
Journal of Artificial Intelligence Research 70 (2021) 1-64 Submitted 02/2019; published 01/2021

On the Decomposition of Abstract Dialectical Frameworks
and the Complexity of Naive-based Semantics

Sarah Alice Gaggl sarah.gaggl@tu-dresden.de
Logic Programming and Argumentation Group
Faculty of Computer Science
TU Dresden, Germany

Sebastian Rudolph sebastian.rudolph@tu-dresden.de
Computational Logic Group
Faculty of Computer Science
TU Dresden, Germany

Hannes Strass strass@informatik.uni-leipzig.de

Intelligent Systems Group

Computer Science Institute

Leipzig University, Germany

Abstract

Abstract dialectical frameworks (ADFs) are a recently introduced powerful generaliza-
tion of Dung’s popular abstract argumentation frameworks (AFs). Inspired by similar work
for AFs, we introduce a decomposition scheme for ADFs, which proceeds along the ADF’s
strongly connected components. We find that, for several semantics, the decomposition-
based version coincides with the original semantics, whereas for others, it gives rise to a
new semantics. These new semantics allow us to deal with pertinent problems such as
odd-length negative cycles in a more general setting, that for instance also encompasses
logic programs. We perform an exhaustive analysis of the computational complexity of
these new, so-called naive-based semantics. The results are quite interesting, for some
of them involve little-known classes of the so-called Boolean hierarchy (another hierarchy
in between classes of the polynomial hierarchy). Furthermore, in credulous and sceptical
entailment, the complexity can be different depending on whether we check for truth or
falsity of a specific statement.

1. Introduction

Over the last decade, argumentation theory emerged as one of the major fields in artificial
intelligence and non-monotonic reasoning. In this area, abstract argumentation frameworks
(AFs) as introduced by Dung (1995) became a key formalism with applications to a variety
of non-monotonic reasoning problems such as logic programming, inconsistency handling,
legal reasoning and many others (Rahwan, Simari, & van Benthem, 2009; Toni & Sergot,
2011; Amgoud & Vesic, 2010; Zhang & Lin, 2009).

The basic Dung-style framework only comprises a set of abstract arguments and a binary
relation between them, denoted as attacks. The evaluation of such an AF is then based on
model-theoretic semantics, by means of which it is specified which sets of arguments can
“stand together”. The need to represent more complex relations between the abstract enti-
ties led to various extensions of the original AFs, allowing to handle preferences and values

©2021 AI Access Foundation. All rights reserved.

Gaggl, Rudolph, & Strass

on arguments (Amgoud & Cayrol, 2002; Bench-Capon, 2003), weights (Dunne, Hunter,
McBurney, Parsons, & Wooldridge, 2011), probabilities (Li, Oren, & Norman, 2011) or
introducing a positive relation between arguments, so-called supports (Amgoud, Cayrol,
Lagasquie-Schiex, & Livet, 2008; Nouioua & Risch, 2011). Recently, abstract dialectical
frameworks (ADFs) have been introduced (Brewka & Woltran, 2010; Brewka, Strass, Ell-
mauthaler, Wallner, & Woltran, 2013) as a powerful generalisation of Dung’s framework.
ADFs allow for more general interactions between arguments, for example support, joint
attack, joint support and mixed combinations. Furthermore, ADFs can handle preferences,
on both the statements and the links (Brewka & Woltran, 2010; Brewka et al., 2013), as
well as probabilities (Polberg & Doder, 2014). Finally, ADFs can not only be seen as an ex-
tension of Dung’s AFs but also as a target language for compilation from more concrete and
application-based languages, and thus, serve as “argumentation middleware” (Brewka et al.,
2013), e.g. Carneades (Brewka & Gordon, 2010), simple defeasible theories (Strass, 2018),
and recent applications to legal reasoning and reasoning with cases by Al-Abdulkarim et
al. (Al-Abdulkarim, Atkinson, & Bench-Capon, 2014, 2015, 2016; Al-Abdulkarim, Atkinson,
Bench-Capon, Whittle, Williams, & Wolfenden, 2017).

This generality is achieved by using versatile acceptance conditions for the statements –
Boolean functions determining the acceptance of a statement s depending on the acceptance
of its parents, the statements with a link to s. These acceptance functions can also be
represented as propositional formulas ϕs, thus the status of a statement s can be obtained
by the evaluation of ϕs. For example, the AF-like relationship where statements a and b
individually attack c can then be expressed by ϕc = ¬a ∧ ¬b. That is, c is accepted (true)
if neither of its attackers is accepted (true). A set attack from a and b to c is written
as ϕc = ¬a ∨ ¬b where c is only rejected if both a and b are accepted. The same works
for support : ϕc = a ∧ b means that c needs support from both a and b, and ϕc = a ∨ b
says that c can be accepted if at least one of a or b is accepted. Clearly these different
“acceptance patterns” can be arbitrarily combined, leading to an expressive language for
abstract argumentation (Strass, 2015). Most of the semantics of ADFs are defined over the
acceptance conditions, however additionally the links between the statements are explicitly
represented in the same way as it is done in AFs. This does not only have the advantage
of the handy representation as a directed graph, it also provides information about the
structure of an ADF, like cycles and strongly connected components (SCCs).

As usual, the greater expressiveness of a formalism comes with a price. In our case the
computational complexity of semantics for ADFs is in general higher than for AFs (Strass
& Wallner, 2015). A successful way of dealing with big or complex problems is to split
them into smaller sub-problems where it is easier to find a solution. The overall solution
then consists of a combination of the solutions of all sub-problems.1 Here, we propose an
approach to decompose ADFs along their SCCs. While our approach is inspired by similar
work on AFs by Baroni, Giacomin, and Guida (2005), there are important differences.

First, the SCC-recursive schema for AFs is based on a recursive decomposition of an AF
along its SCCs, where in each step the semantics are computed for sub-frameworks consisting
of single SCCs. The SCCs of an AF can change during the computation, depending on

1. For AFs, there is already some evidence that decomposition benefits computational efficiency (Baumann,
Brewka, & Wong, 2011; Liao, 2013, 2014).

2

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

the outcome of the semantics from the previous SCCs. In particular, arguments which
are attacked from outside their SCCs from an accepted argument are eliminated, which
can change the remaining SCCs of the framework. As ADFs allow complex acceptance
conditions for statements one needs a way to pass on the outcome of preceding components
to all acceptance conditions of statements depending on them and additionally handle the
change of SCCs.

Second, when acceptance conditions are represented as propositional formulas, there
might be redundancies in the representation. For instance, the formula ϕs = a ∨ > always
evaluates to true, hence a is redundant in ϕs and can be removed. However this redundant
information would also be given in the links of the ADF and may lead to dependencies in
the graph that are not actually present. Hence, a pure decomposition along SCCs would
not work correctly.

Third, in the AF case, some semantics are defined in a simplified version of the general
SCC-recursive schema, namely for stable, cf2 and stage2 the notion of defence is weak-
ened (Dvořák & Gaggl, 2016). The recursive procedure we propose allows to propagate
already obtained information on the acceptance state of statements to others that depend
on them. Within these propagation steps, redundant information is identified and elim-
inated. It turns out that our approach is indeed a generalisation of the SCC-recursive
schema for AFs, as it allows to compute all standard admissible-based semantics and the
naive-based ones within the same procedure. Hence, it can also be seen as an alterna-
tive characterisation of the general SCC-recursive schema like the one for cf2 and stage2
semantics presented by Gaggl and Woltran (2013) and Dvořák and Gaggl (2016).2

As is the case for AFs, our decomposition technique is able to reconstruct the standard
semantics (admissible, complete, preferred, model), and leads to new semantics when using
semantics based on conflict-freeness (such as naive or stage) in each strongly connected
component. This leads to the new ADF semantics nai2 and stg2 which are the ADF
counterparts to the AF semantics cf2 (Baroni et al., 2005) and stage2 (Dvořák & Gaggl,
2016). The notion of conflict-freeness we use here is three-valued (Strass, 2013), and a direct
generalisation of the one used by Baroni, Caminada, and Giacomin (2011) (Definition 16).
Basically, it says that in order to be conflict-free, a three-valued interpretation must adhere
to certain “justification standards” when accepting or rejecting statements: If a statement
s is assigned truth value true (is accepted), then this must be justified by statement s being
possibly acceptable, that is, there must be an assignment to the remaining statements such
that the acceptance condition of s is fulfilled. If a statement is assigned truth value false
(is rejected), then this must be justified by statement s not being possibly acceptable,
that is, a satisfying assignment of the acceptance condition must not exist. We opted for
this version of three-valued conflict-freeness to preserve downward compatibility with AFs;
there is also a recent alternative definition of three-valued conflict-free interpretations by
Strass and Wallner (2015). Their definition is more permissive; it has the same requirement
for accepted statements, and stipulates that for rejected arguments s, there must be an
assignment to the remaining statements such that the acceptance condition of s is not
fulfilled. So where our definition uses satisfiability and unsatisfiability, the definition of

2. Interestingly, Linsbichler (2014) independently presented a methodology for directionally splitting ab-
stract dialectical frameworks. Applying his splitting technique along the strongly connected components
of an ADF exactly yields our procedure.

3

Gaggl, Rudolph, & Strass

Strass and Wallner (2015) uses satisfiability and refutability. Some more discussion of these
two variants of three-valued conflict-freeness in ADFs was given by Strass (2017).

As hinted above, our decomposition procedure defines new semantics for ADFs. In this
paper, we also study the computational complexity of these newly defined naive-based se-
mantics for abstract dialectical frameworks. Generally speaking, typical reasoning problems
for ADFs are model verification, sceptical and credulous reasoning and existence of a non-
trivial interpretation. Analysing the computational complexity of these reasoning problems
is a crucial topic for theoretical and practical reasons. First, complexity results often serve
as an indicator for how difficult and how expressive (in a problem-encoding sense) a reason-
ing task can be. Second, knowing about the complexity of a reasoning problem is essential
for the development of adequate algorithms and systems. A comprehensive complexity anal-
ysis of the ADF semantics defined by Brewka et al. (2013) has been given by Strass and
Wallner (2015). Consequently, we “only” need to analyse all reasoning tasks mentioned
earlier (model verification, non-trivial existence, and credulous and sceptical reasoning)
for the conflict-free, naive, stage, nai2 and stg2 semantics. The results show that these
tasks are (sometimes considerably) more difficult than their counterparts in AFs. While
for the standard Dung semantics (admissible, preferred, complete, stable), their ADF gen-
eralisations are mildly more complex (one level up in the polynomial hierarchy; Strass and
Wallner, 2015), for the naive-based semantics, the differences can be far more significant.
For example, deciding whether an argument is true in every naive extension can be done in
logarithmic space for AFs (Spanring, 2012, Lemma 2.5.10), while it is hard at least for the
second level of the polynomial hierarchy in the case of ADFs. The complexity becomes even
higher (completeness for the third level) if we want to check whether a statement is false
in every naive interpretation of an ADF. In general, different complexities for entailment
of truth and entailment of falsity seems to be quite uncommon in logic-based formalisms.
We can trace the reason for this difference in naive-based semantics for ADFs back to the
definition of a conflict-free interpretation, which basically requires different strengths of
justification depending on which truth value is assigned to a statement as discussed above.
Quite possibly even more interesting (and the hardest proof of all our results) is the com-
plexity of deciding existence of non-trivial conflict-free interpretations. We show that the
problem is complete for the second level of the Boolean hierarchy (Wechsung, 1985). The
Boolean hierarchy consists of classes that are composed of Boolean combinations of prob-
lems from NP and complements thereof. A somewhat better-known example is the class
DP, a logical “and” of one NP- and one coNP-problem.

In addition to analysing the computational complexity of decision problems related to
general ADFs, we also study the same complexities for a proper subclass, bipolar abstract
dialectical frameworks. Bipolar ADFs have been recognised as representationally expressive
while computationally attractive (Strass, 2015): they retain many of the means of expression
of general ADFs and are thus strictly more expressive than AFs, while computation with
all the standard semantics for bipolar ADFs is of the same complexity as for AFs. Roughly,
from AFs to general ADFs, complexities increase by one level of the polynomial hierarchy;
from general ADFs to bipolar ADFs, complexities decrease by one level of the polynomial
hierarchy. The same drop (by one level of the polynomial hierarchy when going from general
to bipolar ADFs) can be observed for the semantics newly defined in this paper, providing

4

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

further support to the idea that bipolar ADFs are an attractive formalism for representing
knowledge about arguments and their interrelationships.

The remainder of the paper is structured as follows. We introduce the necessary back-
ground on ADFs, existing semantics, SCC-recursiveness, and complexity theory in Sec-
tion 2. In Section 3, we generalise the SCC-recursive decomposition procedure of Baroni
et al. (2005) to ADFs and analyse the resulting semantics. Then the complexity anal-
ysis is performed in Section 4, where we grouped our results according to the two anal-
ysed ADF classes, general (Section 4.1) and bipolar (Section 4.2), that are further com-
partmentalised into sections corresponding to the four decision problems verification (Sec-
tions 4.1.1 and 4.2.1), existence of a non-trivial interpretation (Sections 4.1.2 and 4.2.2),
and entailment (Sections 4.1.3 and 4.2.3). We conclude the paper in Section 5.

This article combines and significantly extends the results of Gaggl and Strass (2014)
as well as Gaggl, Rudolph, and Strass (2015). We introduce the decomposition scheme
and its semantics in more detail and with more examples. We provide detailed proofs of
all previously published results as well as a completely new section on the computational
complexity of bipolar ADFs for the mentioned semantics containing 30 novel complexity
results, all of which are previously unpublished.

2. Background

For functions f : A→ B and g : C → D, we denote the update of f with g by f ◦ g, where

f ◦ g : A ∪ C → B ∪D with x 7→

{
g(x) if x ∈ C
f(x) otherwise

So even if x ∈ A ∩ C and f(x) is defined, we have (f ◦ g)(x) = g(x). For a function
f : A→ B and b ∈ B we denote f−1(b) = {a ∈ A | f(a) = b}. For A′ ⊆ A the function
f |A′ : A′ → B is the restriction of f ’s domain to A′. To define a constant function f : A→ B,
we sometimes write f = (A 7→ b) for one b ∈ B and take it to mean that f(a) = b for all
a ∈ A. The disjoint union of sets A and B is denoted by A]B.

We will make use of many standard concepts of classical propositional logic in this
paper, including the usual notions of formulas, interpretations and models, as well as sat-
isfiability and refutability. Our analysis in this paper will be based on three-valued inter-
pretations, mappings v : S → {t, f ,u} that assign one of the truth values true (t), false (f)
or unknown (u) to each statement. A comparable treatment for AFs was given by the
three-valued argumentation stages of Verheij (1996). For uniformity among logic-based and
argumentation-based formalisms, in this paper we use standard notation and terminology
from mathematical logic.3

The three truth values are partially ordered by≤i according to their information content:
we have u <i t and u <i f and no other pair in <i, in particular t and f are incomparable,
which intuitively means that the classical truth values contain more information than the
truth value unknown. The information ordering ≤i extends in a straightforward way to

3. This does not mean we use any particular three-valued logic with its truth tables; rather, u serves as a
placeholder that can be replaced by any of the two classical truth values before the formula is actually
evaluated.

5

Gaggl, Rudolph, & Strass

valuations v1, v2 over S in that v1 ≤i v2 iff v1(s) ≤i v2(s) for all s ∈ S. The ≤i least element
of the set of all valuations is the valuation mapping all statements to unknown – the least
informative interpretation. Obviously, a three-valued interpretation v is two-valued if all
statements are mapped to either true or false. Such two-valued interpretations are ≤i-
maximal.

A particular non-standard notion we use is that of the partial evaluation of a formula.
Given a three-valued interpretation v and a formula ϕ, the partial evaluation of ϕ with v
takes the two-valued part of v and replaces the evaluated variables by their truth values.

Definition 2.1. Let ϕ be a propositional formula over vocabulary S and for an M ⊆ S let
v : M → {t, f ,u} be a three-valued interpretation. The partial valuation of ϕ by v is

ϕv = ϕ[p/> : v(p) = t][p/⊥ : v(p) = f]

For example, consider the propositional formula ϕ = a ∨ (b ∧ c) and the interpretation
v1 = {a 7→ f , b 7→ t, c 7→ u}. Statement c with v1(c) = u will remain in ϕ, while a and b are
replaced, and we get ϕv1 = ⊥∨ (>∧ c). This formula is equivalent to c and thus both satis-
fiable (by {c 7→ t}) and refutable (by {c 7→ f}). In contrast, for v2 = {a 7→ t, b 7→ u, c 7→ u}
the formula ϕv2 = > ∨ (b ∧ c) is irrefutable; for v3 = {a 7→ f , b 7→ f , c 7→ u} the formula
ϕv3 = ⊥ ∨ (⊥ ∧ c) is unsatisfiable.

2.1 Abstract Argumentation Frameworks

In this section we introduce the basics of abstract argumentation and the semantics we need
for further investigations. We first give the formal definition of abstract argumentation
frameworks as introduced by Dung (1995).

Definition 2.2. An argumentation framework (AF) is a pair F = (A,R), where A is a
finite set of arguments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R means
that a attacks b. A set S ⊆ A of arguments attacks b ∈ A (in F), if there is an a ∈ S such
that (a, b) ∈ R.

Such an AF is typically represented as a directed graph as shown in the following example.

Example 2.3. Consider the AF F = (A,R) where the set of arguments is given by A =
{a, b, c} and the set of attacks is defined as R = {(a, b), (b, c), (c, a)} as depicted below:

a b

c

Conflicts between arguments are resolved on a semantical level. An argument can either
be accepted, rejected or it is undecided whether to accept or reject the argument. Here we
will use the notion of labellings, as they directly correspond to three-valued interpretations
of ADFs. For an overview about labellings for most argumentation semantics we refer
to Baroni et al. (2011). Thus, accepted arguments are labelled with t (true), rejected ones
with f (false) and undecided ones with u.

6

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

For an AF F = (A,R), a labelling is a total function v : A→ {t, f ,u}. Then, a labelling
can be denoted as a triple v = (vt, vf , vu) = (v−1(t), v−1(f), v−1(u)) corresponding to a
partition of A. Following Baroni et al. (2011), conflict-free and naive labellings are given
as follows.

Definition 2.4. Let F = (A,R) be an AF.

• v is a conflict-free labelling of F , i.e. v ∈ cfi(F), iff

– for all a ∈ vt there is no b ∈ vt such that (a, b) ∈ R,

– for all a ∈ vf there exists a b ∈ vt such that (b, a) ∈ R.

• Then, v is a naive labelling of F , i.e. v ∈ nai(F), iff v ∈ cfi(F) and there is no
v′ ∈ cfi(F) with v <i v

′.

• Finally, v is a stage labelling of F , i. e. v ∈ stg(F), iff v ∈ cfi(F) and there is no
v′ ∈ cfi(F) with v′u (vu.

Example 2.5. Let F = (A,R) be the AF from Example 2.3. We obtain the following
conflict-free labellings.

cfi(F) = {{a 7→ u, b 7→ u, c 7→ u}, {a 7→ t, b 7→ u, c 7→ u}, {a 7→ u, b 7→ t, c 7→ u},
{a 7→ u, b 7→ u, c 7→ t}, {a 7→ t, b 7→ f , c 7→ u}, {a 7→ u, b 7→ t, c 7→ f},
{a 7→ f , b 7→ u, c 7→ t}}

The cf2 semantics is based on a decomposition along the SCCs of an AF. Hence, we
require some further formal machinery. By SCCs(F), we denote the set of strongly connected
components of an AF F = (A,R), i.e. sets of vertices of the maximal strongly connected4

sub-graphs of F . Moreover, for an a ∈ A, we denote by CF (a) the component of F where a
occurs in, i.e. the (unique) set C ∈ SCCs(F), such that a ∈ C. It turns out to be convenient
to use two different concepts to obtain sub-frameworks of AFs. Let F = (A,R) be an AF
and S ⊆ A. Then, F |S = ((A∩ S), R∩ (S × S)) is the sub-framework of F w.r.t. S, and we
also use F − S = F |A\S . We note the following relation (which we use implicitly later on),
for an AF F and sets S, S′: F |S\S′ = F |S − S′ = (F − S′)|S . We now give the definition of
the cf2 semantics in form of labellings (Baroni et al., 2011).

Definition 2.6. Let F = (A,R) be an AF and v be a labelling of F . Any b ∈ A is
component-defeated by vt (in F), if ∃a ∈ vt, s.t. (a, b) ∈ R and a /∈ CF (b). The set of
arguments component-defeated by vt in F is denoted by DF (vt). Then, v is a cf2 labelling
of F , i.e. v ∈ cf2 (F), iff

• v ∈ nai(F), in case |SCCs(F) = 1|;

• otherwise, ∀C ∈ SCCs(F), v|C\DF (vt) ∈ cf2 (F |C −DF (vt)), DF (vt) ⊆ vf .

4. A directed graph is called strongly connected if there is a directed path from each vertex in the graph to
every other vertex of the graph.

7

Gaggl, Rudolph, & Strass

Example 2.7. To illustrate the difference between naive, stage and cf2 labellings we con-
sider the AF shown below:

a b c d e

This AF possesses the following labellings.

nai(F) = {{a 7→ f , b 7→ t, c 7→ f , d 7→ t, e 7→ f}, {a 7→ t, b 7→ f , c 7→ u, d 7→ t, e 7→ f},
{a 7→ f , b 7→ t, c 7→ f , d 7→ u, e 7→ t}, {a 7→ t, b 7→ f , c 7→ u, d 7→ u, e 7→ t}}

stg(F) = {{a 7→ f , b 7→ t, c 7→ f , d 7→ t, e 7→ f}}
cf2 (F) = {{a 7→ f , b 7→ t, c 7→ f , d 7→ t, e 7→ f}, {a 7→ t, b 7→ f , c 7→ u, d 7→ t, e 7→ f}}

The naive labellings are clearly conflict-free according to Definition 2.4. For instance in the
labelling {a 7→ t, b 7→ f , c 7→ u, d 7→ u, e 7→ t}, a is set to t and the only attacker of a is the
argument b which is set to f . Regarding the argument c, it is attacked by b and c, although
b is set to f , c cannot be set to t, as it is self-attacking. The only choice left is to make
c undecided. Argument e is set to t, which is valid, as d is not set to t as well. To show
that the labelling is also naive, we need to demonstrate that there is no other conflict-free
labelling higher up in the information ordering. The only possible changes would be for
arguments c and d as they are undecided, but both cannot be set to either t nor f without
violating the definition of conflict-free labellings. Thus, {a 7→ t, b 7→ f , c 7→ u, d 7→ u, e 7→ t}
is a naive labelling of F .

For the only stage labelling, it is easy to see that it is also a naive labelling (thus conflict-
free) and as it does not have any undecided arguments, it clearly satisfies the requirement
for stage labellings. As all other naive labellings contained undecided arguments, it is the
only stage labelling for the AF F .

