z q1-value

Zl
1 10 + .9 · .99 · 10 + .9 · .01 · 10 = 19

Zl
2 10 + .9 · .99 · 0 + .9 · .01 · 10 = 10.09

Zl
3 0 + .9 · .99 · 0 + .9 · .01 · 0 = 0

Table 2: The q1-values for the load action.

Let us analyze the obtained result. The first abstract predecessor state has the q1-value 19
because both actions loadS and loadF will lead to the goal state. Namely, in both cases we
will end up with the state in which the Ferrari is in Monte Carlo. The second predecessor state
has q1-value 10.09 due to successful execution of loadF -action. And the last predecessor state
is given q1-value of 0 because none of nature’s choices of load-action successively reaches the
goal state.

The last action left to consider is drive-action. Performing the decision-theoretic regression
through the action drive(T, C), we obtain:

q1(drive (T, C), Z) = reward (Z)+
γ prob (driveS (T, C), drive (T,C), Z) v0(Z ′1)+
γ prob (driveF (T, C), drive (T, C), Z) v0(Z ′2)

(42)

with

FC |= causes (Z, [driveS (T, C)], Z ′1) (43)

and

FC |= causes (Z, [driveF (T, C)], Z ′2). (44)

Starting from the given abstract state space, we compute the possible abstract predecessor
states with respect to (43) and (44). Consider first the abstract state where the Ferrari is in
Monte Carlo, i.e., holds (rin (f, m), Z ′1) is true. In this case, the holds -macro can be merged
into the causes -statement. We obtain:

FC |= causes (Z, [driveS (T, C)], rin (f, m) ◦ Z ′′1) (45)

and

FC |= causes (Z, [driveF (T, C)], rin (f, m) ◦ Z ′′2). (46)

To solve (45), we effectively have to find a refutation for:

?− causes (Z, [driveS (T, C)], rin (f, m) ◦ Z ′′1).

It can be rewritten to:

?− tin (T, C) ◦X =AC1 rin (f, m) ◦ Z ′′1 ,
causes (Z, [], tin (T, C ′) ◦X).

(47)

Project Report 33

In the next step, the AC1-unification algorithm terminates successfully with a most general
unifier

σ = {X 7→ rin (f, m) ◦ Y, Z ′′1 7→ tin (T, C) ◦ Y }.
And we obtain the goal:

?− causes (Z, [], tin (T,C ′) ◦ rin (f,m) ◦ Y).

The goal is refuted in one step leading to the computed answer substitution

θ = {Z 7→ tin (T, C ′) ◦ rin(f,m) ◦ Y }.

Furthermore, it can be computed that reward (Zθ) = 10 since holds(rin(f, m), Z).
Thus, we obtain the abstract predecessor state Z specified by

A
def
= holds (tin (T, C ′) ◦ rin (f, m), Z).

Now consider the second abstract state where the Ferrari is not in Monte Carlo, i.e.,
¬holds (rin (f, m), Z ′1) is true. In this case, we obtain:

FC |= causes (Z, [driveS (T, C)], Z ′1) (48)

with extra condition that ¬holds (rin (f, m), Z ′1) is true.
To solve (48), we have to find a refutation for:

?− causes (Z, [driveS (T, C)], Z ′1).

Within two steps, this goal can be reduced to:

?− tin (T, C) ◦X =AC1 Z ′1,
causes (Z, [], tin (T, C ′) ◦X).

(49)

In the next step, the AC1-unification algorithm is called and terminates successfully with
a most general unifier

σ = {Z ′1 7→ tin (T, C) ◦X}
with the condition that ¬holds (rin (f, m), X) is true. And we obtain the goal:

?− causes (Z, [], tin (T, C ′) ◦X).

The goal is refuted in one step leading to the computed answer substitution:

θ = {Z 7→ tin (T,C ′) ◦X}

34 Symbolic Dynamic Programming

with the condition that ¬holds (rin (f, m), X) is true. Since ¬holds (rin (f, m), X) is true
reward (Zθ) = 0.

Thus we obtain the abstract predecessor state Z specified as

B
def
= holds (tin (T,C ′), Z) ∧ ¬holds (rin (f, m), Z).

Likewise, solving (46) we have to consider two cases. First, when the Ferrari is in Monte
Carlo, i.e., holds (rin (f, m), Z ′2) and second, when the Ferrari is not in Monte Carlo, i.e.,
¬holds (rin (f, m), Z ′2).

