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Review: PP and BPP

Definition 21.4: A language L is in Polynomial Probabilistic Time (PP) if there is
a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] > 1
2 ,

• if w < L, then Pr [M accepts w] ≤ 1
2 .

Definition 21.11: A language L is in Bounded-Error Polynomial Probabilistic Time
(BPP) if there is a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] ≥ 2
3 ,

• if w < L, then Pr [M accepts w] ≤ 1
3 .
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Random numbers as witness strings
We can replace the built-in true random number generator by a sufficiently long string of
random numbers provided in addition to the input.

Rand Corporation, https://www.rand.org/pubs/monograph_reports/MR1418.html
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A word of warning on BPP
We gave two equivalent definitions for BPP:
(1) Polynomial-time bounded PTMs with probability ≤ 1

3 of returning a wrong result
(2) Polynomial-time bounded DTMs that receive an additional input of random

numbers r ∈ {0, 1}m of uniform length m, polynomial in |w|; and producing the
correct result for at least 2

3 such random strings

Note that we are not just counting the correct computation paths in either case:
• In Case (1), we sum up probabilities of correct runs; a short path has a higher

probability than a single long path
• In Case (2), we count witness strings, but several witness strings might belong to

the same path (if it is shorter and does not use all random numbers); thus paths
have different numbers of witnesses to account for their different weight

Warning: If paths can have different lengths, then requiring that ≥ 2
3 of all com-

putation paths are correct is not the same as requiring that a correct path occurs
with probability ≥ 2

3 . The former defines a class called BPPpath instead of BPP.
Han, Hemaspaandra, and Thierauf showed that BPPpath is most likely strictly more
powerful than BPP! For example, NPBPP ⊆ BPPpath.
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PP is hard

We found that:

• NP ⊆ PP,

• coNP ⊆ PP, and

• PH ⊆ PPP (without proof)

As an upper bound, we got PP ⊆ PSpace.

Indeed, the word problem for PP languages seems to require exponential effort to
check, since the probability of accepting words in the language may be exponentially
close to the probability of accepting words that are not in the language.

{ not a practical class of probabilistic algorithms
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Understanding BPP
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BPP is practical

We found (Theorem 21.12):

• If a polytime PTM produces the correct output with probability ≥ 1
2 + |w|

−c,

• then some polytime PTM produces the correct output with probability ≥ 1 − 2−|w|
d
.

In words: even a weak bound on the error is enough to obtain almost arbitrary certainty
in polynomial time!

Corollary 21.15: Defining the class BPP with any bounded error probability < 1
2

instead of 1
3 leads to the same class of languages.

Corollary 21.16: For any language in BPP, there is a polynomial time algorithm
with exponentially low probability of error.

BPP might be better than P for describing what is “tractable in practice”!
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Summary and open questions

We have already seen that BPP is robust against the actual error bound

Moreover, it is not hard to show the following:

• BPP is closed under complement (exercise)

• BPPBPP = BPP (exercise)

We have not discussed several important questions:

• What happens if we assume unfair coins? (Pr [heads] , 1
2 )

• How does BPP relate to other complexity classes?

• Which problems are in BPP and which are BPP-complete?
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Robustness using unfair coins (1)
Would a PTM have greater power if its random number generator would output 1 with
probability ρ , 1

2 ?

Proposition 22.1: A coin with Pr [heads] = ρ can be simulated by a PTM in ex-
pected time O(1) provided that the ith bit of ρ is computable in polynomial time
w.r.t. i.

Proof: Let 0.ρ1ρ2ρ3 · · · be the binary expansion of ρ. Starting with i = 1, do:
• Compute a random bit bi ∈ {0, 1}
• If ρi > bi, return “heads”
• If ρi < bi, return “tails”
• If ρi = bi, increment i and repeat procedure.

Analysis:
• The simulation reaches step i + 1 with probability ( 1

2 )i

• Combined probability of “heads”:
∑

i ρi
1
2i = ρ

• The expected runtime is O(
∑

i ic 1
2i ), where c is a constant degree capturing the

polynomial effort of computing ρi – this can be shown to be in O(1). □
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Robustness using unfair coins (2)

Note: Proposition 22.1 requires ρ to be efficiently computable. Unfair coins with hard to
compute probabilities would indeed increase the computational power.

Conversely, we may ask if a PTM with unfair coin could simulate a fair coin:

Proposition 22.2: A coin with Pr [heads] = 1
2 can be simulated by a TM that may

use a coin with heads-probability ρ in time O( 1
ρ(1−ρ) ).