Let us now have a closer look at the cf2 labelling v = {a 7→ f , b 7→ t, c 7→ f , d 7→ t, e 7→ f}.
As the AF F has the four SCCs C1 = {a, b}, C2 = {c}, C3 = {d} and C4 = {e} we have the
following cases, where DF (vt) = {c, e} and {c, e} ⊆ vf . In case F |Ci −DF (vt) = F |Ci we
only write v|Ci ∈ cf2 (F |Ci).

• v|C1 ∈ cf2 (F |C1): the sub-framework F |C1 consists of a single SCC, thus we have to
check whether {a 7→ f , b 7→ t} ∈ nai(F |C1), which indeed holds.

• v|C2\{c,e} ∈ cf2 (F |C2 − {c, e}): the sub-framework F |C2 − {c, e} consists of the empty
framework F0 = (∅, ∅), and v|C2\{c,e} = ∅, thus the condition ∅ ∈ nai(F0) is fulfilled.

• v|C3 ∈ cf2 (F |C3): the sub-framework F |C3 consists of the single argument d, thus we
can see that v|C3 = {d 7→ t} ∈ nai(F |C3) holds.

• v|C4\{c,e} ∈ cf2 (F |C4 − {c, e}): the sub-framework F |C4 − {c, e} consists of the empty
framework F0 and v|C4\{c,e} = ∅, thus the condition ∅ ∈ nai(F0) is fulfilled.

The requirement DF (vt) ⊆ vf of Definition 2.6 ensures that the labellings are conflict-free
and naive, otherwise we would obtain labellings like {a 7→ f , b 7→ t, c 7→ u, d 7→ t, e 7→ f} or
{a 7→ f , b 7→ t, c 7→ t, d 7→ t, e 7→ u} which are not naive or even not conflict-free.

Further AF semantics exist; to save space we define them implicitly via ADFs.

8

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

2.2 Abstract Dialectical Frameworks

An abstract dialectical framework (ADF) is a directed graph whose nodes represent state-
ments or positions which can be accepted or not. The links represent dependencies: the
status of a node s only depends on the status of its parents par(s), that is, the nodes with
a direct link to s. Each node s has an associated acceptance condition Cs specifying the
exact conditions under which s is accepted. Cs is a function assigning to each subset of
par(s) one of the truth values t, f . Intuitively, if for some M ⊆ par(s) we have Cs(M) = t,
then s will be accepted provided the nodes in M are accepted and those in par(s) \M are
not accepted.

Definition 2.8. An abstract dialectical framework is a tuple D = (S,L,C) where

• S is a set of statements (positions, nodes),

• L ⊆ S × S is a set of links,

• C = {Cs}s∈S is a collection of total functions Cs : 2par(s) → {t, f}, one for each state-
ment s. The function Cs is called acceptance condition of s.

A special class of ADFs are bipolar ADFs where the links between the statements are
attacking, supporting or both.

Definition 2.9. An ADF D = (S,L,C) is bipolar iff there are L+, L− ⊆ L such that
L = L+ ∪ L−, where

• L+ denotes the set of supporting links, where a link (r, s) is supporting in D if and
only if for all R ⊆ par(s), we have Cs(R) = t implies Cs(R ∪ {r}) = t;

• L− denotes the set of attacking links, where a link (r, s) is attacking in D if and only
if for all R ⊆ par(s), we have Cs(R ∪ {r}) = t implies Cs(R) = t.5

It is often convenient to represent acceptance conditions as propositional formulas; we
will do so in this paper. There, each Cs is represented by a propositional formula ϕs
over par(s). Then, clearly, for M ⊆ par(s) we have Cs(M) = t iff M |= ϕs. In this way,
AFs are recast as ADFs as follows: For an AF F = (A,R), the ADF associated to F is
DF = (A,R,C) with C = {ϕa}a∈A and ϕa =

∧
(b,a)∈R ¬b for a ∈ A. Intuitively, an AF

argument is accepted if and only if none of its attackers is accepted.

It may happen that a link (r, s) ∈ L in an ADF bears no actual significance. Formally, r
is redundant in ϕs if and only if there is no two-valued interpretation v : par(s) \ {r} → {t, f}
such that

v
(
ϕ{r 7→t}
s

)
6= v
(
ϕ{r 7→f}
s

)
That is, if (r, s) is redundant then r has no influence on the truth value of ϕs whatsoever.6

5. Equivalently, to illustrate the symmetry in this definition, a link (r, s) is attacking in D if and only if for
all R ⊆ par(s), we have Cs(R) = f implies Cs(R ∪ {r}) = f .

6. Cast in another way, the redundant links are exactly those that are attacking and supporting.

9

Gaggl, Rudolph, & Strass

Several semantics can be defined by using three-valued interpretations v to partially
evaluate acceptance formulas ϕs. While this style of definition is novel, the resulting se-
mantics have mostly appeared in the literature before (Brewka et al., 2013). Some others are
new, but straightforward to define (Strass, 2013); these are the (three-valued) conflict-free,
naive and stage semantics.

Definition 2.10. Let D = (S,L,C) be an ADF. A three-valued interpretation v is

• admissible in D, i.e. v ∈ adm(D) iff for each s ∈ S we have:

– v(s) = t implies that ϕvs is irrefutable,

– v(s) = f implies that ϕvs is unsatisfiable;

• preferred in D, i.e. v ∈ pre(D) iff it is ≤i-maximal with respect to being admissible;

• complete in D, i.e. v ∈ com(D) iff for each s ∈ S we have:

– v(s) = t if and only if ϕvs is irrefutable,

– v(s) = f if and only if ϕvs is unsatisfiable;

• grounded in D, i.e. v ∈ grd(D) iff v is the ≤i-least complete interpretation;

• conflict-free in D, i.e. v ∈ cfi(D) iff for all s ∈ S we have:

– v(s) = t implies that ϕvs is satisfiable,

– v(s) = f implies that ϕvs is unsatisfiable;

• naive in D, i.e. v ∈ nai(D) iff it is ≤i-maximal with respect to being conflict-free;

• stage in D, i.e. v ∈ stg(D) iff the set vu is ⊆-minimal with respect to being conflict-
free.

A two-valued interpretation v is a model of D, i.e. v ∈ mod(D) iff for all s ∈ S we find
v(s) = v(ϕs).

Intuitively, an interpretation v is admissible if it can justify the definite stances it takes:
for example, whenever v judges a statement s to be true, then this must be justified by
the statement’s acceptance formula. This justification can take into consideration the defi-
nite assignments of v, but must be valid no matter how the undecided statements of v are
interpreted. This is elegantly achieved by checking the refutability of the partial evalua-
tion ϕvs of the acceptance formula of s. Complete interpretations are then the ones whose
recommendations are exactly in accordance with the refutability/satisfiability status of v’s
assignments. The grounded semantics can consequently be seen as the greatest possible
consensus between all acceptable ways of interpreting the ADF at hand. The three-valued
notion of conflict-freeness is clearly a weaker version of admissibility, where truth of a state-
ment has to be justified not by irrefutability, but only by satisfiability. (The justification

10

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

standard for rejected statements is the same.)7 As usual, naive and stage are then those
conflict-free interpretations which are information-maximal or undecided-minimal, respec-
tively. A model of an ADF is simply a two-valued complete interpretation. All of these
semantics are proper generalisations of the same semantics for AFs (Brewka et al., 2013;
Strass, 2013).

Example 2.11. Let D = (S,L,C) be an ADF with S = {a, b, c}, L = {(a, b), (b, c), (c, a)}
and the acceptance conditions ϕa = ¬c, ϕb = ¬a and ϕc = ¬b:

a

¬c

b

¬a

c

¬b

(Note that this is an AF-based ADF with an attack cycle of length three, as in Example 2.3.)
Some conflict-free interpretations of D are

v1 = {a 7→ u, b 7→ u, c 7→ u} v2 = {a 7→ u, b 7→ t, c 7→ f}
v2 = {a 7→ t, b 7→ f , c 7→ u} v4 = {a 7→ f , b 7→ u, c 7→ t}

(There are three further conflict-free interpretations, see Example 2.3.) We have a closer
look at interpretation v4.

• As v4(a) = f , according to the definition of conflict-free interpretations, ϕv4
a needs to

be unsatisfiable. Thus we construct the partial valuation of ϕa = ¬c by v4 and obtain
ϕv4
a = ¬>, which indeed is unsatisfiable.

• As v4(c) = t, the formula ϕv4
c = ¬b needs to be satisfiable, which holds.

On the other hand, consider v5 = {a 7→ t, b 7→ u, c 7→ f}, which is not conflict-free, as
v5(c) = f but ϕv5

c = ¬b is satisfiable. The naive interpretations of D are v2, v3 and v4

because they are ≤i-maximal with respect to being conflict-free.

In this paper, we restrict our attention to finite ADFs. This assumption is commonly made,
given that finite ADFs are of higher practical relevance and more meaningful when it comes
to computational investigations (as complexity problems require finite input sizes).

2.3 Complexity Theory

Assume some fixed finite vocabulary Σ with |Σ| > 1. A language L ⊆ Σ∗ is in P iff it can
be recognised by a deterministic Turing machine in polynomial time. Complexity class NP
contains all problems L that have a polytime-computable witness relation; that is, L ∈ NP

7. This is in contrast to the definition of (three-valued) conflict-freeness given by Strass and Wallner (2015):
consider the AF-based ADF D over S = {a, b} with ϕa = ϕb = ¬a, that is, a self-attacking a attacks b.
According to Definition 2.10, cfi(D) = {v0, v1} with v0 = {a 7→ u, b 7→ u} and v1 = {a 7→ u, b 7→ t}. The
definition of Strass and Wallner (2015) allows for another conflict-free interpretation v2 = {a 7→ u, b 7→ f}.
(Note that both v0 and v2 correspond to the conflict-free set ∅.) In general, all our conflict-free interpre-
tations are conflict-free according to Strass and Wallner (2015), but not vice versa.

11

Gaggl, Rudolph, & Strass

iff there are WL ∈ P and k ∈ N such that: x ∈ L iff there is a y such that (x, y) ∈WL and
|y| ≤ |x|k. For any class C of languages, its complement class is coC =

{
L
∣∣ L ∈ C}. For

example, the class coNP contains all languages L whose complement L = Σ∗ \ L is in NP.
These two classes give rise to the polynomial hierarchy, that can be defined (using oracle

Turing machines) as follows: ∆P
0 = ΣP

0 = ΠP
0 = P, and for i ≥ 0, ∆P

i+1 = PΣP
i , ΣP

i+1 = NPΣP
i ,

ΠP
i+1 = coNPΣP

i . For any complexity class C, a Turing machine with access to a C-oracle can
be understood as having a constant-time decision subroutine for problems in C. For each
level i of the polynomial hierarchy, the classes ΣP

i and ΠP
i have canonical complete prob-

lems, defined via fully quantified Boolean formulae (QBFs) in prenex form. Such formulae
have the shape

Q

1P1

Q

2P2 . . .

Q

iPiϕ, where ϕ is a propositional formula using propositional
variables from the pairwise disjoint sets P1 . . . Pi,

Q

` ∈ {∀, ∃} and the quantifiers are alter-
nating, i.e.,

Q

`+1 = ∀ iff

Q

` = ∃. Validity of QBFs is determined inductively. Given a
(quantifier-free) Boolean formula ϕ, let val(ϕ) denote the set of all truth value assignments
making ϕ true. Further, we define:

val(∃PΨ) =
{
σ
∣∣ there are π ∈ P→{t, f} and σ′ ∈ val(Ψ) with σ′ = π] σ

}
val(∀PΨ) =

{
σ
∣∣ for all π ∈ P→{t, f} there is a σ′ ∈ val(Ψ) with σ′ = π] σ

}
A fully quantified QBF

Q

1P1

Q

2P2 . . .

Q

iPiϕ is valid iff val(

Q

1P1

Q

2P2 . . .

Q

iPiϕ) contains the
empty assignment.

Now, the canonical problem for ΣP
i is as follows: Given a quantified Boolean formula

Φ = ∃P1∀P2∃P3 . . .

Q

iPiψ, determine whether Φ is valid. For ΠP
i the canonical complete

problem is similar, but the formula starts with universal quantification.

Example 2.12. Consider the QBF Ξ1 = ∃{p, q}∀{r}(¬r ∨ p) ∧ (¬r ∨ ¬q) leading to a de-
cision problem belonging to the class ΣP

2 . We find that it is valid through the definition of
validity provided above. Intuitively, we can confirm the validity as follows: there exists a
truth value assignment for p and q (namely p 7→ t and q 7→ f) such that independently of
the choice of the assignment for r (be it r 7→ t or r 7→ f), the total assignment will make
the formula true.

Now, consider the slightly changed QBF Ξ2 = ∀{p}∃{q}∀{r}(¬r ∨ p) ∧ (¬r ∨ ¬q) lead-
ing to a ΠP

3 problem. We find that it is not valid. Intuitively, this is due to the fact that
there is an assignment for p and r (namely p 7→ f and r 7→ t) which makes the formula false
independently of what assignment is chosen for q.

While these classes from the polynomial hierarchy are fairly standard, NP and coNP
also give rise to the so-called Boolean hierarchy. It is rather little-known and defined as
follows (Wechsung, 1985). Firstly, for given complexity classes C1 and C2 define the new
classes

C1 C2 = {L1 ∩ L2 | L1 ∈ C1, L2 ∈ C2}
C1 C2 = {L1 ∪ L2 | L1 ∈ C1, L2 ∈ C2}

Next, set CBH
0 = DBH

0 = P and for i ≥ 0 define8

CBH
i+1 = coNP DBH

i and DBH
i+1 = NP CBH

i

8. This is the Boolean hierarchy between ∆P
1 = P and ∆P

2 ; there is a Boolean hierarchy between ∆P
i and

∆P
i+1 for all i ≥ 1 using ΣP

i and ΠP
i instead of NP and coNP (Chang & Kadin, 1996).

12

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

(Intuitively, CBH
i is for “conjunction” and DBH

i is for “disjunction”.) For ex-
ample, DBH

1 = NP and CBH
1 = coNP, while DBH

2 = NP CBH
1 = NP coNP and

CBH
2 = coNP DBH

1 = coNP NP. The class CBH
2 is an alternative notation for the

class DP, first proposed by Papadimitriou and Yannakakis (1982). Its complement
coDP = DBH

2 contains all languages L for which there are L1 ∈ NP and L2 ∈ coNP with
L = L1 ∪ L2. The Boolean hierarchy and the polynomial hierarchy are closely interrelated:
Chang and Kadin (1996) showed that the polynomial hierarchy collapses (to the third
level) if the Boolean hierarchy collapses. In this paper, when we say that problems are
or become “easier” or “harder”, we do this under the assumption that the polynomial
hierarchy does not collapse.

3. Decomposing Abstract Dialectical Frameworks

In this section we introduce a decomposition technique for ADFs that is a generalisation
of a similar approach for AFs (Baroni et al., 2005). However, the decomposition along the
SCCs of an ADF D cannot be performed in the same way as it is done for AFs. If one looks
at a set M ⊆ S of statements, the acceptance conditions of the statements in M might still
depend on statements that are not contained in M , even if M forms an SCC. To be able
to decompose and evaluate an ADF, it is necessary to modify the acceptance conditions of
the statements in a way that they only depend on statements also contained in the same
component. This modification will be performed depending on the decided truth values of
the parents of statements.

We propose a procedure that propagates truth values from independent parts of an ADF
to the rest of the ADF. We need to take several facts into account. First, we use three-valued
interpretations (labellings) to represent the current acceptance status of statements. As the
acceptance conditions of ADFs are defined as functions on two-valued interpretations, we
cannot pass on the truth value u, but we make a statement s forcibly undecided by changing
its acceptance formula to ¬s. Second, by fixing the truth value of some statements, we might
produce redundancies in the acceptance conditions of other statements. Eliminating these
redundancies from the links and the acceptance formulas is one of the crucial points in the
procedure, because by doing so, the dependencies of the statements can change, which has
an important influence on the subsequent calls.

Definition 3.1. Let D = (S,L,C) be an ADF and p, s ∈ S. We say that s u-depends on p if
there is a path from p to s in L but no path from s to p in L (where u stands for unidirection-
ally). Now let M ⊆ S. A statement s ∈ S is independent modulo M iff for each p ∈ S, if s u-
depends on p then p ∈M . A set M ⊆ S is independent iff there is no s ∈M that u-depends
on a p ∈ S \M . Lastly, define indD(M) = {s ∈ S | s is independent modulo M in D}.

Note that dependence here implicitly speaks about strongly connected components
(SCCs). Intuitively speaking, statements do not depend on statements in their own SCC,
but on all statements in “previous” SCCs. The function indD returns the set of all state-
ments that are independent modulo the input set. Note that the topology of the ADF is
explicitly given with the set L, thus it is not necessary to consider the acceptance conditions
to get the information about independent statements.

13

Gaggl, Rudolph, & Strass

Example 3.2. Consider an ADF D with the statements S and links given graphically:

a b c d e

We initially have indD(∅) = {a, b} = M0. Then indD(M0) = {a, b, c, d} = M1 and finally
indD(M1) = {a, b, c, d, e} = S.

Given an independent subset M of statements of an ADF, ignoring all other statements
again yields an ADF.

Definition 3.3. Let D = (S,L,C) be an ADF and M ⊆ S be an independent set. The
ADF D restricted to M is given by D|M = (M,L ∩ (M ×M), {ϕs}s∈M).

Note that D|M really is an ADF since its acceptance formulas by presumption do not
mention statements not in M .

We next define how to reduce an ADF given a subset M of its statements and an
interpretation of this subset. The intuition is that the truth values of statements in M
are fixed and can be propagated into the rest of the ADF.9 For this definition recall from
Definition 2.1 that for a propositional formula ϕ and a three-valued interpretation v of
parts of its signature, ϕv denotes the formula ϕ where atoms that v maps into {t, f} have
been replaced by their truth values. Through such replacements it may happen that links
become redundant. For example, consider the acceptance formula ϕs = a ∨ (b ∧ c) and the
interpretation v = {a 7→ u, b 7→ f , c 7→ u}. The reduced formula is ϕvs = a ∨ (⊥ ∧ c). This
formula is equivalent to a and thus c is redundant in ϕvs . The identification and removal of
such redundant parents is an important ingredient of the following definition.

Definition 3.4. Let D = (S,L,C) be an ADF, M ⊆ S and v : M → {t, f ,u}. The ADF
D reduced with v on M is given by JDKvM = (S, JLKvM , {JϕsKvM}s∈S) with

JϕsKvM =


> if s ∈M and v(s) = t

⊥ if s ∈M and v(s) = f

¬s if s ∈M and v(s) = u

ϕvs [r/> : r is redundant in ϕvs] otherwise

JLKvM = (L \ {(r, s) ∈ L | r is redundant in JϕsKvM}) ∪ {(s, s) | v(s) = u}.

That is, JLKvM is L without redundant links and the added self-loops for undecided
statements in v. The new acceptance formulas in ADF JDKvM fix the truth values of state-
ments in M as v assigns them. Furthermore, the classical ones among these truth values
are fixed in acceptance formulas that mention statements in M . Should such replacements
make other statements redundant, then these are replaced by a fixed truth value to make
the redundancy explicit. In the example above, the partially evaluated formula a ∨ (⊥ ∧ c)
is further transformed into a ∨ (⊥ ∧>), that is, former parent c is replaced by >. (Since
the parent is redundant, it is immaterial which truth value is actually used.) Whenever

9. For the classical truth values t and f , the resulting acceptance conditions are clear; for u we use a
self-attack, as it was done for AFs (Baumann, 2011).

14

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

par(s) ∩M = ∅, that is, the parents of s are not affected by v, then JϕsKvM = ϕs, that is,
the acceptance formula of s does not change.

Now we present the final ingredient of our decomposition-based scheme, the most im-
portant definition of the paper. It describes the actual recursion that is used to assign to a
given ADF semantics σ a new semantics σ2.

Definition 3.5. Let D = (S,L,C) be an ADF and σ a semantics. Define a set σ2(D) of
interpretations as follows:

σ2(D) = σ2(indD(∅), D), where for each M ⊆ S we define

σ2(M,D) =


σ(D) if M = S⋃
w∈σ(D|M)

σ2

(
ind JDKwM (M), JDKwM

)
otherwise

The basic underlying intuition of this definition is to recursively decompose a given ADF
along its independent statements. We start out with all statements that are independent
modulo the empty set, M0 = indD(∅). We now look only at the sub-ADF D|M0

that consists
of D restricted to M0 and consider all its σ-interpretations. For each σ-interpretation w,
we use the information it contains (that is, the truth values it assigns) to simplify the rest
of the ADF. Simplification means that we propagate the truth values of the interpretation
as far as possible and at the same time remove redundant links. We then recursively
invoke the definition on the ADF resulting from simplifying D by w. Note that at this
point, the statements in M0 are already dealt with, they have fixed truth values. The
main task of the recursive call is to take care of all statements that have newly become
independent (modulo M0). When the sequence of independent statements M0 ⊆M1 ⊆ . . .
eventually reaches the fixed-point S, the first case of the definition applies and the recursion
stops.10An obvious special case are ADFs D with only one strongly connected component.
In this case, indD(∅) = S and thus σ2(D) = σ(D).

Example 3.6. Let the ADF D = (S,L,C) be graphically given as follows:

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

10. To see why, it suffices to see that for each finite ADF D, the set indD(∅) is non-empty. This, in turn, is
because there cannot be infinite descending chains of SCCs. Then, once we have an interpretation w for
the non-empty M0, we can simplify D by in essence removing the statements in M0 from it (yielding D′)
and are left with obtaining indD′(∅) again. Note that the restriction to finite ADFs is paramount here,
as for example an ADF D>

N over the natural numbers N and links {(n + 1, n) | n ∈ N} has indD>
N

(∅) = ∅,
while ADF D<

N with statements N and links {(n, n + 1) | n ∈ N} has indD<
N

(∅) = {0}, but the fixed-point

indD<
N

(N) = N cannot be reached in a finite number of steps.

15

Gaggl, Rudolph, & Strass

We want to compute nai2(D) = nai2(indD(∅), D) and thus construct the set indD(∅) =
{a, b, c} = M0. Then we obtain nai(D|M0

) = {v0, v1, v2}:

v0 = {a 7→ u, b 7→ t, c 7→ f},
v1 = {a 7→ f , b 7→ u, c 7→ t},
v2 = {a 7→ t, b 7→ f , c 7→ u}.

According to Definition 3.5, for each of these interpretations w we construct the respec-
tive reduced ADF JDKwM0

and recursively determine its nai2 semantics. We begin with
w = v0 ∈ nai(D|M0

) and compute nai2(M1, D1) with D1 = JDKv0
M0

. The ADF D1 is graphi-
cally depicted below; links that have newly become redundant are dotted, links originating
in independent statements are thin.

a

¬a

b

>

c

⊥

d

⊥ ∨ f

e

d ∧ f

f

e

Thus M1 = indD1(M0) = S, and we only need to consider nai(D1) = {v3, v4}:

v3 = v0 ∪ {d 7→ t, e 7→ t, f 7→ t},
v4 = v0 ∪ {d 7→ f , e 7→ f , f 7→ f}.