For the first case, the holds-macro can be merged into the causes-statement. We obtain:

FC |= causes (Z, [driveF (T, C)], rin (f,m) ◦ Z ′′2) (50)

To solve (50), we effectively have to find a refutation for:

?− causes (Z, [driveF (R, T)], rin (f,m) ◦ Z ′′2).

Within two steps, this goal can be reduced to:

?− tin (T, C ′) ◦X =AC1 rin (f,m) ◦ Z ′′2 ,
causes (Z, [], tin (T,C ′) ◦X).

(51)

In the next step, the AC1-unification algorithm is called and terminates successfully with a
most general unifier

σ = {X 7→ rin (f, m) ◦ Y,Z ′′2 7→ tin (T, C ′) ◦ Y }.

Thus, we obtain the goal:

?− causes (Z, [], tin (T,C ′) ◦ rin (f,m) ◦ Y).

This goal can be refuted in one step leading to the computed answer substitution

θ = {Z 7→ tin (T, C ′) ◦ rin (f, m) ◦ Y }

with reward (Zθ) = 10.
Thus, we obtain the abstract predecessor state Z specified by

C
def
= holds (tin (T,C ′) ◦ rin (f,m), Z).

Now consider the last case when the Ferrari is not in Monte Carlo, i.e., ¬holds (rin (f,m), Z ′2)
is true. In this case, we obtain:

Project Report 35

abstract pred. state Z q1-value

Zd
1 10 + .9 · .99 · 10 + .9 · .01 · 10 = 19

Zd
2 10 + .9 · .99 · 0 + .9 · .01 · 0 = 0

Table 3: The q1-values for the drive action.

FC |= causes (Z, [driveF (T,C)], Z ′2) (52)

with extra condition that ¬holds (rin (f, m), Z ′2) is true.
To solve (52), we have to find a refutation for:

?− causes (Z, [driveF (T,C)], Z ′2).

Within two steps, this goal can be reduced to:

?− tin (T, C ′) ◦X =AC1 Z ′2,
causes (Z, [], tin (T, C ′) ◦X).

(53)

In the next step, the AC1-unification algorithm is called and terminates successfully with
a most general unifier

σ = {Z ′2 7→ tin (T,C ′) ◦X}.
Then we conclude that ¬holds (rin (f,m), X) is true and obtain the computed answer substi-
tution

θ = {Z 7→ tin (T,C ′) ◦X}

with the condition that ¬holds (rin (f, m), X) is true.
Since ¬holds (rin (f,m), X) is true, reward (Zθ) = 0.
Thus we obtain the abstract predecessor state Z specified by

D
def
= holds (tin (T, C ′), Z) ∧ ¬holds (rin (f, m), Z).

Since the abstract states A and C, B and D are specified in the same way and have the
same rewards, we finally end up with two abstract predecessor states.

Zd
1

def
= holds (tin (T, C ′) ◦ rin (f, m), Z).

Zd
2

def
= holds (tin (T,C ′), Z) ∧ ¬holds (rin (f, m), Z).

Table 3 depicts the q1-values for the drive(T,C)-action. Please note that probabilities of a
successful or failure driving truck T to a city C are independent of the fact whether it is raining

36 Symbolic Dynamic Programming

or not. Moreover, please note that the result we have obtained is very natural. The state in
which the Ferrari is in Monte Carlo can be reached by performing the action drive(T, C) only
if the Ferrari has already been in Monte Carlo before the execution of an action. Conversely,
the state in which the Ferrari is not in Monte Carlo can be reached by performing the action
drive(T, C) only if the Ferrari has not been in Monte Carlo before the execution of an action.

We have computed the q1-values for all actions. Following the value iteration algorithm, in
the next section we are going to choose the optimal action.

4.4 Symbolic Dynamic Programming

The value iteration algorithm within the fluent calculus is very similar to the one for the
situation calculus with the difference that we operate on states instead of situations. Namely,

vn(Z) = W ↔
[
∨
a
(∃X).qn(a(X), Z) = W] ∧

[
∧
a′

(∀Y, W ′).qn(a′(Y), Z) = W ′] → W ′ ≤ W, (54)

where Z is a state. In other words, the value function vn(Z) applied to a state Z has the value
W iff there exists an action a with the q-value W and for all other actions a′ having the q-value
W ′, we find that W ′ is less or equal than W.