Proof: See exercise (for the basic technique of simulating fair coins with arbitrary ones)

Note that the previous result does not require ρ to be computable.

Conclusion: BPP is rather robust against the use of different coins.
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Polynomial Identity Testing
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A problem in BPP

We give an example of a problem in BPP that is not known to be in P.

Polynomial Identity Testing (PIT):

• Task: Determine if two polynomial functions are equal, i.e., have the same results
on all inputs

• The polynomials can be multivariate (i.e., contain more than two variables)

• Challenge: The polynomials are not given in their normal form (as a sum of
monomials)

Approach: Reduce the question “f = g?” to the question “f − g = 0?,” i.e., to the
question if a given polynomial is equal to zero.

Example 22.3: We may ask if (x + y)(x − y) equals x2 − y2. To answer this, we can
test if the polynomial function (x + y)(x − y) − (x2 − y2) equals zero.
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Algebraic circuits and ZeroP

The representation we assume for polynomials in PIT are algebraic circuits:

• Algebraic circuits are like Boolean circuits but operate on integer numbers

• Gates perform arithmetic operations +, −, and ×, or have constant output 1
• There is one output

Note: it is easy to express the difference of the functions encoded in two algebraic
circuits

ZeroP

Input: Algebraic circuit C

Problem: Does C return 0 on all inputs?
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How difficult is ZeroP?

Observation:

• Algebraic circuits can encode polynomials very efficiently:
a small circuit can express a polynomial that is large when written in the usual form

Example 22.4: It is easy to find a circuit of size 2k for
∏k

i=1(xi + yi) (assuming
binary fan-in for multiplication gates), but writing this function as a sum of mono-
mials requires 2k monomials of the form z1 · z2 · · · zk where zi ∈ {xi, yi}.

• Nevertheless, the output of a circuit is easy to compute

Surprisingly (?): There is an efficient probabilistic algorithm for ZeroP
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How frequently do non-zero polynomials compute zero?

The total degree of a (multivariate) monomial is the sum of the degrees of all of its
variables, and the total degree of a polynomial is the maximal degree of its monomials.

The following property is the key to showing ZeroP ∈ BPP:

Lemma 22.5 (Schwartz-Zippel Lemma): Consider a non-zero multivariate poly-
nomial p(x1, . . . , xm) of total degree ≤ d, and a finite set S of integers. If a1, . . . , am

are chosen randomly (with replacement) from S, then

Pr
[
p(a1, . . . , am) = 0

]
≤

d
|S|

Proof: See Exercise.
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A probabilistic algorithm for ZeroP (1)

By Schwartz-Zippel, we just need to randomly sample numbers from a large enough set
S to find a non-zero value with high probability, namely 1 − d

|S| .

What is the degree d of a polynomial encoded in an algebraic circuit?

A circuit of size n can compute degrees of at most 2n.

{ for a set S of size 3 · 2n, we expect a non-zero value with probability ≥ 1 − 2n

3·2n =
2
3

Algorithm: For a polynomial p(x1, . . . , xm)
• Randomly select a1, . . . , am ∈ {1, . . . , 3 · 2n} (a total of O(n · m) random bits)

• Evaluate the circuit to compute p(a1, . . . , am)
• Accept if p(a1, . . . , am) = 0 and reject otherwise.

Analysis: If p ∈ ZeroP, the algorithm will always accept. Otherwise, if p < ZeroP, it will
reject with probability ≥ 2

3 .
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A probabilistic algorithm for ZeroP (2)

Did we show ZeroP ∈ BPP?

There is a problem with our algorithm:

• We can sample the numbers ai in polynomial time (polynomial number of bits)

• But if the degree of the polynomial is as high as 2n, then the output can be as high
as (3 · 2n)2n

, requiring O(2n) bits to store!

One can solve this problem as follows:

Algorithm: For a polynomial p(x1, . . . , xm)
• Randomly select a number k ∈ {1, . . . , 22n}

• Randomly select a1, . . . , am ∈ {1, . . . , 10 · 2n} (a total of O(n · m) random bits)

• Evaluate the circuit modulo k to compute p(a1, . . . , am) mod k

• Repeat this experiment for 4n times and accept if and only if the outcome is
0 in all cases
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ZeroP ∈ BPP
Algorithm (with fingerprinting): For a polynomial p(x1, . . . , xm)
• Randomly select a number k ∈ {1, . . . , 22n}

• Randomly select a1, . . . , am ∈ {1, . . . , 10 · 2n} (a total of O(n · m) random bits)

• Evaluate the circuit modulo k to compute p(a1, . . . , am) mod k

• Repeat this experiment for 4n times and accept if and only if the outcome is
0 in all cases