We next consider v1 ∈ nai(D|M0
) and call nai2(M2, D2) with D2 = JDKv1

M0
:

a

⊥

b

¬b

c

>

d

> ∨>

e

d ∧ f

f

e

Note that ϕv1
d = > ∨ f where f is redundant and thus JϕdKv1

M0
= > ∨ >. For the next

step we get M2 = indD2(M0) = {a, b, c, d}, and D2|M2
has the single naive interpretation

v5 = v1 ∪ {d 7→ t}. We compute nai2(M3, D3) with D3 = JD2Kv5
M2

:

a

⊥

b

¬b

c

>

d

>

e

> ∧ f

f

e

We obtain M3 = indD3(M2) = S and two naive interpretations for D3:

v6 = v5 ∪ {e 7→ t, f 7→ t},
v7 = v5 ∪ {e 7→ f , f 7→ f}.

16

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

Finally, for v2 ∈ nai(D|M0
) the call nai2(M4, D4) is performed with D4 = JDKv2

M0
:

a

>

b

⊥

c

¬c

d

c ∨ f

e

d ∧ f

f

e

Thus M4 = indD4(M0) = S and the two naive interpretations of D4 are

v8 = v2 ∪ {d 7→ t, e 7→ t, f 7→ t},
v9 = v2 ∪ {d 7→ t, e 7→ f , f 7→ f}.

Thus overall, we obtain the set

nai2(D) = nai2(M1, D1) ∪ nai2(M2, D2) ∪ nai2(M4, D4) = {v3, v4, v6, v7, v8, v9}.

In this example the naive and nai2 interpretations coincide, thus nai(D) = nai2(D).

However, in general we have that nai 6= nai2 which is shown in the following example.

Example 3.7. Let the ADF D = (S,L,C) be as given below:

a

a

b

¬a ∧ ¬c

c

¬b ∧ ¬c

d

c ∧ e

e

d

The nai2 interpretations of this ADF are

v1 = {a 7→ t, b 7→ f , c 7→ u, d 7→ t, e 7→ t},
v2 = {a 7→ t, b 7→ f , c 7→ u, d 7→ f , e 7→ f}.

But there is the following naive interpretation v3 of D which is not contained in nai2(D)

v3 = {a 7→ u, b 7→ t, c 7→ f , d 7→ f , e 7→ f}.

Example 3.6 has shown that at least for the case of naive semantics, nai 6= nai2. But
what about other semantics? Let us look at another example, this time for stage semantics.

Example 3.8. Consider the ADF D = (S,L,C) with S = {a, b, c}, L =
{(a, b), (b, a), (b, c), (c, c)} and ϕa = b, ϕb = a and ϕc = ¬b ∧ ¬c:

a

b

b

a

c

¬b ∧ ¬c

17

Gaggl, Rudolph, & Strass

We find that D has only one stage interpretation, stg(D) = {v1}, with v1 =
{a 7→ t, b 7→ t, c 7→ f}. On the other hand, for stg2(D), we start out with M1 =
indD(∅) = {a, b}. There we find stg(D|M1

) = {v2, v3} with v2 = {a 7→ f , b 7→ f} and
v3 = {a 7→ t, b 7→ t}. The reduced ADF JDKv2

M1
consists only of the self-attacking statement

c and stg(JDKv2
M1

) = {v4} with v4 = v2 ◦ {c 7→ u}. The reduced ADF JDKv3
M1

consists of
statement c where ϕc is equivalent to false, thus stg(JDKv3

M1
) = {v5} with v5 = v3 ◦ {c 7→ f}.

Thus stg2(D) = {v4, v5}; while clearly v5 = v1, we have v4 ∈ stg2(D) but v4 /∈ stg(D).

Thus for stage semantics, also stg2 6= stg . The following fundamental result provides the
complete picture. For semantics σ, τ , the expression σ ≤ τ means that for all ADFs D we
have σ(D) ⊆ τ(D).

Theorem 3.9.

1. Let σ ∈ {cfi , adm, pre, com,mod}. Then σ ≤ σ2.
2. Let σ ∈ {nai , stg}. Then σ 6≤ σ2.
3. Let σ ∈ {cfi ,nai , adm, pre, com,mod}. Then σ2 ≤ σ.
4. Let σ ∈ {stg}. Then σ2 6≤ σ.

Proof. 1. Let D = (S,L,C) be an ADF and v ∈ σ(D). Define M0 = ∅, D1 = D and
M1 = indD(∅). For i ≥ 1 define vi = v|Mi

, Di+1 = JDiKviMi
and Mi+1 = indDi+1(Mi).

By ϕs,i we denote the acceptance formula of s in Di. Let n ∈ N be such that Mn = S.
From Definition 3.5 it follows that v ∈ σ(Dn) if and only if v ∈ σ2(D), whence we
have to show v ∈ σ(Dn). We will show by induction that for all i ∈ N we find
vi ∈ σ(Di|Mi

). Since vn = v|Mn
= v|S = v and similarly Dn|Mn

= Dn|S = Dn, we
infer that vn ∈ σ(Dn|Mn

) shows v ∈ σ(Dn).

i = 1: Let s ∈M1 = indD1(∅). Since s is independent modulo M1, the parents of s in
D are contained in M1. Thus the acceptance function of s in D1|M1

is exactly
that of s in D. Now v ∈ σ(D) and M1 being independent clearly imply that
v|M1

= v1 ∈ σ(D1|M1
).

i i+ 1: Let vi ∈ σ(Di|Mi
). Let s ∈ S. If s ∈Mi, then by definition the acceptance

condition of s in Di+1 allows only the single truth value vi(s), therefore assume
s ∈ Mi+1 \Mi. By definition, Mi+1 = indDi+1(Mi) whence s is independent
modulo Mi in Di+1. Thus ϕs,i+1 mentions only statements in Mi+1. For any
r ∈ Mi+1 we have by definition of vi+1 = v|Mi+1

that vi+1(r) = v(r). If there
is any syntactic difference between ϕs and ϕs,i+1, then this difference amounts
to replacements of statements by truth values. There are two possible reasons:
(a) replacing an r ∈ Mi+1 by v(r) ∈ {t, f}; (b) replacing a redundant r ∈ Mi+1

by >. In both cases, we obtain that |= ϕvs ≡ ϕvs,i+1: for (a), replacing r by v(r)
is obviously compatible with computing the partial evaluation with respect to
v; for (b), replacing a redundant variable in a formula has no influence on the
semantics by definition. From this, we can infer that also |= ϕvs ≡ ϕ

vi+1

s,i+1, whence
the result follows for σ ∈ {cfi , adm, com,mod}.

For σ = pre, assume to the contrary that v /∈ pre2(D). Consider the algorith-
mic attempt at testing whether v ∈ pre2(D), in particular the iteration i ∈ N

18

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

where its negative result becomes obvious, that is, the iteration i ∈ N for which
vi = v|Mi

/∈ pre(Di|Mi
). There are two possible reasons:

(a) vi /∈ adm(Di|Mi
). Then there is an s ∈ Mi with vi(s) ∈ {t, f} but where the

refutability/satisfiability status of ϕs,i does not match vi(s). Since s is inde-
pendent modulo Mi in Di, we also have a mismatch between ϕs ≡ ϕs,i and
vi(s) = v(s). But then v /∈ adm(D) ⊇ pre(D), contradiction.

(b) there is an interpretation wi ∈ adm(Di|Mi
) with vi <i wi. We construct an in-

terpretation w : S → {t, f ,u} as follows:

s 7→

{
wi(s) if s ∈Mi

v(s) otherwise

Clearly v <i w by construction. It remains to show that w ∈ adm(D), because
then v /∈ pre(D), a contradiction. To show that w is admissible, we have to show
that for each s ∈ S, if w(s) = t then ϕws is irrefutable and if w(s) = f then ϕws
is unsatisfiable. For s ∈Mi, this condition holds because wi ∈ adm(Di|Mi

). Let
s ∈ S \Mi. If s depends only on statements in S \Mi, then the condition holds
because v ∈ pre(D) ⊆ adm(D). Assume s has parents in Mi. By v ≤i w, the
only possible difference between v and w are statements r ∈ Mi with v(r) = u
and w(r) ∈ {t, f}. Now if ϕvs is irrefutable, then ϕws is irrefutable as well, the
same for unsatisfiability. Thus w ∈ adm(D).

2. σ = nai : The ADF D from Example 3.6 has |nai(D)| = 7 but |nai2(D)| = 6.

σ = stg : Consider the following AF-based ADF D with S = {a, b, c}, L =
{(a, b), (b, c), (c, c)} and the acceptance conditions ϕa = >, ϕb = ¬a and
ϕc = ¬b ∧ ¬c:

a

>

b

¬a

c

¬b ∧ ¬c

The interpretation v = {a 7→ u, b 7→ t, c 7→ f} is not contained in stg2(D)
because for D0 = D and M0 = indD0(∅) = {a}. Thus, by calling stg2(D0,M0)
we first obtain that v0 = {a 7→ t} is the only stage interpretation of the ADF
D0|M0

. The next call is stg2(D1,M1), with D1 = JD0Kv0
M0

contains the acceptance
conditions ϕa = >, ϕb = ¬> and ϕc = ¬b ∧ ¬c, and the link (a, b) is removed
in D1. Thus, M1 = indD1(M0) = {a, b}, and v1 = v0 ∪ {b 7→ f} = stg(D1|M1

).
Finally, we call stg2(D2,M2), with D2 = JD1Kv1

M1
and the acceptance conditions

ϕa = >, ϕb = ⊥ and ϕc = ¬⊥ ∧ ¬c, and the redundant link (b, c) was removed
in D2. Thus, M2 = indD2(M1) = S and stg(D2) has one interpretation, namely
v2 = v1 ∪ {c 7→ u}.

3. Let D = (S,L,C) be an ADF and v ∈ σ2(D). Define D1 = D, M0 = ∅ and M1 =
indD(∅). By definition of σ2, for each i ≥ 1 there exist an ADF Di, a set Mi ⊆ S

19

Gaggl, Rudolph, & Strass

and an interpretation vi : Mi → {t, f ,u} ∈ σ(Di|Mi
) such that Di+1 = JDiKviMi

and
Mi+1 = indDi+1(Mi). Assume to the contrary of what we have to show that v /∈
σ(D). In each of the cases (semantics) below, this assumption will let us conclude the
existence of an s ∈ S with certain properties. To derive the required contradictions,
we typically make use of the fact that for any s ∈ S, we find some i ∈ N with

|= ϕvs ≡ ϕ
vi
s,i. (?)

To see this, let i ∈ N be the least i ≤ |S| such that s ∈Mi. By definition vi ∈ σ(Di|Mi
)

and vi = v|Mi
, whence vi(s) = v(s). As s is independent in Di modulo Mi−1, also

all parents of s are contained in Mi and thus also independent in Di (modulo Mi−1).
Thus, for each parent r of s, we also have vi(r) = v(r). Equation (?) follows.

σ = cfi : There can be the following two cases: (i) there is an s ∈ S with v(s) = t
but ϕvs is unsatisfiable: by the above, also ϕvis,i is unsatisfiable and we obtain
vi 6∈ cfi(Di|Mi

), a contradiction. (ii) there is an s ∈ S with v(s) = f but
ϕvs is satisfiable: then also ϕvis,i is satisfiable and we obtain vi 6∈ cfi(Di|Mi

), a
contradiction.

σ = nai : Then there is an interpretation w ∈ cfi(D) with v <i w, that is, there
is a statement s ∈ S such that v(s) = u and w(s) 6= u. We now find that
vi(s) = v(s) = u while w|Mi

(s) = w(s) 6= u. Thus vi <i w|Mi
. Since w is

conflict-free in D, the interpretation w|Mi
is conflict-free in Di|Mi

, see (?). But
then vi /∈ nai(Di|Mi

). Contradiction.

σ = adm: Then there is an s ∈ S such that either (i) v(s) = t and ϕvs is refutable, or
(ii) v(s) = f and ϕvs is satisfiable. Case (i): Since vi ∈ adm(Di|Mi

), we have that
ϕvis,i is irrefutable. But |= ϕvs ≡ ϕ

vi
s,i, contradiction. Case (ii) is analogous.

σ = pre: Then there is an interpretation w ∈ adm(D) with v <i w, that is, there
is a statement s ∈ S such that v(s) = u and w(s) 6= u. We now find that
vi(s) = v(s) = u while w|Mi

(s) = w(s) 6= u. Thus vi <i w|Mi
. Since w is ad-

missible in D, the interpretation w|Mi
is admissible in Di|Mi

, see (?). But then
vi /∈ pre(Di|Mi

). Contradiction.

σ = com: Then there is an s ∈ S with v(s) ∈ {t, f} and the refutability/satisfiability
status of ϕvs does not match. By (?), vi ∈ com(Di|Mi

) implies that v(s) = vi(s)
matches ϕvis,i ≡ ϕvs , a contradiction.

σ = mod : Then there is a statement s ∈ S such that v(s) 6= v(ϕs). But then again
by (?), vi(s) = v(s) 6= v(ϕs) = vi(ϕs,i), and vi /∈ mod(Di|Mi

). Contradiction.

4. σ = stg : A witnessing ADF is presented in Example 3.8. �

As an easy consequence, we get a number of semantics for which the decomposition-based
scheme does not lead to new semantics, but rather new ways to compute the semantics.
For the grounded semantics, the equality grd = grd2 follows from the same equality for
complete semantics.

Corollary 3.10. For σ ∈ {cfi , adm, pre, com, grd ,mod} it holds that σ = σ2.

20

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

As another result, we can show that for the special case of AFs, our nai2 semantics
coincides with AFs’ cf2 semantics.

Proposition 3.11. Let A be an argumentation framework and DA its associated ADF.
The cf2 labellings of A coincide with the nai2 interpretations of DA.

Proof. As labellings of AFs and interpretations of ADFs are basically the same, we will write
v = vv for an interpretation v and its counterpart of a labelling v. We show nai2(DA) ⊆
cf2 (A).

Towards a contradiction, suppose vv 6∈ cf2 (A). From above we know that for each
v ∈ nai2(DA) also v ∈ nai(DA), thus it also holds that each vv such that v = vv, vv ∈
nai(A). So there exists one base case of the cf2 calls, i.e. cf2 (A′), with A′ ⊆ A and
|SCCs(A′)| = 1, such that vv|A(A′) 6∈ nai(A′). As the conflict-free property is preserved
by the SCC-recursive schema (Baroni et al., 2005), vv|A(A′) is conflict-free in A′. Thus,
there exists another conflict-free labelling vw|A(A′) ∈ cfi(A′) which is maximal among the
arguments labelled with t or f , i.e. vv|A(A′) <i vw|A(A′). This means, there is an argument
s ∈ A(A′) with vw|A(A′)(s) 6= u but vv|A(A′)(s) = u. As vv is naive in A we know that
s is not attacked by any argument r labelled to t, thus we can conclude vw|A(A′)(s) = t.
Furthermore, vw|A(A)\A(A′) = vv|A(A)\A(A′) and vw ∈ cfi(A).

For better readability we will write D instead of DA = (S,L,C) to refer to the ADF
associated to the argumentation framework A. Let Di be the ADF with Mi ⊆ S and the
interpretation vi : Mi → {t, f ,u} ∈ nai(Di|Mi) with vi = v|Mi such that Di+1 = JDiKviMi

and
Mi+1 = indDi+1(Mi) and s ∈ Mi. In particular we have S(D|Mi\Mi−1

) = A(A′). We have
vi(s) = v(s) = u, but for w|Mi\Mi−1

= vw|A(A′), we have w|Mi(s) = t. Thus, vi <i w|Mi and
as vw ∈ cfi(A) also w|Mi is conflict-free in Di|Mi (see above). But then vi 6∈ nai(Di|Mi), a
contradiction.

The other direction is by the same argument. �

Another result says that each stg2 interpretation is also a nai2 interpretation.

Proposition 3.12. stg2 ≤ nai2

Proof. Let D be an ADF over S and v : S → {t, f ,u} ∈ stg2(D). Define D1 = D and M1 =
indD(∅). By definition of stg2, for each i ≥ 1 there exist an ADF Di, a set Mi ⊆ S and an
interpretation vi : Mi → {t, f ,u} ∈ stg(Di|Mi

) with vi = v|Mi such that Di+1 = JDiKviMi
and

Mi+1 = indDi+1(Mi). We have to show that v ∈ nai2(D), and do this by using induction on
i to show that there exist D′i, M

′
i ⊆ S and interpretations v′i : M ′i → {t, f ,u} ∈ nai(D′i|M ′i)

with v′i = v|Mi such that D′i+1 = JD′iK
v′i
M ′i

and M ′i+1 = indD′i+1
(M ′i). In fact, define D′i = Di,

M ′i = Mi and v′i = vi.

i = 1: We have that v1 ∈ stg(D1|M1
) ⊆ nai(D1|M1

) = nai(D′1|M ′1) by presumption and

since stg ≤ nai . Furthermore, D′2 = D2 = JD1Kv1
M1

= JD′1K
v′1
M ′1

and M ′2 = M2 =

indD2(M1) = indD′2(M ′1).

i i+ 1: Let vi ∈ stg(Di|Mi
). Again, stg(Di|Mi

) ⊆ nai(Di|Mi
) = nai(D′i|M ′i) and thus

v′i = vi ∈ nai(D′i|M ′i). Furthermore, D′i+1 = Di+1 = JDiKviMi
= JD′iK

v′i
M ′i

and M ′i+1 =

Mi+1 = indDi+1(Mi) = indD′i+1
(M ′i). �

21

Gaggl, Rudolph, & Strass

mod

stg

stg2 nai2

nai cfi

Figure 1: Relation between naive-based ADF semantics in terms of ⊆-inclusion. An ar-
row from semantics σ to semantics τ indicates that each σ-interpretation is also a τ -
interpretation. If there is no directed path from σ to τ , then one can construct an ADF
with a σ-interpretation that is not a τ -interpretation.

Figure 1 gives an overview of the relations between the discussed naive-based ADF seman-
tics. We can see that nai2 and stg2 offer further refinements of conflict-freeness that lead
to intermediate notions between model (AF stable) and naivety. While one such refinement
already existed with stage semantics, we herein present two further refinements that are
incomparable to stage semantics, namely nai2 and stg2 semantics, with the latter being a
further refinement of the former. Instead of taking a global view on an ADF like model,
stage, and naive semantics, these two latest additions take a sequence of local views of in-
creasing size, in which statements are successively added as accepted, rejected, or undecided
– respectively subject to the notion of conflict-freeness. Arguably, this approach to evalua-
tion of statements could be likened to that of a human reasoner, considering a complex case
by starting with the facts at hand, their direct conclusions, and so on, until finally arriving
at a verdict taking into account all available information, all the while being subjected to
consistency requirements.

Example 3.13. Consider the following situation. There are three persons A,B, and C
which support or attack further statements. Person A is against speed limits (SL) on
German highways and states that B is unreliable. Person B has the goal to make German
highways safer (S) and states that C is unreliable. Person C wants to save animals by
building a wall (W) next to highways and states that A is unreliable. In this situation we can
identify the following statements a, b, c, sl, s, w with the links and acceptability conditions
as shown in Figure 2. Additionally to the attacks in the cycle {a, b, c} we identify supports
between statements sl and s. When evaluating such a situation humans would first decide
which of the persons A,B, and C are reliable, and then depending on the outcome of
this evaluation decide on the acceptability of the remaining statements. This leads to the
following nai2 interpretations

v1 = {a 7→ t, b 7→ f , c 7→ u, sl 7→ f , s 7→ f , w 7→ t} ,
v2 = {a 7→ u, b 7→ t, c 7→ f , sl 7→ t, s 7→ t, w 7→ f} ,
v3 = {a 7→ f , b 7→ u, c 7→ t, sl 7→ t, s 7→ t, w 7→ t} .

Thus, when accepting statement a (choosing A to be reliable), this has the influence that
statements sl and s will be rejected while statement w still can be accepted. On the other
hand, in both cases of accepting either b or c, the statements sl and s will be accepted as

22

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

c

¬b

w

c

b

¬a

a¬c sl ¬a ∧ s

s b ∧ sl

Figure 2: The ADF of Example 3.13

well. In this example one can see the direct influence of the initial cycle (statements a, b
and c) on the rest of the ADF.

Such behaviour has been observed in empirical human studies for AFs (Cramer & Guil-
laume, 2019), which also showed that AF semantics like cf2 and in later studies the SCF2
semantics (Cramer & van der Torre, 2019) reflect best how humans would evaluate such
situations. For ADFs such empirical studies do not exist yet, but it is reasonable to hy-
pothesize that similar behaviour would be observed.

4. Complexity Results

In this section, we analyse the computational complexity of all semantics
σ ∈ {cfi ,nai , stg ,nai2, stg2}. More specifically, we will consider the decision prob-
lems of verification, (non-trivial) existence, as well as credulous and sceptical entailment,
respectively defined as follows:

• Verσ: Given an ADF D over S and an interpretation v : S → {t, f ,u}, is v ∈ σ(D)?

• Existsσ: Given an ADF D over S, does there exist a non-trivial interpretation
v ∈ σ(D), that is, one with v(S) 6= {u}?

• Credtσ /Credfσ: Given an ADFD over S and an s ∈ S, does there exist an interpretation
v ∈ σ(D) with v(s) = t / v(s) = f?

• Sceptσ / Scepfσ: Given an ADF D over S and an s ∈ S, is v(s) = t / v(s) = f for all
v ∈ σ(D)?

As we will see later, it is indeed necessary to distinguish the entailment problems Credtσ
and Credfσ (and, respectively, Sceptσ and Scepfσ), that is, distinguish whether we ask if a
statement is sometimes (always) accepted, and sometimes (always) rejected. For any of the
introduced types of decision problems, we say they coincide if they yield the same truth
values on all inputs.

In several reductions of this paper, we consider quantified Boolean formulas over dis-
joint vocabularies P]Q with their matrix ψ in either DNF (a disjunction of monomials)
or CNF (a conjunction of clauses). They will be used to provide hardness results through
reducing checking whether the QBF evaluates to true to some relevant problem at hand.

23

Gaggl, Rudolph, & Strass

Sometimes, we cannot use ψ as is, but have to replace atoms from part of its vocabulary,
say P , by new literals from a distinct copy of P , the atoms P ′ = {p′ | p ∈ P}. We will
then denote by ψ′ the formula obtained from ψ by replacing all positive occurrences of
an atom p ∈ P by the literal ¬p′ for the respective p′ ∈ P ′. For example, for the DNF
ψ = (p1 ∧ q1 ∧ ¬p2) ∨ (¬q2 ∧ ¬p1 ∧ p3) we get ψ′ = (¬p′1 ∧ q1 ∧ ¬p2) ∨ (¬q2 ∧ ¬p1 ∧ ¬p′3).
The following property of this replacement will be important for us.