Recalling our running example, any action of unload, load, or drive can be chosen because
all of them have an abstract state which has the maximum q1-value, i.e., 19. If we choose
unload-action then the predecessor abstract state is:

Zu
3

def
= holds (on (R, T) ◦ tin (T, C) ◦ rin (f, m), Z).

If load then the state is described as:

Z l
1

def
= holds (rin (R, C) ◦ tin (T, C) ◦ rin (f, m), Z) ∧ (R 6= f ∨ C 6= m).

And finally, if we opt for drive then the specification of the predecessor state is:

Zd
1

def
= holds (tin (T, C ′) ◦ rin (f, m), Z).

From a theoretical point of view, value iteration algorithm in its pure style is not sensitive
to exploration. That is, it will eventually converge to the right values independent on the
action selection, given that there are indefinitely many learning trials. There is a large variety
of action selection and exploration methods [4, 10]. As the agent needs to explore the search
space during learning, one may use a randomized action selection strategy, e.g., take the action

Project Report 37

n := 0.
Specify ε > 0.
Initialize v0(Z) = reward (Z)
loop

n := n + 1.
For each action type a(X) compute qn(a(X), Z) using vn−1(Z ′)

where Z ′ ∈ Z and satisfies the condition
FC |= causes(Z, [aj(X)], Z ′) for every nature’s choice aj(X).

Compute vn(Z) using qn(a(X), Z) as in Equation (54).
until |vn(Z)− vn−1(Z)| < ε for all abstract states Z ∈ Z.

Figure 10: The first-order value iteration algorithm.

with the highest value with a probability p, and take a random action with the probability
(1− p).

Coming back to our example, in order to have more certainty about the optimal action
choice one may associate the probability to each action. These probabilities will denote the
probabilities of choosing an action at the particular state. Since we have not introduced the
concept of action choice probabilities in our approach, we will have three optimal actions and
the value function v1(Z) will be equal to 19. One should note that we have assumed that the
termination condition, i.e., |vn(Z)−vn−1(Z)| < ε, has been successively met and our algorithm
terminates after a single iteration step.

The algorithm of the first-order value iteration within the fluent calculus is summarized
on the Figure 10. This algorithm together with the first-order decision-theoretic regression for
computing q-values provides the ability to construct a sequence of value functions in a symbolic
way, obviating state and action space enumeration. As a result, the state space is partitioned
into abstract states which are specified symbolically within the fluent calculus. Moreover, the
presented algorithm produces an abstraction from the action space, eliminating the need in
domain grounding. The later is a crucial problem of the existing decision-theoretic algorithms
because the number of propositions grows dramatically with the number of domain objects.
Having computed the values of q-function and the optimal value function, the extraction of an
optimal action is rather straightforward. In order to get an optimal action (actions) one has to
take an action (actions) which has (have) the maximum q-value, or in other words, an action
which corresponds to the optimal value function.

38 Symbolic Dynamic Programming

5 Summary and Future Work

We have provided a symbolic dynamic programming approach for modelling first-order Markov
decision processes within the fluent calculus. We have addressed the scalability problem of the
classical DP concept by partitioning the state space into “abstract states”. The partitioning
is done according to the conditions represented as the first-order formulae produced by the
decision-theoretic regression. Furthermore, by exploiting the logical structure of our approach,
we avoid domain grounding.

Our approach is very similar to one presented within the situation calculus [1] but is still
distinguished by the following features. First, for the situation calculus, or to be precise
for GOLOG [17] the closed-world assumption is applied to the initial state specification. In
comparison with the situation calculus, the version of the fluent calculus presented here allows
specifying and computing with an incomplete state knowledge. This fact is reflected in the
symbolic value iteration algorithm. See, for example, the definition of the nature’s choices
probabilities

prob(unloadS (R, T), unload (R, T), Z) = .7 ↔ (∃Z ′). Z = rain ◦ Z ′

or the rewards’ definition

reward (Z) = 10 ↔ (∃Z ′). Z = rin (f, m) ◦ Z ′.