Analysis: (additional details in Arora & Barak, Section 7.2.3)

• If p(a1, . . . , am) = 0 then p(a1, . . . , am) = 0 mod k, so the algorithm surely accepts
• If p(a1, . . . , am) , 0 then p(a1, . . . , am) , 0 mod k if k does not divide p(a1, . . . , am)
• Claim: the probability of k dividing p(a1, . . . , am) is ≤ 1

4n . Proof sketch:
– We can restrict to cases where k (by random chance) is prime: for large n,

there are at least 22n

2n prime numbers ≤ 22n (Prime Number Theorem)
– A number has only logarithmically many prime factors (O(n · 2n) in our case)
– One can estimate that k with probability ≥ 1

4n is both (i) a prime number and
(ii) not among the prime factors of p(a1, . . . , am) □

Note: This does not yield a probability of error ≤ 1
3 , but error probability ≤ 1

10 +
9
10 (1 − 1

4n )4n ≤ 1
10 +

9
10

1
e ≤ 0.44, which suffices.
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Analysis: (additional details in Arora & Barak, Section 7.2.3)

• If p(a1, . . . , am) = 0 then p(a1, . . . , am) = 0 mod k, so the algorithm surely accepts
• If p(a1, . . . , am) , 0 then p(a1, . . . , am) , 0 mod k if k does not divide p(a1, . . . , am)

• Claim: the probability of k dividing p(a1, . . . , am) is ≤ 1
4n . Proof sketch:

– We can restrict to cases where k (by random chance) is prime: for large n,
there are at least 22n

2n prime numbers ≤ 22n (Prime Number Theorem)
– A number has only logarithmically many prime factors (O(n · 2n) in our case)
– One can estimate that k with probability ≥ 1

4n is both (i) a prime number and
(ii) not among the prime factors of p(a1, . . . , am) □

Note: This does not yield a probability of error ≤ 1
3 , but error probability ≤ 1

10 +
9
10 (1 − 1

4n )4n ≤ 1
10 +

9
10

1
e ≤ 0.44, which suffices.
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Further problems in BPP

Other algorithms in BPP include:

• Testing for perfect matching in a bipartite graph
Informally: checking whether every member of two equal-sized populations of heterosexual men and women can engage in monogamous
partnerships according to their expressed preferences.

– Can be reduced to checking if a variable matrix has non-zero determinant
– Similar to ZeroP, one can use Schwartz-Zippel here

• Primality testing (Primes)
– A classical probabilistic algorithm discovered in the 1970s
– In 2002, Agrawal, Kayal, and Saxena found a deterministic polynomial

algorithm
• “Monte-Carlo algorithms”

– These are a general class of algorithms with “probably correct” output
– BPP contains polynomial-time Monte-Carlo algorithms
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BPP-complete problems

We can define hardness for BPP with respect to polynomial many-one reductions.

However, surprisingly, no problem is known to be BPP-complete.

Why can’t we get BPP-complete problems from the word problem of BPP Turing machines?

• Accept tuples of the form ⟨M, w, 1n⟩, where

• M is a PTM, w a word, and 1n is a number in unary encoding,

• provided that the probability thatM accepts w in n steps is ≥ 2
3

Because we do not know if this problem is in BPP!

• It is unclear if an algorithm exists that rejects words not in this language with
probability ≥ 2

3

• In particular,M might not satisfy the BPP-conditions for accepting any language –
the input is not really a BPP word problem in this case!
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Semantic vs. syntactic classes

A better definition of the BPP word problem might be:

• Accept tuples of the form ⟨M, w, 1n⟩, where

• M is a PTM, w a word, and 1n is a number in unary encoding, if

• (1) for all inputs v, the probability ofM to accept v in p(|v|) steps is either ≥ 2
3 or ≤ 1

3 ,

• (2) the probability thatM accepts w in p(|w|) steps is ≥ 2
3

Unfortunately, that’s undecidable:

It is undecidable if a PTMM accepts any language with the BPP-conditions (1)

• The BPP acceptance conditions are “semantic” conditions, and some PTMs do not
satisfy these conditions for any language

• In contrast, e.g., every NTM accepts some language; and we can effectively
enumerate polytime NTMs for all languages in NP (“syntactic” condition)
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Summary and Outlook

BPP provides a robust notion of practical probabilistic algorithm

Polynomial identity testing is in BPP (and not know to be in P)

BPP is different from many other classes in that it has a “semantic” definition based on
the behaviour rather than merely the syntax of TMs

What’s next?

• More relationships to more (probabilistic) classes

• Quantum Computing

• Summary
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