Proposition 4.1. Let ψ be a DNF over P]Q. For every interpretation v : P → {t, f},
there exists an interpretation w : P ∪ P ′ → {f ,u} (with P ′ = {p′ | p ∈ P}) such that ψv is
a tautology if and only if ψ′w is a tautology.

Proof. For v : P → {t, f} define w : P ∪ P ′ → {f ,u} thus:

w(p) =

{
f if v(p) = f

u otherwise
for p ∈ P

w(p′) =

{
f if v(p) = t

u otherwise
for p ∈ P

It remains to show that ψv is a tautology if and only if ψ′w is a tautology.

if: If ψv is refutable, then there is an interpretation r : Q→ {t, f} such that
r(ψv) = (r ◦ v)(ψ) = f . Define an interpretation s : P ∪ P ′ → {t, f} such that
s = w ◦ {p 7→ t | w(p) = u} ◦ {p′ 7→ t | w(p′) = u}. Clearly w ≤i s; it furthermore fol-
lows that s and v have the same truth values for all literals over P , and that they are
compatible with the replacement p 7→ ¬p′:

• s(p) = t iff w(p) = u iff v(p) = t;

• s(p) = f iff w(p) = f iff v(p) = f ;

• s(p′) = t iff w(p′) = u iff v(p) = f ;

• s(p′) = f iff w(p′) = f iff v(p) = t; also

• s(¬p) = t iff s(p) = f iff v(p) = f iff v(¬p) = t;

• s(¬p) = f iff s(p) = t iff v(p) = t iff v(¬p) = f ;

• s(¬p′) = t iff s(p′) = f iff v(p) = t.

• s(¬p′) = f iff s(p′) = t iff v(p) = f .

Thus ψ′s = ψv, consequently r(ψ′s) = r(ψv) = f and ψ′w is refutable.

only if: If ψ′w is refutable, then there is an interpretation r : P ∪ P ′ ∪Q→ {t, f} such that
r(ψ′w) = (r ◦ w)(ψ′) = f . Since ψ′ is in DNF, this means that in every monomial of
ψ′, there is some literal x′ with (r ◦ w)(x′) = f , that is, either w(x′) = f , or w(x′) = u
and r(x′) = f . We do a case distinction on x′ and show that in every monomial ξ of
ψ, its corresponding literal x likewise has (r ◦ v)(x) = f . Consider an arbitrary, fixed
monomial ξ′ of ψ′ =

∨
ξ′ and its respective false literal x′.

• x′ = p: Impossible, as positive occurrences of p in ψ have been replaced by ¬p′.

24

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

• x′ = ¬p: If w(¬p) = f then w(p) = t, which is impossible by construction.

• x′ = p′: Impossible, as atoms from p′ appear only negated in ψ′.

• x′ = ¬p′: As above, then w(p′) = t, which is impossible by definition.

• x′ = q: Then r(q) = f and since x = q occurs in ξ we have (r ◦ v)(ξ) = f .

• x′ = ¬q: Then r(q) = t and since x = ¬q occurs in ξ we get (r ◦ v)(ξ) = f .

Since ξ′ was an arbitrary monomial, we conclude that r(ψv) = f , whence ψv is
refutable. �

A similar result holds for satisfiability if ψ is in CNF. We are now ready to present
the main complexity results of this paper, tight complexity bounds for all semantics among
conflict-free, naive, stage and nai2 for all decision problems introduced above, both for
the class of general, unrestricted ADFs, as well as the restricted subclass of bipolar ADFs.
The results are grouped together in subsections according to (sub)class and subsubsections
according to decision problems.

4.1 Complexity of General ADFs

We begin with the case of general ADFs, where relationships between statements are unre-
stricted.

4.1.1 Interpretation Verification

We start out with verifying if a given interpretation is conflict-free. Roughly, this is done
using one satisfiability check and one unsatisfiability check, and the completeness result
tells us that we most likely cannot do any better.

Proposition 4.2. Vercfi is DP-complete.

Proof. in DP: Let D be an ADF over S and v : S → {t, f ,u} be an interpretation. To verify
that v is conflict-free for D, we have to verify that (1) for all s ∈ S with v(s) = t,
the formula ϕvs is satisfiable, and (2) for all s ∈ S with v(s) = f , the formula ϕvs is
unsatisfiable. This can be done in DP by verifying that

∧
s∈S,v(s)=t ϕ

v
s is satisfiable and∨

s∈S,v(s)=f ϕ
v
s is unsatisfiable. Clearly these formulas can be computed in polynomial

time.

DP-hard: Let φ and ψ be propositional formulas over disjoint vocabularies P1 and P2, re-
spectively. We construct an ADF over statements S = P1 ∪ P2 ∪ {x, y} and an inter-
pretation v : S → {t, f ,u} such that v is conflict-free for D if and only if φ is satisfiable
and ψ is unsatisfiable. Set ϕp = ¬p for all p ∈ P1 ∪ P2, furthermore set ϕx = φ and
ϕy = ψ. Finally, define v such that p 7→ u for p ∈ P1 ∪ P2, and x 7→ t and y 7→ f . �

To ease the comprehension of the reductions used in the proofs of our results, we start
with one particular reduction that is used to show the ΠP

2 -hardness of most other interpre-
tation verification problems.

25

Gaggl, Rudolph, & Strass

p1 p2 p3p′1 p′2 p′3

y

¬y ∨
(
(p1 ∨ p′1) ∧ (p2 ∨ p′2) ∧ (p3 ∨ p′3)

)

z

¬z ∧ (p′1 ∨ ¬q1 ∨ p2) ∧ (q2 ∨ p1 ∨ p′3)

q1¬q1 q2 ¬q2

Figure 3: ADF DΦ for Φ = ∃{p1, p2, p3}∀{q1, q2}(p1∧q1∧¬p2)∨(¬q2∧¬p1∧p3) constructed
with Reduction 4.3. To improve the readability of the graph, we omitted the self-loops of all
statements and the acceptance formulas ϕp = ¬p ∧ (¬y ∨ z) of all p ∈ P ∪ P ′.

Reduction 4.3. Let Φ = ∃P∀Qψ be a QBF with ψ in DNF. Define an ADF DΦ over
S = P ∪ P ′ ∪Q ∪ {y, z} with:

ϕp = ¬p ∧ (¬y ∨ z) for p ∈ P
ϕp′ = ¬p′ ∧ (¬y ∨ z) for p ∈ P
ϕq = ¬q for q ∈ Q

ϕy = ¬y ∨
∧
p∈P

(p ∨ p′)

ϕz = ¬z ∧ ¬ψ′

Here ψ′ is ψ with all positive occurrences of p replaced by ¬p′. Finally, define the inter-
pretation v : S → {t, f ,u} such that v(y) = t and all other statements are mapped to u.

Intuitively, p and p′ serve to guess a valuation for P where setting p ∈ S to false encodes
setting p ∈ P to false, and setting p′ ∈ S to false encodes setting p ∈ P to true. All p, p′ ∈ S
cannot be set to true, and only be set to false if z is false and y is true; in turn, z can
only be set to false if ¬ψ′ is unsatisfiable; statement y can only be set to t or u. Setting
y to true in a conflict-free interpretation v guarantees that for each p ∈ P at most one
of p is false or p′ is false in v, but never both. These ideas are reused and (sometimes
significantly) elaborated upon in later results. See Figure 3 for the reduction of the QBF
Φ = ∃{p1, p2, p3}∀{q1, q2}(p1 ∧ q1 ∧ ¬p2) ∨ (¬q2 ∧ ¬p1 ∧ p3) to the ADF DΦ.

Recall that an interpretation v : S → {t, f ,u} is naive iff it is conflict-free and ≤i-
maximal with respect to being conflict-free. Thus, to verify that a given interpretation

26

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

v is not naive, we first check (using an NP oracle) whether v is conflict-free. If v is not
conflict-free, we are done; otherwise, we can guess an interpretation v′ with v <i v

′ and
verify in DP (using the NP-oracle again) that v′ is conflict-free. Once more, this is the best
we can do.

Theorem 4.4. Vernai is ΠP
2 -complete.

Proof. in ΠP
2 : Let D be an ADF over S. A given interpretation v : S → {t, f ,u} is not naive

iff it is not conflict-free or if there is a conflict-free interpretation w : S → {t, f ,u}
with v <i w. Showing that v is not conflict-free can be done in polytime using the
NP oracle; otherwise we guess a w : S → {t, f ,u} with v <i w and use the NP oracle
to show that it is conflict-free.

ΠP
2 -hard: Let Φ = ∃P∀Qψ be a QBF with ψ in DNF and consider the ADF DΦ obtained

from Reduction 4.3 as well as the interpretation v defined there. We claim that v
is naive for DΦ iff Φ is false, or equivalently, Φ is true iff there is a conflict-free
interpretation w : S → {t, f ,u} with v <i w.

if: Let w : S → {t, f ,u} with v <i w be conflict-free. Then there is some s ∈ S \ {y}
with w(s) 6= u. If w(s) = t then ϕws ≡ ¬> is unsatisfiable in contradiction to w
being conflict-free. Thus w(s) = f . We will show that this implies w(z) = f .

• s = p ∈ P : Then ϕwp = ¬⊥ ∧ (¬> ∨ zw) ≡ zw is unsatisfiable, that is,
w(z) = f .

• s = p′ ∈ P ′: Analogous.

• s = q ∈ Q: Then ϕwq = ¬⊥ is unsatisfiable, contradiction.

• s = z: Then w(z) = f .

Since w(z) = f and w is conflict-free, the formula ϕwz = ¬⊥ ∧ ¬ψ′w ≡ ¬ψ′w is
unsatisfiable, that is, ψ′w is a tautology. Define an interpretation w′ : P → {t, f}
with w′(p) = t if w(p′) = f and w′(p) = f otherwise. Now since ψ′w is a tautology,
Proposition 4.1 shows that ψw

′
is a tautology and thus ∃P∀Qψ is true.

only if: Let Φ be true. Then there exists an interpretation w : P → {t, f} such that
ψw is a tautology. Define an interpretation v′ as follows:

v′(p) =

{
f if w(p) = f

u otherwise
for p ∈ P

v′(p′) =

{
f if w(p) = t

u otherwise
for p ∈ P

v′(q) = u for q ∈ Q
v′(y) = t

v′(z) = f

Clearly v <i v
′ since v(y) = v′(y) and v(z) = u <i f = v′(z). It remains to

show that v′ is conflict-free for D. This is immediate for p and p′ with
v′(p) = f or v′(p′) = f , since v′(y) = t. Furthermore, ϕv

′
y is satisfiable since

27

Gaggl, Rudolph, & Strass

for each p ∈ P , either v′(p) = u or v′(p′) = u, thus v′(y) = t is justified. Fi-
nally, ϕv

′
z = ¬⊥ ∧ ¬ψ′v′ ≡ ¬ψ′v′ is unsatisfiable since ψw is a tautology (Propo-

sition 4.1). �

For verifying stage interpretations, membership works in the same way as for naive. For
hardness, a close look at Reduction 4.3 reveals that it also works for stage semantics.

Theorem 4.5. Verstg is ΠP
2 -complete.

Proof. in ΠP
2 : Let D be an ADF over S. A given interpretation v : S → {t, f ,u} is not stage

iff it is not conflict-free or if there is a conflict-free interpretation w : S → {t, f ,u} with
wu (vu. Showing that v is not conflict-free can be done in P using the NP oracle;
otherwise we guess a w : S → {t, f ,u} with wu (vu and use the NP oracle to show
that it is conflict-free.

ΠP
2 -hard: Let Φ = ∃P∀Qψ be a QBF with ψ in DNF and consider the ADF DΦ obtained

from Reduction 4.3. We claim that v is a stage interpretation for DΦ iff Φ is false, or
equivalently, Φ is true iff there is a conflict-free interpretation w : S → {t, f ,u} with
wu (vu.

if: Let w : S → {t, f ,u} with wu (vu be conflict-free. As in the proof of Theorem 4.4
(both results use Reduction 4.3, and in the proof of Theorem 4.4 we only use
that there must exist an s ∈ S \ {y} with w(s) 6= u, which also applies here),
we can argue that in this case w(z) = f and thus ψ′w is a tautology. (Notice
that w(y) = f is impossible due to conflict-freeness.) Likewise, we can con-
struct an interpretation w′ : P → {t, f} showing that ψw

′
is a tautology and

thus Φ = ∃P∀Qψ is true.

only if: Let Φ be true. Again, as in the proof of Theorem 4.4 based on the same
reduction, starting from the interpretation w : P → {t, f} such that ψw is a
tautology, we can construct an interpretation v′ : S → {t, f ,u} that has v′u (vu
and is conflict-free for DΦ. �

The same hardness reduction (Reduction 4.3) even works for the nai2 and stg2 seman-
tics. It is somewhat harder to show membership in ΠP

2 via a reduction to Vernai/Verstg :
intuitively, this is done by parallelising the single (independent) verifications of nai/stg
interpretations in all SCCs of a given ADF D.

Theorem 4.6. Vernai2 and Verstg2
are ΠP

2 -complete.

Proof. in ΠP
2 : We show the reduction of Vernai2 to Vernai , since the reduction of Verstg2

to
Verstg is the same. Let D be an ADF over S and the interpretation v : S → {t, f ,u} be
given. We recursively compute the unique decomposition ofD with respect to v. In the
following we denote the independent sets for each recursive call by Mi for 0 ≤ i < n,
that is, M0 = indD(∅) and Mi+1 = ind JDKviMi

(Mi) with vi = v|Mi . In each recursive call

we make a new, distinct copy Di of the ADF JDKviMi
|Mi and the respective restricted

interpretation vi = v|Mi , that is, for 0 ≤ i < n define an ADF Di = (Si, Li, Ci) with

28

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

statements Si = {si | s ∈Mi}, links Li =
{

(si, ti)
∣∣∣ si, ti ∈ Si, (s, t) ∈ L(JDKviMi

)
}

, ac-

ceptance formulas ϕsi = ϕs[s/si : s ∈Mi] for ϕs ∈ C(JDKviMi
) and furthermore an in-

terpretation wi : Si → {t, f ,u} with wi(si) = vi(s) for all s ∈Mi. Let Mk = S be
the independent set for the last recursive call. (Clearly k < n.) Now we have that
v ∈ nai2(D) if and only if w′ ∈ nai(D′), where

w′ =
k⋃
i=0

wi and D′ =

(
k⋃
i=0

Si,
k⋃
i=0

Li,
k⋃
i=0

Ci

)

The computation of D′ can be done in at most n steps (for |S| = n) with at most
n(n+1)

2 statements in D′.

ΠP
2 -hard: As in the proof of Theorem 4.4 (Theorem 4.5), that is, via Reduction 4.3: In any

nai2 (stg2) interpretation, the q ∈ Q can only be set to u since ϕq = ¬q, and the rest
of the constructed ADF has only one strongly connected component whence nai2 and
nai (stg2 and stg) semantics coincide. �

4.1.2 Existence of Non-Trivial Interpretations

Deciding whether a given ADF D has at least one non-trivial conflict-free interpretation
turns out to be complete for the less well-known complexity class coDP. Intuitively, a
coDP-problem allows us to choose whether we “want” to solve an NP- or a coNP-problem,
but we have to solve at least one of them correctly. Showing coDP-hardness for Existscfi is
comparably easy. The canonical coDP-complete problem is the following, SAT-OR-UNSAT:
Given two propositional formulas φ and ψ, is φ satisfiable or ψ unsatisfiable? Note that the
“or” is to be understood logically, that is, it suffices to answer at least one of the questions
correctly.

Showing membership of Existscfi for coDP is quite tricky. The first useful observation is
that there are essentially only two distinct types of non-trivial conflict-free interpretations:

(1) those v : S → {t, f ,u} with v−1(t) 6= ∅, that is, where some statement is mapped to
true;

(2) those with v(S) ⊆ {u, f} and v−1(f) 6= ∅, that is, all statements are mapped to unde-
fined or false and at least one is mapped to false.

The proof works by showing that existence of non-trivial conflict-free interpretations of
type (1) can be decided in NP, and that the existence of those of type (2) can be decided
in coNP. In combination, membership for coDP follows.

Showing the first part is straightforward: to decide whether some statement s ∈ S can
be set to true without violating conflict-freeness, we construct the propositional formula∨
s∈S ϕ

{s 7→t}
s and check if it is satisfiable. If for some s ∈ S the formula ϕ

{s 7→t}
s is satisfiable,

then v : S → {t, f ,u} with v(s) = t and v(s′) = u for s′ ∈ S \ {s} is conflict-free. Otherwise,
no s ∈ S can be set to true in a conflict-free way.

Showing the second part about interpretations v : S → {t, f ,u} with v(S) ⊆ {u, f}
(we call them uf -interpretations) constitutes the main portion of the proof. Roughly,

29

Gaggl, Rudolph, & Strass

conflict-free uf -interpretations are closed under the least upper bound operator ti as-
sociated to the information ordering ≤i on interpretations. That is, whenever v1 and
v2 are uf -interpretations that are conflict-free for D, then the interpretation v1 ti v2

is a uf -interpretation that is conflict-free for D as well. Since both v1 ≤i v1 ti v2 and
v2 ≤i v1 ti v2 by definition, there is a unique ≤i-greatest conflict-free uf -interpretation
vmax : S → {t, f ,u} of D. Our task is to decide whether vmax is non-trivial. We first
show how to do this by computing vmax in polynomial time using an NP oracle. The
procedure works constructively and begins with the interpretation v0 : S → {f}, that is,
mapping all statements to false. The computation now stepwise (j = 0, 1, . . . , n− 1) reas-
signs vj+1(s) = u for s ∈ v−1

j (f) whenever it is the case that assigning vj(s) = f is actually

not justified because ϕ
vj
s is satisfiable (otherwise, it keeps vj+1(s) = vj(s) = f). To answer

the satisfiability queries, the procedure can use the NP-oracle. The proof finally shows how
to combine all the oracle queries into one satisfiability check. This is done by encoding the
whole computation into a propositional formula φcfi of polynomial size such that the for-
mula is satisfiable if and only if there is a possible computation that starts with v0(S) = {f}
and ends in the trivial vn(S) = {u}. Since such a computation would show that vmax is
trivial, there is a non-trivial conflict-free uf -interpretation of D if and only if the formula
φcfi is unsatisfiable. This then shows membership in coNP for checking whether there is a
non-trivial conflict-free interpretation of type (2), and thus concludes the coDP-membership
proof.

Theorem 4.7. Existscfi is coDP-complete.

Proof. in coDP: There are essentially two types of non-trivial conflict-free interpretations
v : S → {t, f ,u}:

(1) those with v−1(t) 6= ∅, that is, where some statement is mapped to true;

(2) those with v(S) ⊆ {u, f} and v−1(f) 6= ∅, that is, all statements are mapped to
undefined or false and at least one is mapped to false.

We will argue that the existence of non-trivial conflict-free interpretations of type (1)
can be decided in NP, and that the existence of those of type (2) can be decided in
coNP. In combination, we get the desired membership for coDP.

Type (1): We test satisfiability of the formula∨
s∈S

ϕ{s 7→t}
s

If for some s ∈ S the formula ϕ
{s 7→t}
s is satisfiable, then v : S → {t, f ,u} with

v(s) = t and v(s′) = u for s′ ∈ S \ {s} is conflict-free. Otherwise, no s ∈ S can

be set to true without violating conflict-freeness. (If ϕ
{s 7→t}
s is unsatisfiable, it

will stay so no matter if and how we set additional statements in ϕs.)

Type (2): We call an interpretation v : S → {t, f ,u} a uf -interpretation iff v(S) ⊆ {u, f}.
These interpretations have the useful property that whenever v1 and v2 are

30

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

uf -interpretations that are conflict-free for an ADF D, then the interpretation
v1 ti v2 with

(v1 ti v2)(s) =

{
v1(s) if v1(s) = f

v2(s) otherwise

is a uf -interpretation that is conflict-free for D as well. Since v1, v2 ≤i v1 ti v2,
there is a unique ≤i-greatest conflict-free uf -interpretation vmax : S → {t, f ,u} of
D. Our task is to decide whether vmax is non-trivial. We start out with showing
how to do this by computing vmax in polynomial time using an NP oracle. We
will afterwards show how the whole computation can be encoded into a single
satisfiability check.

Let D be an ADF over S = {s1, . . . , sn}.

(a) Set v0 = {s 7→ f | s ∈ S}.

(b) For all j = 0, . . . , n− 1 do the following:

• For all 1 ≤ i ≤ n with vj(si) = f , ask the oracle (in multiple queries) if
ϕ
vj
si is unsatisfiable.

• Set vj+1 = vj ◦
{
si 7→ u

∣∣ ϕvjsi is satisfiable
}

It is clear that the algorithm loops n times and each iteration asks at most
n oracle queries. The procedure computes the ≤i-greatest conflict-free uf -
interpretation, so there exists a non-trivial one iff vn 6= (S 7→ u).

We encode this computation into a propositional formula φcfi of polynomial size
such that φcfi is satisfiable iff the procedure terminates with vn = {s 7→ u | s ∈ S}
(which is iff D has no non-trivial conflict-free uf -interpretation). The main idea
is to construct the formula such that each satisfying evaluation corresponds to
a run of the procedure that starts with v0(S) = {f} and ends in vn(S) = {u}.
The propositional variables will encode the current interpretation vj at each step
j, and further copies of the ADF’s statements (another one for each step j)
will provide the variables to encode the necessary oracle calls of each step. The
main difficulty of the encoding is to parallelise the oracle calls without sacrificing
completeness. We start out with defining the vocabulary P .

P = {si,j , si,j,k | 1 ≤ i, k ≤ n, 0 ≤ j ≤ n}

Intuitively, si,j is true iff vj(si) = u (thus si,j is false iff vj(si) = f). Likewise,
sk,i,j is a copy of sk that is needed to guess whether ϕ

vj
si is satisfiable. To this

end, we denote ϕi,j = ϕsi [sk/sk,i,j : 1 ≤ k ≤ n]. Now we specify the parts of the
formula φcfi .

31

Gaggl, Rudolph, & Strass

φ0 =
∧

1≤i≤n
¬si,0

φn =
∧

1≤i≤n
si,n

φ?
i,j = (¬si,j−1 ∧ si,j)→ ϕi,j−1 (for 1 ≤ i, j ≤ n)

φfi,j = ¬si,j−1 →
∧

1≤k≤n
¬si,k,j−1 (for 1 ≤ i, j ≤ n)

φcfi = φ0 ∧ φn ∧
∧

1≤i,j≤n
φ?
i,j ∧

∧
1≤i,j≤n

φfi,j

First of all, φ0 and φn encode the intended starting and ending interpretations of
the procedure. Formula φ?

i,j encodes that whenever some statement si changes its

truth value from vj−1(si) = f to vj(si) = u, then the formula ϕ
vj−1
si is satisfiable.

Formula φfi,j expresses that all set truth values vj−1(si) = f must be reflected in

the variables used for guessing the satisfiability of ϕ
vj−1
si .