Second, the version of the fluent calculus presented here does not introduce such notion as
“situation” (as in case of the situation calculus) which, in fact, is not needed, because the clas-
sical value iteration algorithm works on states. More precisely, the predicate causes/3, which
describes the transformation of one state into the another and reflects the backward nature of
the value iteration algorithm, operates on states. This feature of the fluent calculus allows us
the rather direct translation from the classical value iteration algorithm to its symbolic coun-
terpart. As a result, the first-order representation of the Q-functions and the value functions
within the fluent calculus is given over states. See, for example, Equation 15, where Z and Z ′

represent the states.
Moreover, the ability to operate on states directly turns to be very efficient when computing

the value of a fluent. In the fluent calculus the value is readily available from the list of fluents.
In the situation calculus the current situation term should be unfolded either until the situation
is reached where the fluent was caused true or false by the preceding action or until the initial
situation. Only after such unfolding we will have access to the value of the fluent.

Although some restrictions were made, the example given illustrates the ability of using
the fluent calculus for decision-theoretic regression and inspires to obviate these restrictions
developing a more realistic presentation. A number of interesting directions remains to be ex-
plored. “Computer-based” simplification techniques not used so far because of their complexity
will definitely enhance the implementation. As an alternative direction of the future work, we
may concentrate on integrating the presented decision-theoretic regression algorithm for the

Project Report 39

fluent calculus with powerful first-order theorem provers to enhance the performance of the
algorithm. Finally, it looks promising to investigate further the possibility of using the version
of the fluent calculus presented here decorating it by such practical features as sensing, that is
a treatment of sensor outputs, ramifications, i.e., indirect effects, and qualifications caused by
some exogenous events.

40 Symbolic Dynamic Programming

References

[1] Craig Boutilier, Ray Reiter, and Bob Price. Symbolic dynamic programming for First-
Order MDPs. In Bernhard Nebel, editor, Proceedings of the seventeenth International
Conference on Artificial Intelligence (IJCAI-01), pages 690-700, San Francisco, CA, Au-
gust 4-10 2001. Morgan Kaufmann Publishers, Inc.

[2] R.E.Bellman. Dynamic Programming. Princeton University Press, Princeton, 1957.

[3] M.L.Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming,
Wiley, 1994.

[4] L.P.Kaelbling, M.Littman, A.W.Moore. Reinforcement Learning: A Survey. AI Access
Foundation and Morgan Kaufmann Publishers, 1996.

[5] J.McCarthy. Situations, actions and causal laws. Tech.Report, Stanford University, 1963.
Repr. Semantic Information Processing, MIT Press, Cambridge, 1968, 410-417.

[6] R. Reiter. The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes)
and a Completeness Result for Goal Regression. In Vladimir Lifschitz, editor,Artificial In-
telligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy,
p. 359-380. Academic Press, San Diego, CA, 1991.

[7] C.Boutilier, T.Dean, and S.Hanks. Decision Theoretic Planning: Structural Assumptions
and Computational Leverage, Journal of AI Research (JAIR) 11:1–94, 1999.

[8] C.Boutilier,R.Reiter, M.Soutchanski, and S.Thrun. Decision-theoretic, High-level Agent
Programming in the Situation Calculus. AAAI-2000, Austin, TX, 2000.

[9] S.Russell, P.Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.

[10] R.S.Sutton,and A.G.Barto. Reinforcement learning: An Introduction. MIT Press, 1998.

[11] S.Hölldobler, J.Schneeberger. A New Deductive Approach to Planning. New Generation
Computing 8:225-244, 1990.

[12] M.Thielscher. The Fluent Calculus: A Specification Language for Robots with Sensors in
Nondeterministic, Concurrent, and Ramifying Environments. 2000.

[13] T.Dean, J.Allen, Y.Aloimonos. Artificial Intelligence: Theory and Practice. Benjamin
Cummings, 1995.

[14] T.Dean, M.Wellman. Planning and Control. Morgan Kaufmann, San Mateo, California,
1991.

[15] S.French. Decision Theory. Halsted Press, New York, 1986.

Project Report 41

[16] G.Dantzig, P.Wolfe. Decomposition principle for dynamic programs: Operations Research.
1960.

[17] H.J.Levesque, R.Reiter, Y.Lespérance, F.Lin, and R.Scherl. GOLOG:A logic programming
language for dynamic domains. Journal of Logic Programming, 31(1-3):59-83, 1997.