To conclude the proof, we will now show that φcfi is satisfiable iff there is a run
of the procedure that starts with v0(S) = {f} and ends in vn(S) = {u}.
if: Let v0, v1, . . . , vn : S → {u, f} be such that v0(S) = {f} and vn(S) = {u}, and

for all 1 ≤ i, j ≤ n, we have that vj−1(si) = f and vj(si) = u imply that the
formula ϕ

vj−1
si is satisfiable. We can use the witnesses for satisfiability to

define valuations of the sk,i,j and thus build a model of φcfi .

only if: From a model I ⊆ P of φcfi , we first use the truth values of the
si,j for 1 ≤ i ≤ n and 0 ≤ j ≤ n to define a sequence of interpretations
v0, v1, . . . , vn : S → {u, f} as follows. Set v0(si) = f for all 1 ≤ i ≤ n; for
1 ≤ i, j ≤ n set

vj(si) =

{
u if I |= si,j or vj−1(si) = u

f otherwise

This guarantees that vn ≤i vn−1 ≤i . . . ≤i v0 and furthermore each state-
ment si changes its truth value at most once, and only from f to u. Since
I |=

∧
1≤i,j≤n φ

?
i,j , we know that for all 1 ≤ i, j ≤ n with vj−1(si) = f and

vj(si) = u we have I |= ϕi,j−1. Since also I |=
∧

1≤i,j≤n φ
f
i,j , we know that

I 6|= si,j−1 implies I 6|= si,k,j−1 for all 1 ≤ k ≤ n. Now this and the fact that
I |= ϕi,j−1 shows that ϕ

vj−1
si is satisfiable, for all 1 ≤ i, j ≤ n.

coDP-hard: Given a pair of formulas (φ, ψ) over P1 and P2, respectively, we construct the
ADF D over S = P1 ∪ P2 ∪ {y, z} with

ϕp = ¬p for p ∈ P1 ∪ P2

ϕy = ¬y ∨ φ
ϕz = ¬z ∧ ψ

It is easy to see that D has a non-trivial conflict-free interpretation v with v(y) = t iff
φ is satisfiable, and that D has a non-trivial conflict-free interpretation v with v(z) = f

32

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

iff ψ is unsatisfiable. In combination, D has a non-trivial conflict-free interpretation
iff φ is satisfiable or ψ is unsatisfiable. �

Fortunately, the amount of work put into this proof “pays off” in that deciding the
existence of non-trivial conflict-free interpretations also decides the existence of naive, stage,
nai2 and stg2 interpretations. The first technical result towards establishing that is the
following lemma. It shows how every conflict-free interpretation v gives rise to a naive (or
stage) interpretation v′ that is “above v” with respect to some ordering. In case of naive,
the ordering is clearly the information ordering ≤i. In case of stage, the ordering is given by
comparing the statements that are assigned the truth value u by the two interpretations.

Lemma 4.8. Let D be an ADF over S. For every interpretation v : S → {t, f ,u} that is
conflict-free for D, there exists:

1. a naive interpretation v′ : S → {t, f ,u} with v ≤i v′;

2. a stage interpretation v′′ : S → {t, f ,u} with v′′u ⊆ vu.

Proof. 1. By induction on the number n = |vu| of statements that are undefined in v.
For n = 0, we have that v itself is naive since it is conflict-free and trivially ≤i-
maximal because it is two-valued. Now consider an interpretation v : S → {t, f ,u}
with |vu| = n+ 1 that is conflict-free, but not naive. Then there exists a conflict-free
interpretation v′ with v <i v

′. Then |v′u| ≤ n and by induction hypothesis, there is a
naive interpretation v′′ with v <i v

′ ≤i v′′.

2. By induction on the number n = |vu| of statements that are undefined in v. For n = 0,
we have that v itself is stage since it is conflict-free and vu = ∅ is trivially ⊆-minimal.
Now consider an interpretation v : S → {t, f ,u} with |vu| = n+ 1 that is conflict-free,
but not stage. Then there exists a conflict-free interpretation v′ with v′u (vu. Then
|v′u| ≤ n and by induction hypothesis, there is an interpretation v′′ : S → {t, f ,u} with
v′′u ⊆ v′u (vu that is stage for D. �

The lemma can be used to show that not only do the non-trivial existence problems
coincide, but also credulous entailment for conflict-free and naive semantics are equivalent.
Intuitively, if an ADF D has a conflict-free interpretation v with, say, v(s) = t, then the
lemma above guarantees the existence of a naive w with v ≤i w and thus w(s) = v(s) = t.

Proposition 4.9. The following decision problems coincide:

1. Existscfi , Existsnai , Existsstg , Existsnai2 , Existsstg2
;

2. Credtcfi and Credtnai ;

3. Credfcfi and Credfnai .

33

Gaggl, Rudolph, & Strass

Proof. Let D be an ADF over S and s ∈ S. We first show the claims about naive se-
mantics. If v : S → {t, f ,u} is conflict-free for D, and v(s) = t (or v(s) = f , respectively),
then by Lemma 4.8 there is a naive interpretation v′ : S → {t, f ,u} with v ≤i v′, and thus
v′(s) = t (or v′(s) = f , respectively). For the converse direction, if v : S → {t, f ,u} is naive
for D, then v is in particular conflict-free. Now for stage semantics. If v : S → {t, f ,u} is
conflict-free and non-trivial, then vu (S. By Lemma 4.8, there is a stage interpretation
v′′ with v′′u ⊆ vu (S that is likewise non-trivial. For the converse direction, again every
stage interpretation is conflict-free. Now for Existsnai2 . As each nai2 interpretation is a
naive interpretation (Theorem 3.9), if there is a non-trivial nai2 interpretation, then this
interpretation is also a non-trivial naive interpretation. Conversely, if there is no non-trivial
nai2 interpretation, then the trivial interpretation v(S) = {u} is nai2. Since it is then also
naive, that is, ≤i-maximal conflict-free, there cannot be another (non-trivial) conflict-free
(let alone naive) interpretation. Thus, the existence of the trivial naive interpretation co-
incides with the existence of the trivial nai2 interpretation. For Existsstg2

, the argument is
the same as stg2 ≤ nai2 by Proposition 3.12. �

4.1.3 Entailment

While verification is a quite basic reasoning task, and non-trivial interpretation existence
is mostly used to figure out if a given knowledge base is sensible at all, the entailment
problem is most likely to be repeatedly used in practice. Recalling that ADFs are intended
for modelling argumentation scenarios, entailment queries then allow to answer questions
about these scenarios, such as, “Is it the case that there is one possible interpretation of
this scenario where statement a is true?” For the conflict-free semantics, this problem is,
while infeasible in a conservative sense, still relatively easy.

Theorem 4.10. Credtcfi is NP-complete.

Proof. in NP: Given an ADF D over S and an s ∈ S, we consider the interpretation
v : S → {t, f ,u} with v(s) = t and v(s′) = u for all s′ ∈ S \ {s}. We then compute
the formula ϕvs and verify in NP that it is satisfiable. If ϕvs is satisfiable, then v is a
conflict-free interpretation for D with v(s) = t. If ϕvs is unsatisfiable, then ϕws is unsat-
isfiable for all w : S → {t, f ,u} with v ≤i w, so there is no conflict-free interpretation
where s is true.

NP-hard: We reduce from satisfiability checking. Let ψ be a propositional formula over
vocabulary P . Define an ADF D over S = P ∪ {z} with ϕp = p and ϕz = ψ. It is
clear that there is a conflict-free interpretation with v(z) = t iff ψ is satisfiable. �

Astonishingly, for similar questions of the form, “Is it the case that there is one possible
(conflict-free) interpretation of this scenario where statement a is false?”, giving an answer
becomes harder! This asymmetry is quite remarkable, and has its cause in the asymmetry
of the definition of a conflict-free interpretation: v : S → {t, f ,u} is conflict-free iff for each
s ∈ S with v(s) = t the formula ϕvs is satisfiable, and for each s ∈ S with v(s) = f the
formula ϕvs is unsatisfiable. So in one case, there is a satisfiability check, in the other there
is an unsatisfiability check. To decide credulous entailment, we clearly have to guess an
interpretation v : S → {t, f ,u} with a desired property (such as v(s) = t or v(s) = f). And

34

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

while the witnesses for verifying v(s) = t can be guessed alongside v, such is not possible
when having to verify v(s) = f . Formally, the hardness part of the result below is proved
via a reduction from the problem of deciding whether a quantified Boolean formula ∃P∀Qψ
is true.

Theorem 4.11. Credfcfi is ΣP
2 -complete.

Proof. in ΣP
2 : Given an ADF D over S and an s ∈ S, we can guess an interpretation

v : S → {t, f ,u} with v(s) = f and verify in DP that it is conflict-free.

ΣP
2 -hard: Let Φ = ∃P∀Qψ be a QBF with ψ in DNF. Define an ADF D over S = P∪Q∪{z}

such that:

ϕp = p for p ∈ P
ϕq = ¬q for q ∈ Q
ϕz = ¬ψ

We now show that there is a conflict-free interpretation v : S → {t, f ,u} with v(z) = f
iff the QBF Φ is true.

if: Let ∃P∀Qψ be true. Then there exists a w : P → {t, f} such that ψw is a tautology,
that is, ϕwz = ¬ψw is unsatisfiable. We construct a non-trivial interpretation
v : S → {t, f ,u} with v(z) = f and show that it is conflict-free. Set v(z) = f ,
v(q) = u for all q ∈ Q, and v(p) = w(p) for p ∈ P . Clearly v is conflict-free for
P and Q, and setting z to false is justified because ϕwz = ¬ψw is unsatisfiable.

only if: Let v : S → {t, f ,u} be conflict-free with v(z) = f . It follows that v(q) = u
for all q ∈ Q, and that ϕvz = ¬ψv is unsatisfiable, that is, ψv is a tautology.
Define a two-valued interpretation w : P → {t, f} as follows: Set w(p) = v(p) if
v(p) ∈ {t, f}, and w(p) = t otherwise. Now w extends v on P (v|P ≤i w|P), so
ψw is a tautology and w witnesses that the QBF ∃P∀Qψ is true. �

There is a straightforward way to show that a statement s ∈ S is not sceptically entailed
as true by an ADF D over S: guess an interpretation v : S → {t, f ,u} with v(s) 6= t and
show that v is naive. Since Vernai is in ΠP

2 , this straightforward approach yields mem-
bership of Sceptnai in ΠP

3 . Fortunately, there is an easier way: we guess an interpretation
v : S → {t, f ,u} with v(s) = u, and verify (using the NP oracle) that v is conflict-free for
D, while the augmented interpretation v ◦ {s 7→ t} is not conflict-free for D. Intuitively,
this identifies statement s ∈ S as a “troublemaker”, as the one reason that violates conflict-
freeness in all interpretations with at least as much information as v. Since among these
interpretations at least one must be naive, we have our desired counterexample for sceptical
entailment. This yields membership in ΠP

2 ; as it turns out, that is the best possible bound.

35

Gaggl, Rudolph, & Strass

Theorem 4.12. Sceptnai is ΠP
2 -complete.

Proof. in ΠP
2 : Let D be an ADF over S and z ∈ S. To show that z is not sceptically true in

D, we do the following: we guess an interpretation v : S → {t, f ,u} and verify (using
the NP oracle) that v is conflict-free for D, and furthermore verify that one of (1)
v(z) = f , or (2) v(z) = u and v ◦ {z 7→ t} is not conflict-free for D. We claim that
(2) entails that all naive interpretations v′ : S → {t, f ,u} with v ≤i v′ cannot have
v′(z) = t. By Lemma 4.8, it follows that at least one such naive interpretation v′ with
v′(z) 6= t exists. Conversely, whenever z is not sceptically true, an interpretation with
(1) or (2) must exist. (If z is not sceptically true then there is a naive w : S → {t, f ,u}
with w(z) = f or w(z) = u, which is the desired witness in both cases, as in the second
case w being naive means that w is conflict-free and w ◦ {z 7→ t} is not conflict-free.)
It remains to prove the claim. If v is conflict-free and v ◦ {z 7→ t} is not conflict-free,

there is a statement s ∈ S such that (1) v(s) = t, ϕvs is satisfiable, and ϕ
v◦{z 7→t}
s is un-

satisfiable; or (2) v(s) = f , ϕvs is unsatisfiable, and ϕ
v◦{z 7→t}
s is satisfiable. Clearly case

(2) is impossible, so case (1) holds. But then for any interpretation w : S → {t, f ,u}
with v ≤i w and w(z) = t, we find that ϕws is unsatisfiable. Consequently, if v ≤i w
and w is conflict-free, then w(z) 6= t.

ΠP
2 -hard: Let Φ = ∀P∃Qψ be a QBF. We construct an ADF D over S = P ∪Q ∪ {z} as

follows:

ϕp = p for p ∈ P
ϕq = ¬q for q ∈ Q
ϕz = ¬z ∨ ψ

We now show that z is sceptically true in D iff Φ is true.

if: Let Φ be true and consider a naive interpretation v : S → {t, f ,u}. Due to
≤i-maximality of v it follows that v(P) ⊆ {t, f}, by conflict-freeness we have
v(Q) = {u}. Since Φ is true, the formula ψv is satisfiable whence v(z) = t by
≤i-maximality.

only if: We show the contrapositive. Let Φ be false. Then there is an interpre-
tation vP : P → {t, f} such that ψvP is unsatisfiable. We show that there is
a naive interpretation v : S → {t, f ,u} with v(z) 6= t. Define v : S → {t, f ,u}
such that v(p) = vP (p) for all p ∈ P , v(q) = u for all q ∈ Q and v(z) = u. To
show that v is naive, it suffices to show that v(z) ∈ {t, f} is not consistently

possible. First, ϕ
v◦{z 7→t}
z = ¬> ∨ ψv ≡ ψv = ψvP is unsatisfiable by assumption.

Next, ϕ
v◦{z 7→f}
z = ¬⊥ ∨ ψv ≡ > is satisfiable by construction. �

The straightforward approach to decide sceptical entailment of truth clearly also works
for sceptical entailment of falsity. In this case, however, it turns out that there is no shortcut.
For the (quite technical) proof of the result, we adapt and combine proof techniques from
Strass and Wallner (2015, Theorem 4.22) and Theorem 4.4.

36

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

Theorem 4.13. Scepfnai is ΠP
3 -complete.

Proof. in ΠP
3 : Let D be an ADF over S and s ∈ S. To show that s is not sceptically false,

guess an interpretation v : S → {t, f ,u} with v(s) 6= u and verify in ΠP
2 that v is naive.

ΠP
3 -hard: Let Φ = ∀P∃Q∀Rψ be a QBF with ψ in DNF. We construct an ADF D over the

set of statements S = P ∪Q ∪Q′ ∪R ∪ {y, z} with Q′ = {q′ | q ∈ Q} such that z is
false in every naive interpretation of D if and only if Φ is true. Define D as follows:

ϕp = p for p ∈ P
ϕq = ¬q ∧ (¬y ∨ z) for q ∈ Q
ϕq′ = ¬q′ ∧ (¬y ∨ z) for q ∈ Q
ϕr = ¬r for r ∈ R

ϕy = ¬y ∨
∧
q∈Q

(q ∨ q′)

ϕz = ¬z ∧ ¬ψ′

As before ψ′ is obtained from ψ by replacing all positive occurrences of q ∈ Q by
¬q′; setting q′ to false aims at encoding setting q to true. We start out with some
observations and intuitive explanations:

1. The p can be set arbitrarily to true and false; in particular, any naive interpreta-
tion v : S → {t, f ,u} satisfies v(P) ⊆ {t, f} due to the ≤i-maximality condition.

2. The q and q′ cannot be set to true, and only to false if z is false and y is true.

3. y cannot be set to false and only be set to true if for each q ∈ Q, at least one
of q or q′ is undefined; it thereby guarantees that the q, q′ encode a two-valued
interpretation of Q for each naive pair with y true and z false.

4. z cannot be set to true and only to false if the corresponding partial evaluation
of ¬ψ′ is unsatisfiable.

We next show that z is false in every naive interpretation of D if and only if Φ is true.

if: Let Φ be true and consider the naive interpretation v : S → {t, f ,u}. We have to
show that v(z) = f . Assume to the contrary that v(z) 6= f , that is, v(z) = u.
It follows that v(Q) = v(Q′) = {u} since all of their acceptance conditions are
satisfiable. Due to conflict-freeness, v(y) 6= f . We will now construct a conflict-
free interpretation w : S → {t, f ,u} with v <i w.

As above, v(P) ⊆ {t, f}. As Φ is true, there is an interpretation vQ : Q→ {t, f}
such that the formula ψv|P ◦vQ (over R) is a tautology. Define w as follows:

37

Gaggl, Rudolph, & Strass

w(p) = v(p) for p ∈ P

w(q) =

{
f if vQ(q) = f

u otherwise
for q ∈ Q

w(q′) =

{
f if vQ(q) = t

u otherwise
for q ∈ Q

w(r) = u for r ∈ R
w(y) = t

w(z) = f

Clearly v <i w, it remains to show that w is conflict-free. This is clear for p ∈ P
and q ∈ Q (respectively q′ ∈ Q′) and trivial for r ∈ R. It is easy to see that
w(y) = t is justified since for all q ∈ Q, by definition either w(q) = u or w(q′) = u,
and thus ϕwy is satisfiable. Finally, ϕwz = ¬⊥ ∧ ¬ψ′w ≡ ¬ψ′w is unsatisfiable be-

cause ψv|P ◦vQ is a tautology.

only if: We show the contrapositive. Let Φ be false. We have to show that there is a
naive interpretation v : S → {t, f ,u} with v(z) 6= f , that is, v(z) = u. Since Φ is
false, there is an interpretation vP : P → {t, f} such that ∃Q∀RψvP is false, that
is, ∀Q∃R¬ψvP is true. Then for any interpretation vQ : Q→ {t, f}, the formula
¬ψvP ◦vQ is satisfiable. Define the interpretation v : S → {t, f ,u} as follows:

v(p) = vP (p) for p ∈ P
v(q) = u for q ∈ Q
v(q′) = u for q ∈ Q
v(r) = u for r ∈ R
v(y) = t

v(z) = u

It is clear that v is conflict-free, it remains to show that v is naive. Assume that
there is a conflict-free interpretation w : S → {t, f ,u} with v <i w. Then there is
some s ∈ Q ∪Q′ ∪R ∪ {z} with w(s) 6= u. From the definition of the acceptance
formulas it follows that w(s) = f .

• s = q ∈ Q: Then ϕwq = ¬⊥ ∧ (¬> ∨ z)w is unsatisfiable, that is, w(z) = f . It
also follows that w(q′) = u since w(y) = t. Then ϕwz = ¬⊥ ∧ ¬ψ′w ≡ ¬ψ′w
is unsatisfiable.
Clearly w|Q can be interpreted as a (partial) two-valued interpretation of
Q. From v ≤i w we also get that vP = v|P = w|P . As concluded above, by
assumption we have that for any interpretation vQ : Q→ {t, f}, the formula
¬ψvP ◦vQ is satisfiable. In particular, ¬ψ′w|P ◦w|Q is satisfiable, contradicting
unsatisfiability of ϕwz . The case s = q′ ∈ Q′ follows by symmetry.

• s = r ∈ R: Then ϕwr = ¬⊥ is unsatisfiable, contradiction.

• s = z: Then ϕwz is unsatisfiable. Contradiction (see case s = q).

Thus there exists no such w and v with v(z) = u is naive. �

38

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

For naive semantics, we have seen (1) an asymmetry in deciding (credulous/sceptical)
truth and falsity; and (2) a steady rise in complexity from credulous truth up to sceptical
falsity. For stage semantics, surprisingly, these differences vanish: All four decision problems
are (more or less) equally hard, namely in the third level of the polynomial hierarchy. For
the first problem, this is shown by considering QBFs ∃P∀Q∃Rψ.

Theorem 4.14. Credtstg is ΣP
3 -complete.

Proof. in ΣP
3 : Given an ADF D over S and an s ∈ S, we can guess an interpretation

v : S → {t, f ,u} with v(s) = t and verify in ΠP
2 that it is stage (Theorem 4.5).

ΣP
3 -hard: Let Φ = ∃P∀Q∃Rψ be a QBF with ψ in CNF. Define an ADF D over

S = P ∪ P ′ ∪Q ∪R ∪ {x, y, z} such that:

ϕp = ¬p ∧ ¬x for p ∈ P
ϕp′ = ¬p′ ∧ ¬x for p ∈ P
ϕq = q for q ∈ Q
ϕr = ¬r for r ∈ R

ϕx = ¬x ∨
∧
p∈P

(p ∨ p′)

ϕy = ¬y ∧ ψ′

ϕz = y

We now show that there is a stage interpretation v : S → {t, f ,u} with v(z) = t iff
the QBF Φ is true.

if: Let ∃P∀Q∃Rψ be true. Then there exists a vP : P → {t, f} such that for all
vQ : Q→ {t, f} the formula ψvP ◦vQ is satisfiable. We construct an interpretation
v : S → {t, f ,u} as follows:

v(p) =

{
f if vP (p) = f

u otherwise
for p ∈ P

v(p′) =

{
f if vP (p) = t

u otherwise
for p ∈ P

v(q) ∈ {t, f} arbitrary for q ∈ Q
v(r) = u for r ∈ R
v(x) = t

v(y) = u

v(z) = t

Clearly v is conflict-free for P ∪ P ′ ∪Q ∪R; setting x to true is justified by
definition of v for P ∪ P ′, setting z to true is justified since v(y) = u. It remains
to show that v is stage.

39

Gaggl, Rudolph, & Strass

Assume to the contrary that v is not stage. Then there is another conflict-free in-
terpretation w : S → {t, f ,u} with wu (vu. First of all, it follows that w(x) = t
(x must be set but cannot be set to false), thus w(p) = v(p) and w(p′) = v(p′) for
p ∈ P . It is also clear that w(R) = {u} and w(Q) ⊆ {t, f}, while not necessarily
w|Q = v|Q. Consequently, vu \ wu = {y}. Since w is conflict-free, w(y) = f and
ϕwy = ¬⊥ ∧ ψ′w ≡ ψ′w is unsatisfiable. However, by the assumption that Φ is
true and construction of v, we have vP = v|P = w|P and thus ψ′w is satisfiable.
Contradiction. Thus v is a stage interpretation.

only if: Let v : S → {t, f ,u} be a stage interpretation with v(z) = t. It follows that
v(y) ∈ {t,u}, and since v is conflict-free, v(y) = u. Thus ϕvy = ¬y ∧ ψ′v is sat-
isfiable, in particular ψ′v is satisfiable. (Otherwise we could set y to false and
v would not be stage.) We have to show that Φ is true. To do this, we can
extract a vP : P → {t, f} as usual from v|P∪P ′ . We then have to show that for
all vQ : Q→ {t, f}, the formula ψvP ◦vQ is satisfiable.

Assume to the contrary that there is a vQ : Q→ {t, f} such that the formula
ψvP ◦vQ is unsatisfiable. We can then construct a conflict-free interpretation
w : S → {t, f ,u} with wu (vu as follows:

w|P∪P ′ = v|P∪P ′
w|Q = vQ

w(R) = {u}
w(x) = t

w(y) = f

w(z) = f

The interpretation w is conflict-free, since ϕwy = ¬⊥ ∧ ψ′w ≡ ψ′w is unsatisfiable
by assumption. But then wu (vu implies that v is not stage. Contradiction.
Thus vP : P → {t, f} is such that for each vQ : Q→ {t, f}, the formula ψvP ◦vQ

is satisfiable. Consequently the QBF Φ is true. �

For hardness of deciding credulous falsity, we can use a simple extension of the hardness
construction used above: basically, the construction relies on a statement y that can be
set to u if the given QBF ∃P∀Q∃Rψ is true, and must be set to f otherwise (due to the
inherent ⊆-minimisation of vu in stage semantics). The actual reduction now works over
a statement z with acceptance formula ϕz = y; consequently, z can be set to true iff y can
be set to u. In the extended construction below, we now add another statement a with
acceptance formula ϕa = ¬z. Both statements will always be assigned opposite truth values
from {t, f}, thus proving the next result.

Proposition 4.15. Credfstg is ΣP
3 -complete.

Proof. in ΣP
3 : Given an ADF D over S and an s ∈ S, we can guess an interpretation

v : S → {t, f ,u} with v(s) = f and verify in ΠP
2 that it is stage (Theorem 4.5).

40

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

ΣP
3 -hard: Let Φ = ∃P∀Q∃Rψ be a QBF with ψ in CNF. We extend the construction of

Theorem 4.14 with an additional statement a ∈ S such that ϕa = ¬z. Now for each
stage interpretation v : S → {t, f ,u} of D, we have that v(a) = f iff v(z) = t. �

To show that a statement s is not sceptically entailed as false in an ADF D, we guess
an interpretation v : S → {t, f ,u} with v(s) 6= f and verify in ΠP

2 that v is stage. This
approach is optimal, as completeness shows.

Theorem 4.16. Scepfstg is ΠP
3 -complete.

Proof. in ΠP
3 : Let D be an ADF over S and s ∈ S. To show that s is not sceptically false,

we guess an interpretation v : S → {t, f ,u} with v(s) 6= f and verify in ΠP
2 that v is

stage.

ΠP
3 -hard: Let Φ = ∀P∃Q∀Rψ be a QBF with ψ in DNF. We construct an ADF D over the

vocabulary S = P ∪Q ∪Q′ ∪R ∪ {x, y, z} with Q′ = {q′ | q ∈ Q} such that z is false
in every stage interpretation of D if and only if Φ is true. (We slightly modify the
construction of Theorem 4.13.) Define D as follows:

ϕp = ¬p ∧ ¬x for p ∈ P
ϕp′ = ¬p′ ∧ ¬x for p ∈ P
ϕq = ¬q ∧ (¬y ∨ z) for q ∈ Q
ϕq′ = ¬q′ ∧ (¬y ∨ z) for q ∈ Q
ϕr = ¬r for r ∈ R

ϕx = ¬x ∨
∧
p∈P

(p ∨ p′)

ϕy = ¬y ∨
∧
q∈Q

(q ∨ q′)

ϕz = ¬ψ′

Formula ψ′ is obtained from ψ by replacing all positive occurrences of p ∈ P by ¬p′
and all positive occurrences of q ∈ Q by ¬q′. We start out with some observations
and intuitive explanations:

1. x cannot be set to false and only be set to true if for each p ∈ P , at least one
of p or p′ is undefined; it thereby guarantees that the p, p′ encode a two-valued
interpretation of P for each stage interpretation with x true;

2. likewise, y cannot be set to false and only be set to true if for each q ∈ Q, at
least one of q or q′ is undefined; it thereby guarantees that the q, q′ encode a
two-valued interpretation of Q for each stage interpretation with y true and z
false;

3. the p and p′ cannot be set to true, and only to false if x is true; in particular,
every stage interpretation v : S → {t, f ,u} will set either v(p) = f or v(p′) = f
for p ∈ P , since v is conflict-free and vu is ⊆-minimal.

41

Gaggl, Rudolph, & Strass

4. The q and q′ cannot be set to true, and only to false if z is false and y is true.

5. z is set to false if the corresponding partial evaluation of ¬ψ′ is unsatisfiable,
otherwise z is set to true.

We now show that z is false in every stage interpretation of D if and only if Φ is true.

if: Let Φ be true and consider the stage interpretation v : S → {t, f ,u}. We have to
show that v(z) = f . Assume to the contrary that v(z) 6= f , that is, v(z) ∈ {t,u}.
It follows that v(Q ∪Q′) = {u} since all of their acceptance conditions are sat-
isfiable. Due to conflict-freeness, v(x), v(y) ∈ {t,u}. We will now construct a
conflict-free interpretation w : S → {t, f ,u} with wu (vu.

As usual, we can extract an interpretation vP : P → {t, f} from v(P). Since Φ is
true, there exists an interpretation vQ : Q→ {t, f} such that the formula ψvP ◦vQ

(over R) is a tautology. Define w such that:

w(p) = v(p) for p ∈ P
w(p′) = v(p′) for p ∈ P

w(q) =

{
f if vQ(q) = f

u otherwise
for q ∈ Q

w(q′) =

{
f if vQ(q) = t

u otherwise
for q ∈ Q

w(r) = u for r ∈ R
w(x) = t

w(y) = t

w(z) = f

Clearly wu (vu since w(Q ∪Q′) 6= {u}; it remains to show that w is conflict-
free. This is clear for p, p′ ∈ P ∪ P ′ and q, q′ ∈ Q ∪Q′ and trivial for r ∈ R. It
is easy to see that w(x) = t is justified since for all p ∈ P , by definition either
w(p) = u or w(p′) = u, and thus ϕwx is satisfiable; the same holds for w(y) = t
and q ∈ Q. Finally, ϕwz = ¬ψ′w is unsatisfiable because ψvP ◦vQ is a tautology.

only if: We show the contrapositive. Let Φ be false. We show that there is a stage
interpretation v : S → {t, f ,u} with v(z) = t. Since Φ is false, there is an inter-
pretation vP : P → {t, f} such that ∃Q∀RψvP is false, that is, ∀Q∃R¬ψvP is true.
Then for any interpretation vQ : Q→ {t, f}, the formula ¬ψvP ◦vQ is satisfiable.

42

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

Define the interpretation v : S → {t, f ,u} as follows:

v(p) =

{
f if vP (p) = f

u otherwise
for p ∈ P

v(p′) =

{
f if vP (p) = t

u otherwise
for p ∈ P

v(q) = u for q ∈ Q
v(q′) = u for q ∈ Q
v(r) = u for r ∈ R
v(x) = t

v(y) = t

v(z) = t

It is clear that v is conflict-free for P ∪ P ′ ∪Q ∪Q′ ∪R. For x and y it follows
by definition, and finally v(z) = t is justified since ¬ψ′v|P∪P ′◦v|Q = ¬ψ′v|P∪P ′ is
satisfiable by the argument above. It remains to show that v is stage. Assume
that there is a conflict-free interpretation w : S → {t, f ,u} with wu (vu. Then
there is some s ∈ P ∪ P ′ ∪Q ∪Q′ ∪R with s ∈ vu \ wu. From the definition of
the acceptance formulas it follows that w(s) = f .

• s = p ∈ P : From v(p) = u we get v(p′) = f by definition. By wu ⊆ vu we
get w(p′) = f . Along with w(p) = f this means that ϕwx is unsatisfiable, in
contradiction to w(x) = t and w being conflict-free.

• s = p′ ∈ P ′: Symmetric.

• s = q ∈ Q: Then ϕwq = ¬⊥ ∧ (¬> ∨ z)w is unsatisfiable, that is, w(z) = f .

• s = q′ ∈ Q′: Symmetric.

• s = r ∈ R: Then ϕwr = ¬⊥ is unsatisfiable, contradiction.

In any case, w(z) = f . Then ϕwz = ¬ψ′w is unsatisfiable. Clearly w|Q can be inter-
preted as a (partial) two-valued interpretation of Q. From wu ⊆ vu and w being
conflict-free we furthermore get that v|P∪P ′ = w|P∪P ′ . So again we can extract
an interpretation wP : P → {t, f} from w|P∪P ′ , namely wP = vP . As concluded
above, by assumption we have that for any interpretation wQ : Q→ {t, f}, the

formula ¬ψvP ◦wQ = ¬ψwP ◦wQ is satisfiable. In particular, ¬ψ′w|P∪P ′◦w|Q∪Q′ is
satisfiable, in contradiction to ϕwz = ¬ψ′w being unsatisfiable. Thus there exists
no such w and v with v(z) = t is stage. �

In the step from Scepfstg to Sceptstg we can use the same construction extension as in the

step from Credtstg to Credfstg .

Proposition 4.17. Sceptstg is ΠP
3 -complete.

Proof. in ΠP
3 : Let D be an ADF over S and s ∈ S. To show that s is not sceptically true,

we guess an interpretation v : S → {t, f ,u} with v(s) 6= t and verify in ΠP
2 that v is

stage.

43

Gaggl, Rudolph, & Strass

ΠP
3 -hard: Let Φ = ∀P∃Q∀Rψ be a QBF with ψ in DNF. We adapt the construction of

ADF D from Theorem 4.16 by adding a statement a ∈ S and setting ϕa = ¬z.
As in the proof of Theorem 4.16, Φ is true iff v(z) = f for all stage interpre-
tations v : S → {t, f ,u}. Furthermore, in each stage interpretation v, we have
v(z), v(a) ∈ {t, f} and v(z) = f iff v(a) = t. Consequently, the QBF Φ is true iff
v(a) = t in each stage interpretation v of D. �

For the nai2 and stg2 semantics, we can directly use that the relevant entailment decision
problems (or their complements, respectively) are polynomially interreducible.

Proposition 4.18. Let σ ∈ {nai2, stg2}. The following problems can be polynomially
reduced to each other:

• Credtσ and Credfσ,

• Sceptσ and Scepfσ,

• co-Scepfσ and Credtσ.

Proof. Let D be an ADF over S and s ∈ S. Let s1, s2, s3 be fresh argument names not
occurring in S and let ψ be a propositional formula over {s1, s2}. Let now D[s, ψ] be the
ADF obtained from D by adding the arguments s1, s2, s3 and setting ϕs1 = s, ϕs2 = ¬s
and ϕs3 = ψ. Then we obtain that v : S → {t, f ,u} is a σ interpretation of D iff v′ is a σ
interpretation of D[s, ψ], where v′ coincides with v on S, and

• v′(s1) = t and v′(s2) = f in case v(s) = t,

• v′(s1) = f and v′(s2) = t in case v(s) = f ,

• v′(s1) = t and v′(s2) = t in case v(s) = u,

and v′(s3) is obtained as by evaluating ψ for s1 7→ v′(s1) and s2 7→ v′(s2). That this is the
case follows from the definition of σ taking into account that s1 and s2 depend on s and
that s3 depends on s1 and s2.

This observation can now be leveraged for establishing the above results:

• s is credulously (sceptically) true in D iff s3 is credulously (sceptically) false in
D[s,¬s1 ∨ s2];

• s is credulously (sceptically) false in D iff s3 is credulously (sceptically) true in
D[s,¬s1 ∧ s2].

• The following are equivalent:

– s is not sceptically false in D

– not every σ interpretation v of D satisfies v(s) = f

– there is some σ interpretation v of D with v(s) = t or v(s) = u

– there is some σ interpretation v′ of D[s, s1] with v′(s3) = t

– s3 is credulously true in D[s, s1].

44

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

e1e e2 ¬e

e3

ψ

Figure 4: The ADF D[e, ψ] from the proof of Proposition 4.18 applied to ADF D from
Example 3.6. The important aspect of the construction is the “diamond” subgraph below
(and including) statement e: We can see that whenever there is a σ-interpretation (where
σ ∈ {nai2, stg2}) setting e to t, then immediately e1 must be set to t and e2 must be set
to f . For ψ = ¬e1 ∨ e2, this leads to the reduced acceptance formula ¬> ∨ ⊥, which is
unsatisfiable, whence only f can be assigned to e3. Similarly, whenever e can be set to f
and we have ψ = ¬e1 ∧ e2, then the reduced ¬⊥ ∧ > is irrefutable and e3 must be set to
t. For any interpretation with e set to u, the connective used in ψ makes the difference.
Both the reduced versions of ϕe1 and ϕe2 are satisfiable and so could be set to t or u.
However, the only way to justify setting e3 to f is to have the reduced version of ¬e1 ∨ e2 to
be unsatisfiable, which is only the case for e1 7→ t and e2 7→ f ; the only way to justify setting
e3 to t is to have the reduced version of ¬e1 ∧ e2 to be satisfiable, which is only the case for
e1 7→ f and e2 7→ t. For ψ = e1 ∧ ¬e2 as in the third item of Proposition 4.18, whenever e
is set to t, the reduced version of ϕe3 is still satisfiable and f is ruled out as possible truth
value for e3.

• The following are equivalent:

– s is credulously true in D

– there is some σ interpretation v of D with v(s) = t

– not every σ interpretation v of D satisfies v(s) = f or v(s) = u

– not every σ interpretation v′ of D[s, s1 ∧ ¬s2] satisfies v′(s3) = f

– s3 is not sceptically false in D[s, s1 ∧ ¬s2]. �

A pictorial illustration of D[e, ψ] obtained from the ADF D from Example 3.6 and the
statement e ∈ S is in Figure 4.

Together with the observation that the hardness reduction of Theorem 4.13 (for Scepfnai)
works for the nai2 and stg2 semantics as well, the proposition leads to the following results.

45

Gaggl, Rudolph, & Strass

σ cfi nai stg nai2 stg2

Verσ DP-c
(Proposition 4.2)

ΠP
2 -c

(Theorem 4.4)

ΠP
2 -c

(Theorem 4.5)

ΠP
2 -c

(Theorem 4.6)

ΠP
2 -c

(Theorem 4.6)

Existsσ coDP-c
(Theorem 4.7)

coDP-c
(Proposition 4.9)

coDP-c
(Proposition 4.9)

coDP-c
(Proposition 4.9)

coDP-c
(Proposition 4.9)

Credtσ NP-c
(Theorem 4.10)

NP-c
(Proposition 4.9)

ΣP
3 -c

(Theorem 4.14)

ΣP
3 -c

(Theorem 4.19)

ΣP
3 -c

(Theorem 4.19)

Credfσ ΣP
2 -c

(Theorem 4.11)

ΣP
2 -c

(Proposition 4.9)

ΣP
3 -c

(Proposition 4.15)

ΣP
3 -c

(Theorem 4.19)

ΣP
3 -c

(Theorem 4.19)

Sceptσ trivial ΠP
2 -c

(Theorem 4.12)

ΠP
3 -c

(Proposition 4.17)

ΠP
3 -c

(Theorem 4.19)

ΠP
3 -c

(Theorem 4.19)

Scepfσ trivial ΠP
3 -c

(Theorem 4.13)

ΠP
3 -c

(Theorem 4.16)

ΠP
3 -c

(Theorem 4.19)

ΠP
3 -c

(Theorem 4.19)

Table 1: Complexity results for naive-based semantics of abstract dialectical frameworks;
C-c stands for C-complete.

Theorem 4.19. Let σ ∈ {nai2, stg2}.

• Credtσ and Credfσ are ΣP
3 -complete.

• Sceptσ and Scepfσ are ΠP
3 -complete.

Proof. in ΣP
3 / ΠP

3 : Let D be an ADF over S and s ∈ S. For Credtσ and Credfσ, we can
guess an interpretation v : S → {t, f ,u} with v(s) = t (or v(s) = f , respectively) and
verify in ΠP

2 that it is σ (Theorem 4.6). For Sceptσ and Scepfσ, to show that s is
not sceptically true, we guess an interpretation v : S → {t, f ,u} with v(s) 6= t (or
v(s) 6= f , respectively) and verify in ΠP

2 that v is σ (Theorem 4.6).

ΣP
3 / ΠP

3 -hardness: We first note that the reduction from QBF of shape ∀P∃Q∀Rψ presented
in Theorem 4.13 works for σ as well, thus establishing ΠP

3 -hardness of Scepfσ. Then,
the second part of Theorem 4.18 implies ΠP

3 -hardness of Sceptσ and the third part of
the same theorem yields ΣP

3 -hardness of Credtσ. Consequently, applying the first part
of Theorem 4.18 we obtain ΣP

3 -hardness also of Credfσ. �

4.2 Complexity of Bipolar ADFs

In line with previous complexity results of general and bipolar ADFs, also in our case the
decision problems for bipolar ADFs are potentially easier. The reason is that while for
general ADFs we have to solve one satisfiability and one irrefutability check and thus get
DP-hardness, for bipolar ADFs the respective checks are easier because we can use the
additional information about link polarities.

46

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

Here is how it works: Suppose we want to check if a statement s ∈ S of a bipolar ADF
D = (S,L+ ∪ L−, C) has been correctly set to true in an interpretation v : S → {t, f ,u}.
As usual, we consult the partially evaluated acceptance formula ϕvs . Since D is bipolar, we
have the additional information that all parents of s are supporting or attacking, and we
even know which. To find out whether ϕvs is satisfiable, we create a canonical two-valued
interpretation v+ : S → {t, f}, the best possible scenario for the statements that are set to
u in v:

v+(r) =


v(r) if v(r) ∈ {t, f}
t if v(r) = u and (r, s) ∈ L+

f otherwise

That is, we set all supporters of s to true and all attackers of s to false. If v+ is no model for
ϕvs , then the formula is unsatisfiable. (Assume to the contrary that ϕvs had a model, then
changing the truth value of supporters to true and attackers to false would preserve the
model property by the definition of bipolarity, contradiction.) Note that if v is two-valued,
then v+ = v and we just have to check that ϕvs evaluates to t. A symmetric construction
(setting supporters to false and attackers to true) is possible when checking for refutability.
Thus in any case we only have to evaluate a given formula with a two-valued interpretation
that can basically be read off the given pair of ADF and three-valued interpretation.

While membership of this decision problem in P formally follows from earlier work by
Strass and Wallner (2015, proof of Proposition 5.1), we can even improve that upper bound
to membership in L, that is, we can show that the problem can be decided using only
logarithmic space. For technical reasons, we apply the notion of bipolarity to propositional
formulas, where a formula is bipolar iff in its associated characteristic Boolean function,
each atom is supporting or attacking. We assume that polarities are represented along with
the formula, for example by prepending a list of tuples of the form (p, {+}) that indicate if
an atom p is supporting, attacking or both.11

Lemma 4.20. Let ϕ be a bipolar propositional formula over P and v : P → {t, f ,u} an
interpretation. Deciding satisfiability of ϕv can be done in L.

Proof. Evaluating the truth value of a propositional formula can be done in L (Papadim-
itriou, 1995, Theorem 16.1). The only additional work we have to do is reconstructing the
truth value v+(p) of any p ∈ P with v(p) = u we encounter during evaluation. However,
this is easy since we have the list of polarities given. �

As we shall see, this in essence yields a decrease in complexity by one level of the
polynomial hierarchy, across the board.

4.2.1 Interpretation Verification

As a first result, Lemma 4.20 more or less directly leads to verification of conflict-free
interpretations being decidable in polynomial time. In contrast to the general case, where

11. There is also a representation result for bipolar Boolean functions (Strass, 2015, Theorem 1). Roughly,
atom polarities can be represented implicitly in the formula, by letting each atom occur only in at most
one polarity, that is, only after an even or after an odd number of negations, where these negations are
counted from the root of the formula tree.

47

Gaggl, Rudolph, & Strass

the problem is DP-hard, here we only have to solve the “easy”, bipolar versions of the
associated (un)satisfiability problems.

Proposition 4.21. Ver±cfi is in L.

Proof. Let D be a bipolar ADF over S and v : S → {t, f ,u} be an interpretation. By
Lemma 4.20, for each s ∈ S with v(s) = t we can decide in L whether ϕvs is satisfiable, and
for each s ∈ S with v(s) = f we can decide in L whether ϕvs is unsatisfiable. There are
at most |S| such checks, so we only need one additional counter that keeps track of which
statement’s truth value we are currently verifying. �

In accordance with the general case, verifying naive interpretations is one level harder
than verifying conflict-free interpretations. Interestingly, the problem is still harder than
for AFs (where it can be decided in logarithmic space). The hardness reduction below will
serve as a blueprint for further reductions. The main difference to the previously developed
reduction techniques is that now we have to construct bipolar ADFs. In the case below,
we achieve this by duplicating the vocabulary P of a given formula ψ and in the formula
replace all negative occurrences of any p ∈ P by a new atom p′ encoding that p is false.
The resulting formula is strictly positive and therefore bipolar. Clearly, we have to make
sure that all pairs p and p′ are only interpreted in a way that corresponds to a two-valued
interpretation of P on the original formula ψ.

Proposition 4.22. Ver±nai is coNP-complete.

Proof. in coNP: Let D be an ADF over S and v : S → {t, f ,u} be an interpretation. To
verify that v is not naive, we can either verify in P that v is not conflict-free, or
guess an interpretation w : S → {t, f ,u} with v <i w and verify in P that w is
conflict-free (Proposition 4.21).

coNP-hard: We reduce from tautology checking. Let ψ = ψ1 ∨ . . . ∨ ψn be a propositional
formula in disjunctive normal form over vocabulary P . We duplicate this vocabulary
into P ′ = {p′ | p ∈ P} and replace all negative occurrences of p by p′:

ψ′ = ψ[¬p/p′ : p ∈ P]

Note that ψ′ is a strictly positive formula, that is, contains no negation. Now define
the ADF Dψ = (S,L,C) over S = P ∪ P ′ ∪ {x, y, z} given by

ϕp = ¬p ∧ (¬x ∨ y ∨ z) for p ∈ P
ϕp′ = ¬p′ ∧ (¬x ∨ y ∨ z) for p ∈ P

ϕx = ¬x ∨
∧
p∈P

(p ∨ p′)

ϕy = ¬y ∧
∨
p∈P

(p ∧ p′)

ϕz = ¬z ∧ ψ′

Observe that the defined ADF is bipolar. Furthermore, define an interpretation
v : S → {t, f ,u} by v(x) = t, v(y) = f and v(s) = u for all s ∈ S \ {x, y}. To show

48

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

that v is naive for Dψ iff ψ is a tautology, we now show that v is not naive for Dψ iff
ψ is refutable.

if: Let ψ be refutable. Then there is a valuation vP : P → {t, f} such that vP (ψ) = f .
Define an interpretation w : S → {t, f} as follows:

w(p) =

{
f vP (p) = f

u otherwise
for p ∈ P

w(p′) =

{
f vP (p) = t

u otherwise
for p ∈ P

w(x) = t

w(y) = f

w(z) = f

Clearly v <i w, it remains to show that w is conflict-free for Dψ.

For each p ∈ P , either (a) w(p) = u and w(p′) = f , or (b) w(p) = f and w(p′) = u;
thus ϕwx is satisfiable (so w(x) = t is justified) and ϕwy is unsatisfiable (so w(y) = f
is justified). For each p ∈ P , the formulas ϕwp and ϕwp′ are unsatisfiable because
w(x) = t, w(y) = f and w(z) = f . Finally, ϕwz = ¬⊥ ∧ ψ′w ≡ ψ′w, so it remains
to show that ψ′w is unsatisfiable. We know that vP (ψ) = f , and since ψ =
ψ1 ∨ . . . ∨ ψn this means that for all 1 ≤ i ≤ n, we have vP (ψi) = f . Let
i ∈ {1, . . . , n} be arbitrary; we show that ψ′wi ≡ ⊥. Monomial ψi is a conjunction
of literals from P , so vP (ψi) = f can have only two reasons:

• ψi contains an atom p ∈ P with vP (p) = f . Then by definition w(p) = f and
ψ′i contains the same atom, whence ψ′wi ≡ ⊥.

• ψi contains a negative literal ¬p for a p ∈ P with vP (p) = t. Then by defi-
nition ψ′i contains the atom p′, furthermore w(p′) = f and thus ψ′wi ≡ ⊥.

Hence, w is conflict-free for Dψ with v <i w, thus v is not naive for Dψ.

only if: Let w : S → {t, f ,u} with v <i w be conflict-free for Dψ. Since v <i w, there
is some s ∈ S \ {x, y} with w(s) 6= u.

• s ∈ P ∪ P ′: Then w(s) = f by definition of ϕs; furthermore ϕws is unsatisfi-
able since w is conflict-free, thus w(z) = f .

• s = z: Then w(z) = f by definition of ϕz.

In any case, w(z) = f whence ϕwz = ¬⊥ ∧ ψ′w ≡ ψ′w is unsatisfiable. By defini-
tion, s ∈ P ∪ P ′ implies v(s) ∈ {f ,u}. Since ϕvy is unsatisfiable, for each p ∈ P
we have v(p) = f or v(p′) = f . Since ϕvx is satisfiable, for each p ∈ P we have
v(p) 6= v(p′). In combination, for each p ∈ P , either w(p) = f or w(p′) = f (but
not both or neither). This lets us construct a valuation vP : P → {t, f} by

vP (p) =

{
t if w(p′) = f

f otherwise

49

Gaggl, Rudolph, & Strass

We now show that vP (ψ) = f by showing that for all 1 ≤ i ≤ n, we have
vP (ψi) = f . Since ψ′w is unsatisfiable and ψ′ is a strictly positive formula, each
ψ′wi for 1 ≤ i ≤ n must be unsatisfiable already. Let i ∈ {1, . . . , n}. By the above
reasoning, ψ′i contains an atom s ∈ P ∪ P ′ that is replaced by f in ψ′wi , that is,
w(s) = f .

• If s = p ∈ P , then p occurs positively in ψi and vP (p) = f by definition,
whence vP (ψi) = f .

• If s = p′ ∈ P ′, then p occurs negatively in ψi and vP (p) = t by definition,
whence vP (ψi) = f .

Altogether it follows that vP (ψ) = f , whence ψ is refutable. �

For the stage semantics, we can borrow membership from naive semantics, and hardness
from Dung’s argumentation frameworks.

Proposition 4.23. Ver±stg is coNP-complete.

Proof. Containment works as for naive semantics, hardness carries over from AFs (Dvořák
& Woltran, 2011). �

Concerning nai2 semantics, we can reuse existing reductions in both directions. For
membership in the general case, we reduced Vernai2 to Vernai (Theorem 4.6). That worked
by simply duplicating the ADF into several renamed copies. Since this clearly preserves
bipolarity, the same reduction works in the bipolar case. For hardness, we observe that
the hardness reduction given for naive semantics above constructs BADFs with only one
strongly connected component. In that case, nai and nai2 semantics coincide by defini-
tion, whence verifying nai2 interpretations for those BADFs is as hard as verifying nai
interpretations.

Proposition 4.24. Ver±nai2
is coNP-complete.

Proof. in coNP: It suffices to observe that the reduction from Vernai2 to Vernai given in
Theorem 4.6 preserves bipolarity.

coNP-hard: The hardness reduction given in Proposition 4.22 constructs a BADF Dψ with
indDψ(∅) = S. That is, there is only one strongly connected component and therefore
nai2(Dψ) = nai(Dψ) by definition. Thus the same hardness reduction also works for
nai2 semantics: for the interpretation v constructed there, we have v ∈ nai2(Dψ) iff
v ∈ nai(Dψ) iff ψ is a tautology. �

For stg2, we again can conclude hardness from existing results about AFs, membership
works as for nai2 semantics.

Proposition 4.25. Ver±stg2
is coNP-complete.

Proof. For membership, again the reduction from Verstg2
to Verstg given in Theorem 4.6

preserves bipolarity. Hardness carries over from AFs (Dvořák & Gaggl, 2016). �

50

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

4.2.2 Existence of Non-Trivial Interpretations

For general ADFs, deciding the existence of non-trivial conflict-free interpretations turned
out to have one of the most complicated membership proofs (Theorem 4.7). For the special
case of bipolar ADFs, we can reuse the main idea of that proof; with the distinction that
deciding the bipolar (un)satisfiability problems can be done in polynomial time.

Proposition 4.26. Exists±cfi is P-complete.

Proof. in P: Let D be a bipolar ADF over S. In accordance with the developments in the
proof of Theorem 4.7, there are only two types of non-trivial conflict-free interpreta-
tions:

1. Those interpretations v : S → {t, f ,u} with v−1(t) 6= ∅. To check whether there

is such a v ∈ cfi(D), for each s ∈ S we test whether the formula ϕ
{s 7→t}
s is

satisfiable. This can be done in logarithmic space (and thus polynomial time)
for each single s ∈ S by Lemma 4.20, and there are |S| such checks. Otherwise,
no s ∈ S can be set to true without violating conflict-freeness.

2. Those interpretations that set all statements to undefined or false, and at least
one of them to false, that is, those v : S → {t, f ,u} with v(S) ⊆ {u, f} and
v−1(f) 6= ∅. To decide whether there is such a v ∈ cfi(D), we can use the
procedure from the proof of Theorem 4.7, where we computed the unique ≤i-
greatest conflict-free uf -interpretation vmax using an NP oracle. In this case we
do not need oracle calls, but can test satisfiability in polytime using Lemma 4.20.

P-hard: We present a logspace reduction from Horn satisfiability. Let T be a set of Horn
clauses over vocabulary P , that is, a set of clauses with at most one positive literal
each. We denote T = T+ ∪ T− where T+ is the set of all definite Horn clauses of
T (those with exactly one positive literal) and T− is the set of all strictly negative
clauses of T . We define a new, definite Horn theory T ′ over P ′ = P ∪ {q} with q /∈ P
as follows:

T ′ = T+ ∪
{
ψ ∨ p

∣∣ ψ ∈ T−, p ∈ P ′}
We denote by Th(T ′) = {p ∈ P ′ | T ′ |= p} the theory of T ′. From our construction it
follows that T is unsatisfiable iff Th(T ′) = P ′: The only way to conclude all atoms
from P ′, in particular q, is the falsity of one ψ ∈ T−, since q does not even occur in
T .

Now we use T ′ to define an ADF DT ′ over P ′ given by

ϕp = ¬p ∧
∨

ψ∨p∈T ′
¬ψ for p ∈ P ′

It is clear that DT ′ is bipolar since each p ∈ P ′ attacks itself and all other statements
that occur in ϕp are supporting. Also note that no conflict-free interpretation for DT ′

can set any statement to true, that is, v ∈ cfi(DT ′) implies v(S) ⊆ {f ,u}.
The construction can be computed in logarithmic space as follows. We assume to use
a Turing machine with one read-only input tape containing P and T in the form of

51

Gaggl, Rudolph, & Strass

numbered atoms and clauses, one working tape with logarithmic space restriction and
one write-only output tape for producing DT ′ . On the working tape, we need one
counter i that expresses that we are currently constructing the acceptance formula
for pi ∈ P ′; another counter j that expresses that we currently look at clause ψj ∈ T .
For each pi ∈ P , we go through all clauses ψj ∈ T and check whether ψj is of the form
ψ ∨ pi or ψj is purely negative. If so, we copy the negation of ψ (or ψj in the purely
negative case) to the initially empty disjunction in ϕpi on the output tape. After all
original pi ∈ P have been considered, we construct ϕq likewise, clearly using all and
only purely negative clauses.

To finalise the proof by showing that DT ′ has a non-trivial conflict-free interpretation
iff T is satisfiable, we show next (by contraposition) that cfi(DT ′) = {(P ′ 7→ u)} iff
Th(T ′) = P ′.

if: Let v ∈ cfi(DT ′) with v(r) 6= u for some r ∈ P ′. We will show that r /∈ Th(T ′).
Define the sets F = {p ∈ P ′ | v(p) 6= u} and U = P ′ \ F , and an interpretation
w : P ′ → {t, f} such that w = (F 7→ f) ◦ (U 7→ t). We will show that w is a model
of T ′, whence by r ∈ F and thus w(r) = f it follows that T ′ 6|= r. Let ψ ∨ p ∈ T ′
be a clause.

• p ∈ F . Then by definition of ϕp, we have v(p) = f , whence ϕvp ≡
∨
ξ∨p∈T ′ ¬ξv

is unsatisfiable. Thus in particular we find that ¬ψv is unsatisfiable, that is,
the purely negative clause ψv is true. Since w maps the atoms in F just as
v does, also ψw is true, whence w(ψ ∨ p) = t.

• p ∈ U . The fact that w(p) = t by definition implies that w(ψ ∨ p) = t.

Thus w is a model for T ′ with w(r) = f and Th(T ′) (P ′.

only if: Let Th(T ′) (P ′. Define an interpretation v : P ′ → {u, f} such that

v(p) =

{
u if p ∈ Th(T ′)

f otherwise
for p ∈ P ′

Clearly v is non-trivial by assumption. It remains to show that v is conflict-free,
where it obviously suffices to consider only P ′ \ Th(T ′). Let p ∈ P ′ \ Th(T ′) be
arbitrary; we show that ϕvp is unsatisfiable. By assumption, T ′ 6|= p, that is, there
is a model w : P ′ → {t, f} of T ′ with w(p) = f . Since w is a model of T ′, for all
clauses ψ ∨ p ∈ T ′ we find w(ψ ∨ p) = t. Since furthermore w(p) = f , it follows
that w(ψ) = t for all ψ ∨ p ∈ T ′. In particular, each such ψ is non-empty, and
since it is a negative clause, it must contain a negative literal ¬rψ for an atom
rψ ∈ P ′ \ Th(T ′), that is, with v(rψ) = f . It follows thus that v is a model for
the conjunction

∧
ψ∨p∈T ′ ψ, whence

> ≡

 ∧
ψ∨p∈T ′

ψ

v ≡
¬ ∨

ψ∨p∈T ′
¬ψ

v ≡
p ∨ ¬ ∨

ψ∨p∈T ′
¬ψ

v ≡ (¬ϕp)v

Therefore ϕvp ≡ ⊥ is unsatisfiable. Since p ∈ P ′ \ Th(T ′) was arbitrary, v is
conflict-free. �

52

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

The proof of Proposition 4.9 entails that a similar result holds for bipolar ADFs.

Corollary 4.27. The following decision problems coincide:

1. Exists±cfi , Exists±nai , Exists
±
stg , Exists±nai2

, Exists±stg2
;

2. Credt,±cfi and Credt,±nai ;

3. Credf ,±cfi and Credf ,±nai .

4.2.3 Entailment

Credulous reasoning over conflict-free interpretations works as in the general case, only that
we do not need an oracle and the problem thus becomes easier.

Proposition 4.28. Credt,±cfi is in L.

Proof. Given a BADF D over S and an z ∈ S, to check whether z is credulously true we
check in L whether the interpretation v = (S 7→ u) ◦ {z 7→ t} is conflict-free. (The interpre-
tation need not be constructed explicitly, we can “keep in mind” its easy structure.) If so, we
have found a witness; if not, then ϕvs is unsatisfiable and will be so for any w : S → {t, f ,u}
with v ≤i w. �

In line with the complexities for the general case, it is harder to decide whether a
particular statement can be set to false in a conflict-free manner.

Proposition 4.29. Credf ,±cfi is NP-complete.

Proof. in NP: Given a BADF D over S and an z ∈ S, we can guess an interpretation
v : S → {t, f ,u} with v(z) = f and verify in L that it is conflict-free (Proposition 4.21).

NP-hard: We reduce from refutability checking. Let ψ = ψ1 ∨ . . . ∨ ψn be a propositional
formula in DNF over a vocabulary P . We assume w.l.o.g. that in each monomial ψi,
each atom occurs only once (negated or unnegated), as additional occurrences would
be redundant (or make the monomial redundant). Now we define the (bipolar) ADF
Dψ over S = P ∪ {d1, . . . , dn, z} by

ϕp = p for p ∈ P
ϕdi = ψi for 1 ≤ i ≤ n
ϕz = d1 ∨ . . . ∨ dn

We show that there is a conflict-free interpretation v : S → {t, f ,u} with v(z) = f iff
ψ is refutable.

if: Let ψ be refutable. Then there is a valuation vP : P → {t, f} with vP (ψ) = f ,
that is, vP (ψi) = f for all 1 ≤ i ≤ n. Define an interpretation v : S → {t, f ,u} as
follows:

v(p) = vP (p) for p ∈ P
v(di) = f for 1 ≤ i ≤ n
v(z) = f

53

Gaggl, Rudolph, & Strass

We have to show that v is conflict-free for Dψ. This is clear for p ∈ P and z; for
the di, it follows since vP (ψi) = f implies ψvi ≡ ⊥ by definition of v.

only if: Let v : S → {t, f ,u} be conflict-free with v(z) = f . Then ϕvz = (d1 ∨ . . . ∨ dn)v

is unsatisfiable, that is, v(d1) = . . . = v(dn) = f . Consequently, all of ϕvd1
, . . . , ϕvdn

are unsatisfiable. Define a valuation vP : P → {t, f} by vP = v|P . By the above,
vP (ψi) = f for all 1 ≤ i ≤ n, whence vP (ψ) = f . Thus ψ is refutable. �

The proof of the membership part of the next result works as in the general case,
only that this time we need no oracle to verify conflict-freeness of interpretations. In the
hardness part, we can reuse the reduction from above and employ the fact that for the
BADFs obtained via that reduction there are no naive interpretations where the statement
in question remains undecided. Therefore, for that BADF class, sceptical truth is exactly
the co-problem of credulous falsity and coNP-hardness of one follows from NP-hardness of
the other.

Proposition 4.30. Scept,±nai is coNP-complete.

Proof. in coNP: Let D be a BADF over S and z ∈ S. To show that z is not sceptically true
for D, we guess an interpretation v : S → {t, f ,u} and show in L that v is conflict-free,
and furthermore show that one of (1) v(z) = f or (2) v(z) = u and v ◦ {z 7→ t} is not
conflict-free.

coNP-hard: We can use the reduction from the hardness proof of Proposition 4.29. In the
BADF constructed there, all naive interpretations v are two-valued with respect to
z (ϕvz is either satisfiable or unsatisfiable, and z does not occur in any acceptance
formula). Thus, there is a naive interpretation v : S → {t, f ,u} where v(z) 6= t iff
there is a naive interpretation v : S → {t, f ,u} where v(z) = f . �

The hardness part of the proof of the next result is the most complicated one when
considering all decision problems for bipolar ADFs so far. It reduces QBF-truth for formu-
las of the form ∀P∃Qψ to naive sceptical falsity for bipolar ADFs. Here, bipolarity of the
constructed ADF is achieved by splitting the given conjunctive normal form ψ into clauses
and creating a statement for each clause. However, this bars us from using conflict-free
semantics’ built-in (un)satisfiability check for solving the (un)satisfiability problem associ-
ated to ∀P∃Qψ. Alas, we can regain this ability by moving the inner satisfiability check
∃Qψ from the level of a single statement to the level of an interpretation, and dealing with
the outer quantification ∀P on the level of all interpretations.

Theorem 4.31. Scepf ,±nai is ΠP
2 -complete.

Proof. in ΠP
2 : Let D be a BADF over S and z ∈ S. To show that z is not sceptically false,

we guess an interpretation v : S → {t, f ,u} with v(z) 6= f and verify in coNP that it
is naive (Proposition 4.22).

54

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

ΠP
2 -hard: Let Φ = ∀P∃Qψ be a QBF with ψ = ψ1 ∧ . . . ∧ ψn in CNF. Define ψ′ as ψ with

all positive occurrences of q ∈ Q replaced by ¬q′. Further define a BADF DΦ over S
as follows:

S = P ∪Q ∪Q′ ∪ {c1, . . . , cn, x, y, z}
ϕp = p for p ∈ P
ϕq = ¬q ∧ (¬x ∨ y ∨ z) for q ∈ Q
ϕq′ = ¬q′ ∧ (¬x ∨ y ∨ z) for q ∈ Q
ϕci = ¬ci ∧ ¬ψ′i for 1 ≤ i ≤ n

ϕx = ¬x ∨
∧
q∈Q

(q ∨ q′)

ϕy = ¬y ∧
∨
q∈Q

(q ∧ q′)

ϕz = ¬z ∧ (c1 ∨ . . . ∨ cn)

We show that z is sceptically false in DΦ iff Φ is true.

if: Let Φ be true. Then for each vP : P → {t, f}, there is a vQ : Q→ {t, f} such
that vQ(vP (ψ)) = t, that is, for all 1 ≤ i ≤ n, we have vQ(vP (ψi)) = t. We
show that every conflict-free interpretation v : S → {t, f ,u} with v(z) = u can
be extended to a conflict-free interpretation w : S → {t, f ,u} with v ≤i w and
w(z) = f . Clearly, interpretations with v(z) = t are not conflict-free, so this
establishes the result.

Let v : S → {t, f ,u} be conflict-free with v(z) = u. It follows that for all q ∈ Q,
the formulas ϕvq and ϕvq′ are satisfiable, whence v(Q ∪Q′) = {u}. This in turn im-
plies that both ϕx and ϕy are satisfiable, whence v(x) 6= f and v(y) = u. We now
define w : S → {t, f ,u} as follows: For p ∈ P , we set w(p) = v(p) if v(p) ∈ {t, f}
and w(p) ∈ {t, f} arbitrary otherwise. This defines a valuation w|P : P → {t, f},
thus by assumption there exists a vQ : Q→ {t, f} with vQ(w|P (ψ)) = t. We let

w(q) =

{
f if vQ(q) = f

u otherwise
for q ∈ Q

w(q′) =

{
f if vQ(q) = t

u otherwise
for q ∈ Q

w(ci) = f for 1 ≤ i ≤ n
w(x) = t

w(y) = f

w(z) = f

We have to show that w is conflict-free. This is easy to see for z and the
q, q′ ∈ Q ∪Q′; for x and y it holds since for each q ∈ Q we have either w(q) = f
or w(q′) = f by definition. It remains to show that for each i ∈ {1, . . . , n}, the
formula ϕwci = ¬⊥ ∧ ¬ψ′wi is unsatisfiable. Let i ∈ {1, . . . , n}. By construction,

55

Gaggl, Rudolph, & Strass

¬ψ′w|Pi is equivalent to a conjunction of atoms from Q ∪Q′. By assumption, we

have that ψ
w|P ◦vQ
i ≡ >.

• ψi contains a literal p (or ¬p) for some p ∈ P with w(p) = t (w(p) = f).

Then the conjunction for ¬ψ′w|Pi contains ¬> (or ¬¬⊥) and is unsatisfiable.

• ψi contains an atom q ∈ Q with vQ(q) = t. Then by definition w(q′) = f ,
furthermore ψ′i contains ¬q′ and the conjunction for ϕwci = ¬ψ′wi contains
¬¬⊥ whence it is unsatisfiable.

• ψi contains a literal ¬q for a q ∈ Q with vQ(q) = f . Then by definition
w(q) = f , furthermore ψ′i contains ¬q and the conjunction for ϕwci = ¬ψ′wi
contains ¬¬⊥ whence it is unsatisfiable.

Thus for each conflict-free interpretation v for DΦ there is a conflict-free w with
v ≤i w and w(z) = f whence z is sceptically false in DΦ.

only if: Let Φ be false, that is, let vP : P → {t, f} be such that ψvP is unsatisfi-
able. Then for each vQ : Q→ {t, f}, we have ψvP ◦vQ ≡ ⊥, that is, for each
vQ : Q→ {t, f} there is a j ∈ {1, . . . , n} such that ψ

vP ◦vQ
j ≡ ⊥. We construct

an interpretation v : S → {t, f ,u} as follows:

v(p) = vP (p) for p ∈ P
v(q) = u for q ∈ Q
v(q′) = u for q′ ∈ Q′

v(ci) =

{
u if ϕvPci is satisfiable

f otherwise
for 1 ≤ i ≤ n

v(x) = t

v(y) = u

v(z) = u

To conclude the proof, we show that v is naive. It is immediate that v is
conflict-free. Assume to the contrary that there is a w : S → {t, f ,u} with
v <i w. Then w−1(f) \ v−1(f) 6= ∅. If w(y) = f then for each q ∈ Q, either
w(q) = f or w(q′) = f . If w(ci) = f 6= v(ci) for some i ∈ {1, . . . , n}, then w(s) = f
for some s ∈ Q ∪Q′ (since ϕwci is unsatisfiable with vP ≤i w although ϕvPci with
vP (P) ⊆ {t, f} is satisfiable). If w(s) = f for some s ∈ Q ∪Q′ then also w(z) = f .
Thus ϕwz is unsatisfiable, that is, ϕwci = ¬ψ′wi ≡ ⊥ for all 1 ≤ i ≤ n, whence
ψ′wi ≡ > for all 1 ≤ i ≤ n. But then vP ≤i v <i w implies that ψvP is satisfi-
able, contradiction. Thus v with v(z) = u is naive. �

Figure 5 shows the BADF DΦ for the QBF Φ = ∀{p}∃{q1, q2}(p∨¬q1)∧(¬p∨q2)∧(q1∨¬q2).

Once this result is obtained, the remaining problems for stage and nai2 semantics in
the bipolar case can be tackled using techniques that are either standard or known from
the general case. We first show how credulous/sceptical truth for stage semantics can be
reduced to credulous/sceptical falsity.

56

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

x y

z

q1 q′1 q2 q′2

c1 c2 c3

p

ϕp = p

ϕc1 = ¬c1 ∧ ¬(p ∨ ¬q1)

ϕc2 = ¬c2 ∧ ¬(¬p ∨ ¬q′2)

ϕc3 = ¬c3 ∧ ¬(¬q′1 ∨ ¬q2)

ϕq1 = ¬q1 ∧ (¬x ∨ y ∨ z)
ϕq′1 = ¬q′1 ∧ (¬x ∨ y ∨ z)
ϕq2 = ¬q2 ∧ (¬x ∨ y ∨ z)
ϕq′2 = ¬q′2 ∧ (¬x ∨ y ∨ z)
ϕx = ¬x ∨ ((q1 ∨ q′1) ∧ (q2 ∨ q′2))

ϕy = ¬y ∧ ((q1 ∧ q′1) ∨ (q2 ∧ q′2))

ϕz = ¬z ∧ (c1 ∨ c2 ∨ c3)

Figure 5: BADF DΦ (Theorem 4.31) for Φ = ∀{p}∃{q1, q2}(p ∨ ¬q1)∧(¬p ∨ q2)∧(q1 ∨ ¬q2).
Attacking links are shown with arrow tips, supporting links have diamond tips. All nodes
are self-looping; the loops have been omitted from the presentation for clarity. The
QBF Φ is true, since for p 7→ t we find q2 7→ t and q1 7→ t; for p 7→ f we find q1 7→ f
and q2 7→ f . Consequently, the constructed BADF DΦ has two naive interpretations:
v1 = {p 7→ t, c1 7→ f , c2 7→ f , c3 7→ f , q1 7→ u, q′1 7→ f , q2 7→ u, q′2 7→ f , x 7→ t, y 7→ f , z 7→ f} and
v2 = {p 7→ f , c1 7→ f , c2 7→ f , c3 7→ f , q1 7→ f , q′1 7→ u, q2 7→ f , q′2 7→ u, x 7→ t, y 7→ f , z 7→ f}. As
expected (since Φ is true), z is false in both of them.

Lemma 4.32.

1. Credt,±stg can be polynomially reduced to Credf ,±stg ;

2. Scept,±stg can be polynomially reduced to Scepf ,±stg .

Proof. Let D be a BADF over S and z ∈ S. Construct D′ over S′ = S ∪ {z′} as an extension
of D with ϕz′ = ¬z. (Clearly D′ is bipolar since D is bipolar and z is attacking in ϕz′ .)
By construction, stg(D) and stg(D′) correspond one-to-one, and in each v ∈ stg(D′) we
find v(z′) ∈ {t, f}: Either v(z) ∈ {f ,u}, then v(z′) = t; or v(z) = t, then v(z′) = f . We
now show that we can decide credulous (sceptical) truth of z in D by deciding credulous
(sceptical) falsity of z′ in D′.

1. The following are equivalent:

• There is a v ∈ stg(D′) with v(z′) = f ,

• there is a v ∈ stg(D′) with ϕvz′ unsatisfiable,

• there is a v ∈ stg(D′) with v(z) = t,

• there is a w ∈ stg(D) with w(z) = t.

57

Gaggl, Rudolph, & Strass

2. The following are equivalent:

• There is a v ∈ stg(D′) with v(z′) 6= f ,

• there is a v ∈ stg(D′) with v(z′) = t,

• there is a v ∈ stg(D′) with v(z) ∈ {f ,u},

• there is a w ∈ stg(D) with w(z) ∈ {f ,u},

• there is a w ∈ stg(D) with w(z) 6= t. �

Together with the fact that hardness for credulous and sceptical truth carries over from
AF results shown by Dvořák and Woltran (2010), this leads to tight bounds for all reasoning
problems over stage semantics.

Theorem 4.33. Credt,±stg and Credf ,±stg are ΣP
2 -complete; Scept,±stg and Scepf ,±stg are ΠP

2 -
complete.

Proof. Containment of Credt,±stg and Credf ,±stg in ΣP
2 is straightforward: given a BADF D over

S and a z ∈ S, we can guess an interpretation v : S → {t, f ,u} with v(z) = t (or v(z) = f)
and verify in coNP that v is stage (Proposition 4.23). Likewise we can obtain membership

of Scept,±stg and Scepf ,±stg in ΠP
2 : given a BADF D over S and a z ∈ S, to show that z is not

sceptically true (false), we can guess an interpretation v : S → {t, f ,u} with v(z) 6= t (or
v(z) 6= f) and verify in coNP that v is stage (Proposition 4.23).

Hardness of Credt,±stg for ΣP
2 and that of Scept,±stg for ΠP

2 carries over from AFs (Dvořák

& Woltran, 2010). By Lemma 4.32, this yields the hardness results also for Credf ,±stg and

Scepf ,±stg . �

For nai2 and stg2 semantics, we can make use of the techniques established for the
general case (in particular Proposition 4.18).

Proposition 4.34. Let σ ∈ {nai2, stg2}. The following problems can be polynomially
reduced to each other:

• Credt,±σ and Credf ,±σ ,

• Scept,±σ and Scepf ,±σ ,

• co-Scepf ,±σ and Credt,±σ .

Proof. It suffices to observe that all constructions in the proof of Proposition 4.18 preserve
bipolarity. �

58

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

σ cfi nai stg nai2 stg2

Ver±σ in L
(Proposition 4.21)

coNP-c
(Proposition 4.22)

coNP-c
(Proposition 4.23)

coNP-c
(Proposition 4.24)

coNP-c
(Proposition 4.25)

Exists±σ P-c
(Proposition 4.26)

P-c
(Corollary 4.27)

P-c
(Corollary 4.27)

P-c
(Corollary 4.27)

P-c
(Corollary 4.27)

Credt,±σ in L
(Proposition 4.28)

in L
(Corollary 4.27)

ΣP
2 -c

(Theorem 4.33)

ΣP
2 -c

(Theorem 4.35)

ΣP
2 -c

(Theorem 4.35)

Credf ,±σ NP-c
(Proposition 4.29)

NP-c
(Corollary 4.27)

ΣP
2 -c

(Theorem 4.33)

ΣP
2 -c

(Theorem 4.35)

ΣP
2 -c

(Theorem 4.35)

Scept,±σ trivial coNP-c
(Proposition 4.30)

ΠP
2 -c

(Theorem 4.33)

ΠP
2 -c

(Theorem 4.35)

ΠP
2 -c

(Theorem 4.35)

Scepf ,±σ trivial ΠP
2 -c

(Theorem 4.31)

ΠP
2 -c

(Theorem 4.33)

ΠP
2 -c

(Theorem 4.35)

ΠP
2 -c

(Theorem 4.35)

Table 2: Complexity results for naive-based semantics of bipolar abstract dialectical frame-
works; C-c stands for C-complete.

Together with the observation that the hardness reduction of Theorem 4.31 (for Credf ,±nai)
works for the nai2 and stg2 semantics as well, the proposition leads to the following results.

Theorem 4.35. Let σ ∈ {nai2, stg2}.

• Credt,±σ and Credf ,±σ are ΣP
2 -complete.

• Scept,±σ and Scepf ,±σ are ΠP
2 -complete.

Proof. membership: Let D be a BADF over S and z ∈ S. For Credt,±σ and Credf ,±σ , we
can guess an interpretation v : S → {t, f ,u} with v(z) = t (or v(z) = f , respectively)
and verify in coNP that it is σ (Proposition 4.24, Proposition 4.25). For Scept,±σ
and Scepf ,±σ , to show that z is not sceptically true, we guess an interpretation
v : S → {t, f ,u} with v(z) 6= t (or v(z) 6= f , respectively) and verify in coNP that
v is σ (Proposition 4.24, Proposition 4.25).

hardness: We first note that the reduction from Theorem 4.31 works for nai2 and stg2 as
well, since the BADF DΦ constructed there satisfies indDΦ

(∅) = P and indDΦ
(P) = S,

that is, there are only two “layers” of strongly connected components, where the first
is only used for guessing. This establishes ΠP

2 -hardness of Scepf ,±σ . Then, the second
part of Proposition 4.34 implies ΠP

2 -hardness of Scept,±σ and the third part of the
same result yields ΣP

2 -hardness of Credt,±σ . Consequently, applying the first part of
Proposition 4.34 we obtain ΣP

2 -hardness also of Credf ,±σ . �

59

Gaggl, Rudolph, & Strass

5. Discussion

We introduced and studied a scheme to decompose abstract dialectical frameworks along
their strongly connected components. For several semantics, our scheme leads to a new
way to compute interpretations, among them admissible, complete, preferred, grounded
and two-valued model semantics. Thereby, these semantics turn out to be SCC-recursive,
for ADFs just as for AFs. This is strong evidence that SCC-recursiveness is a useful notion
for the study not only of AF, but also for ADF semantics.

For the semantics that do not possess the SCC-recursiveness property, our scheme leads
to new semantics which arguably remedy some of the original semantics’ shortcomings, such
as naive and stage semantics. For these semantics, we studied their relationship to the base
semantics and computational properties in exhaustive detail.

Due to the generality of ADFs, this paper – as a byproduct – defines the nai2 and
stg2 semantics also for logic programs. That is, when a normal logic program fails to have
(stable) models due to odd-length negative cycles, our decomposition-based scheme can
straightforwardly be applied to the logic program’s associated ADF (Brewka & Woltran,
2010; Strass, 2015) to compute nai2 and stg2 interpretations. Computationally, this is quite
economic since the increase in size from logic program to ADF is at most linear.

We also presented numerous novel results on the computational complexity of naive-
based semantics for abstract dialectical frameworks. An overview can be found in Tables 1
and 2. The main lesson learned is that naive-based semantics for ADFs are – computa-
tionally speaking – not at all “naive”, not even in the case of bipolar ADFs. However, we
also observed a difference in complexity between bipolar and general ADFs (one level of the
polynomial hierarchy), as previously observed for other semantics (Strass & Wallner, 2015).

Our analysis paves the way for implementing naive-based ADF semantics, for example by
adding adequate ASP encodings for the verification and existence problem to the diamond
system (Ellmauthaler & Strass, 2014) and its more recent incarnation, godiamond (Strass &
Ellmauthaler, 2017). For the sceptical and credulous entailment problems in the third level
of the polynomial hierarchy, encodings based on QBFs seem possible (Diller, Wallner, &
Woltran, 2014). In terms of possible native ADF algorithms, similar SCC-decomposition-
based computation approaches for AFs seem to be promising starting points (Baumann
et al., 2011; Liao, 2013). In general, the fact that we have succeeded in applying SCC-
recursive decomposition in a semantics-neutral way to graphs with arbitrary argument rela-
tions (instead of just attacks) suggests indeed that this SCC-based decomposition procedure
can potentially be used to improve the efficiency of ADF-related implementations, some-
thing that opens up avenues for future research.

For future work, we plan to consider further semantics. For example, in this paper we
have not considered the ADF stable model semantics for clarity, as it also uses notions of
reduct and partial evaluation that are subtly different from the ones employed in this paper.
Naturally, we also want to implement our decomposition-based scheme to verify whether
there is a performance gain in comparison to conventional evaluation methods. Finally,
this paper can serve as a starting point for considering arbitrary splittings of ADFs, an
important next step as also recognised by Linsbichler (2014).

60

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

Acknowledgements This research was partially funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – project number 389792660 – TRR 248
(see https://perspicuous-computing.science), by the Bundesministerium für Bildung
und Forschung (BMBF) Förderkennzeichen 01|S20056 NAVAS, and by the European Re-
search Council through the ERC Consolidator Grant 771779 (DeciGUT). We thank several
anonymous reviewers for their helpful feedback.

References

Al-Abdulkarim, L., Atkinson, K., & Bench-Capon, T. J. M. (2014). Abstract dialectical
frameworks for legal reasoning. In Hoekstra, R. (Ed.), Proceedings of the Twenty-
Seventh Annual Conference on Legal Knowledge and Information Systems (JURIX),
Vol. 271 of FAIA, pp. 61–70. IOS Press.

Al-Abdulkarim, L., Atkinson, K., & Bench-Capon, T. J. M. (2015). Evaluating the use of
abstract dialectical frameworks to represent case law. In Sichelman, T., & Atkinson,
K. (Eds.), Proceedings of the 15th International Conference on Artificial Intelligence
and Law (ICAIL), pp. 156–160. ACM.

Al-Abdulkarim, L., Atkinson, K., & Bench-Capon, T. J. M. (2016). A methodology for
designing systems to reason with legal cases using abstract dialectical frameworks.
Artificial Intelligence and Law, 24 (1), 1–49.

Al-Abdulkarim, L., Atkinson, K., Bench-Capon, T. J. M., Whittle, S., Williams, R., &
Wolfenden, C. (2017). Noise induced hearing loss: An application of the angelic
methodology. In Wyner, A. Z., & Casini, G. (Eds.), Proceedings of the Thirtieth In-
ternational Conference on Legal Knowledge and Information Systems (JURIX), Vol.
302 of FAIA, pp. 79–88. IOS Press.

Amgoud, L., & Cayrol, C. (2002). A reasoning model based on the production of acceptable
arguments. Annals of Mathematics and Artificial Intelligence, 34 (1-3), 197–215.

Amgoud, L., Cayrol, C., Lagasquie-Schiex, M., & Livet, P. (2008). On bipolarity in argu-
mentation frameworks. International Journal of Intelligent Systems, 23, 1–32.

Amgoud, L., & Vesic, S. (2010). Handling inconsistency with preference-based argumenta-
tion. In Deshpande, A., & Hunter, A. (Eds.), Scalable Uncertainty Management – 4th
International Conference (SUM), Vol. 6379 of LNCS, pp. 56–69. Springer.

Baroni, P., Caminada, M., & Giacomin, M. (2011). An introduction to argumentation
semantics. Knowledge Engineering Review, 26 (4), 365–410.

Baroni, P., Giacomin, M., & Guida, G. (2005). SCC-recursiveness: A general schema for
argumentation semantics. Artificial Intelligence, 168 (1–2), 162–210.

Baumann, R. (2011). Splitting an argumentation framework. In Delgrande, J. P., & Faber,
W. (Eds.), Logic Programming and Nonmonotonic Reasoning (LPNMR), Vol. 6645 of
LNCS, pp. 40–53. Springer.

Baumann, R., Brewka, G., & Wong, R. (2011). Splitting argumentation frameworks: An
empirical evaluation. In Modgil, S., Oren, N., & Toni, F. (Eds.), Theory and Appli-

61

Gaggl, Rudolph, & Strass

cations of Formal Argumentation – First International Workshop (TAFA), Vol. 7132
of LNCS, pp. 17–31. Springer.

Bench-Capon, T. J. M. (2003). Persuasion in practical argument using value-based argu-
mentation frameworks. Journal of Logic and Computation, 13 (3), 429–448.

Brewka, G., & Gordon, T. F. (2010). Carneades and abstract dialectical frameworks: A
reconstruction. In Baroni, P., Cerutti, F., Giacomin, M., & Simari, G. R. (Eds.), Pro-
ceedings of the Third International Conference on Computational Models of Argument
(COMMA), Vol. 216 of FAIA, pp. 3–12. IOS Press.

Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J. P., & Woltran, S. (2013). Abstract
Dialectical Frameworks Revisited. In Rossi, F. (Ed.), Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence (IJCAI), pp. 803–809.
IJCAI/AAAI.

Brewka, G., & Woltran, S. (2010). Abstract Dialectical Frameworks. In Lin, F., Sattler,
U., & Truszczyński, M. (Eds.), Proceedings of the Twelfth International Conference
on Principles of Knowledge Representation and Reasoning (KR), pp. 102–111. AAAI
Press.

Chang, R., & Kadin, J. (1996). The Boolean hierarchy and the polynomial hierarchy: A
closer connection. SIAM Journal on Computing, 25 (2), 340–354.

Cramer, M., & Guillaume, M. (2019). Empirical study on human evaluation of complex
argumentation frameworks. In Calimeri, F., Leone, N., & Manna, M. (Eds.), Logics
in Artificial Intelligence – 16th European Conference (JELIA), Vol. 11468 of LNCS,
pp. 102–115. Springer.

Cramer, M., & van der Torre, L. (2019). SCF2 – an argumentation semantics for rational
human judgments on argument acceptability. In Beierle, C., Ragni, M., Stolzenburg,
F., & Thimm, M. (Eds.), Proceedings of the 8th Workshop on Dynamics of Knowledge
and Belief (DKB-2019) and the 7th Workshop KI & Kognition (KIK-2019) co-located
with 44nd German Conference on Artificial Intelligence (KI 2019), Vol. 2445 of CEUR
Workshop Proceedings, pp. 24–35. CEUR-WS.org.

Diller, M., Wallner, J. P., & Woltran, S. (2014). Reasoning in abstract dialectical frameworks
using Quantified Boolean Formulas. In Parsons, S., Oren, N., & Reed, C. (Eds.), Pro-
ceedings of the Fifth International Conference on Computational Models of Argument
(COMMA), Vol. 266 of FAIA, pp. 241–252. IOS Press.

Dung, P. M. (1995). On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial Intel-
ligence, 77 (2), 321–358.

Dunne, P. E., Hunter, A., McBurney, P., Parsons, S., & Wooldridge, M. (2011). Weighted
argument systems: Basic definitions, algorithms, and complexity results. Artificial
Intelligence, 175 (2), 457–486.

Dvořák, W., & Gaggl, S. A. (2016). Stage semantics and the SCC-recursive schema for
argumentation semantics. Journal of Logic and Computation, 26 (4), 1149–1202.

Dvořák, W., & Woltran, S. (2010). Complexity of semi-stable and stage semantics in argu-
mentation frameworks. Information Processing Letters, 110 (11), 425–430.

62

On the Decomposition of ADFs and the Complexity of Naive-based Semantics

Dvořák, W., & Woltran, S. (2011). On the intertranslatability of argumentation semantics.
Journal of Artificial Intelligence Research, 41, 445–475.

Ellmauthaler, S., & Strass, H. (2014). The DIAMOND system for computing with abstract
dialectical frameworks. In Parsons, S., Oren, N., & Reed, C. (Eds.), Proceedings of
the Fifth International Conference on Computational Models of Argument (COMMA),
Vol. 266 of FAIA, pp. 233–240. IOS Press.

Gaggl, S. A., Rudolph, S., & Strass, H. (2015). On the computational complexity of naive-
based semantics for abstract dialectical frameworks. In Yang, Q., & Wooldridge, M.
(Eds.), Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence (IJCAI), pp. 2985–2991. IJCAI/AAAI.

Gaggl, S. A., & Strass, H. (2014). Decomposing abstract dialectical frameworks. In Parsons,
S., Oren, N., & Reed, C. (Eds.), Proceedings of the Fifth International Conference on
Computational Models of Argument (COMMA), Vol. 266 of FAIA, pp. 281–292. IOS
Press.

Gaggl, S. A., & Woltran, S. (2013). The cf2 argumentation semantics revisited. Journal of
Logic and Computation, 23 (5), 925–949.

Li, H., Oren, N., & Norman, T. J. (2011). Probabilistic argumentation frameworks. In
Modgil, S., Oren, N., & Toni, F. (Eds.), Revised Selected Papers of the First Interna-
tional Workshop on Theory and Applications of Formal Argumentation (TAFA), Vol.
7132 of LNCS, pp. 1–16. Springer.

Liao, B. (2013). Toward incremental computation of argumentation semantics: A
decomposition-based approach. Annals of Mathematics and Artificial Intelligence,
67 (3–4), 319–358.

Liao, B. (2014). Efficient Computation of Argumentation Semantics. Intelligent systems
series. Academic Press.

Linsbichler, T. (2014). Splitting abstract dialectical frameworks. In Parsons, S., Oren, N., &
Reed, C. (Eds.), Proceedings of the Fifth International Conference on Computational
Models of Argument (COMMA), Vol. 266 of FAIA, pp. 357–368. IOS Press.

Nouioua, F., & Risch, V. (2011). Argumentation frameworks with necessities. In Benferhat,
S., & Grant, J. (Eds.), Proceedings of the Fifth International Conference on Scalable
Uncertainty Management (SUM), Vol. 6929 of LNCS, pp. 163–176. Springer.

Papadimitriou, C. H. (1995). Computational Complexity. Addison-Wesley.

Papadimitriou, C. H., & Yannakakis, M. (1982). The complexity of facets (and some facets
of complexity). In Lewis, H. R., Simons, B. B., Burkhard, W. A., & Landweber,
L. H. (Eds.), Proceedings of the Fourteenth Annual ACM Symposium on Theory of
Computing (STOC). ACM.

Polberg, S., & Doder, D. (2014). Probabilistic abstract dialectical frameworks. In Fermé,
E., & Leite, J. (Eds.), Proceedings of the Fourteenth European Conference on Logics
in Artificial Intelligence (JELIA), Vol. 8761 of LNCS, pp. 591–599. Springer.

Rahwan, I., Simari, G. R., & van Benthem, J. (2009). Argumentation in Artificial Intelli-
gence, Vol. 47. Springer.

63

Gaggl, Rudolph, & Strass

Spanring, C. (2012). Intertranslatability results for abstract argumentation semantics. Mas-
ter’s thesis, Vienna University of Technology.

Strass, H. (2013). Approximating operators and semantics for abstract dialectical frame-
works. Artificial Intelligence, 205, 39–70.

Strass, H. (2015). Expressiveness of two-valued semantics for abstract dialectical frame-
works. Journal of Artificial Intelligence Research, 54, 193–231.

Strass, H. (2017). Abstract Dialectical Frameworks. An Analysis of their Properties and Role
in Knowledge Representation and Reasoning. Habilitationsschrift. Leipzig University.
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa2-167205.

Strass, H. (2018). Instantiating rule-based defeasible theories in abstract dialectical frame-
works and beyond. Journal of Logic and Computation, 28 (3), 605–627.

Strass, H., & Ellmauthaler, S. (2017). goDIAMOND 0.6.6 system description. In
Gaggl, S. A., Linsbichler, T., Maratea, M., & Woltran, S. (Eds.), Second In-
ternational Competition on Computational Models of Argumentation. https://

argumentationcompetition.org/2017/goDIAMOND.pdf.

Strass, H., & Wallner, J. P. (2015). Analyzing the Computational Complexity of Abstract
Dialectical Frameworks via Approximation Fixpoint Theory. Artificial Intelligence,
226, 34–74.

Toni, F., & Sergot, M. (2011). Argumentation and answer set programming. In Balduccini,
M., & Son, T. (Eds.), Logic Programming, Knowledge Representation, and Nonmono-
tonic Reasoning, Vol. 6565 of LNCS, pp. 164–180. Springer.

Verheij, B. (1996). Two approaches to dialectical argumentation: Admissible sets and ar-
gumentation stages. In Meyer, J.-J. C., & van der Gaag, L. C. (Eds.), Proceedings of
the Eighth Dutch Conference on Artificial Intelligence (NAIC), pp. 357–368.

Wechsung, G. (1985). On the Boolean closure of NP. In Budach, L. (Ed.), Proceedings of
the International Conference on Fundamentals of Computation Theory (FCT), Vol.
199 of LNCS, pp. 485–493. Springer.

Zhang, X., & Lin, Z. (2009). An argumentation-based approach to handling inconsistencies
in DL-Lite. In Mertsching, B., Hund, M., & Aziz, Z. (Eds.), KI 2009: Advances in
Artificial Intelligence, Vol. 5803 of LNCS, pp. 615–622. Springer.

64

